Advertisement

Advances in Date Palm (Phoenix dactylifera L.) Breeding

  • Jameel M. Al-Khayri
  • Poornananda M. Naik
  • Shri Mohan Jain
  • Dennis V. Johnson
Chapter

Abstract

Date palm is one of the oldest cultivated plants, grown in the arid and semiarid regions of the world. The date fruit serves as a vital worldwide component of the human diet and a staple food for millions of people. Unfortunately, various abiotic and biotic stresses along with agronomic constraints are hindering date productivity. Those date cultivars adapted to stress conditions have low fruit production. Conventional breeding, depending on crosses and backcrosses, is a time-consuming process. The applied research carried out on date palm is limited, still there is enormous potential to improve date palm breeding methods. Advanced biotechnology creates unparalleled opportunities to develop new varieties with quality fruit, increased fruit yield and resistance to pests and pathogens. It also minimizes the application of potentially-harmful fungicides and pesticides and increases crop productivity. This chapter provides current and innovative information about date palm progress in terms of distribution, production, marketing strategy, current achievements, limitations and challenges facing date palm breeding. It also focuses on recent advances in tissue culture, genetic transformation and molecular breeding to improve the productivity and quality of the date.

Keywords

Abiotic stress Biotic stress Conventional breeding Genetic engineering Genomics Molecular breeding Tissue culture 

References

  1. Aaouine M (2003) Date palm large-scale propagation through tissue culture techniques. In: The date palm from traditional resource to green wealth. Emirates Centre for Strategic Studies and Research, UAE, Abu Dhabi, pp 79–86Google Scholar
  2. Abass MH (2016) Responses of date palm (Phoenix dactylifera L.) callus to biotic and abiotic stresses Emir J Food Agric 28(1):66–74Google Scholar
  3. Abdel-Rahim EA, Abdel-Fatah OM, El-Shemy HA et al (1998) Growth of date palm callus as affected by amino acids as organic nitrogen source. In: Proceedings of first international conference, date palm, UAE, Al-Ain, pp 234–240Google Scholar
  4. Abohatem M, Zouine J, El Hadrami I (2011) Low concentrations of BAP and high rate of subcultures improve the establishment and multiplication of somatic embryos in date palm suspension cultures by limiting oxidative browning associated with high levels of total phenols and peroxidase activities. Sci Hortic 130:344–348CrossRefGoogle Scholar
  5. Abul-Soad AA, Markhand GS, Shah SA (2008) Effect of naphthaleneacetic acid and indole-3-acetic acid on somatic embryogenesis of female inflorescence explants of date palm (Phoenix dactylifera L.) cv. Aseel. In: Proceedings of third international conference date palm, Faculty of Agriculture and Environmental Science, Egypt, Suez Canal University North Sinai, pp 25–27Google Scholar
  6. Adawy SS, Hussein EHA, Ismail SME et al (2005) Genomic diversity in date palm (Phoenix dactylifera L.) as revealed by AFLPs in comparison to RAPDs and ISSRs. Arab J Biotechnol 8:99–114Google Scholar
  7. Ageez A, Madboly EA (2011) Identification of male specific molecular markers in date palm Sewi cultivar. Egypt J Genet Cytol 40:201–214CrossRefGoogle Scholar
  8. Agnihotri A, Gupta V, Lakshmikumaran MS et al (1990) Production of Eruca-Brassica hybrids by embryo rescue. Plant Breed 104:281–289CrossRefGoogle Scholar
  9. Ahloowalia BS, Maluszynski M (2001) Induced mutations- a new paradigm in plant breeding. Euphytica 118:167–173Google Scholar
  10. Ahmed MMM, Soliman SS, Elsayed EH (2006) Molecular identification of some Egyptian date palm males by females varieties (Phoenix dactylifera L.) using DNA markers. J Appl Sci Res 2:270–275Google Scholar
  11. Ahmed MVOM, Bouna ZEO, Lemine FMM et al (2011) Use of multivariate analysis to assess phenotypic diversity of date palm (Phoenix dactylifera L.) cultivars. Sci Hortic 127(3):367–371CrossRefGoogle Scholar
  12. Al Busaidi KTS, Farag KM (2015) The use of electrolyte leakage procedure in assessing heat and salt tolerance of Ruzaiz date palm (Phoenix dactylifera L.) cultivar regenerated by tissue culture and offshoots and treatments to alleviate the stressful injury. J Hortic For 7(4):104–111Google Scholar
  13. Aleid SM, Al-Khayri JM, Al-Bahrany AM (2015) Date palm status and perspective in Saudi Arabia. In: Al-Khayri JM, Jain SM, Johnson DV (eds) Date palm genetic resources and utilization, vol 2. Asia and Europe. Springer, Dordrecht, pp 49–95Google Scholar
  14. Al Mansoori TA, Eldeen MNA (2007) Evaluation techniques for salt tolerance in date palm. Acta Hort 736:301–307CrossRefGoogle Scholar
  15. Al-Ameri AA, Al-Qurainy F, Gaafar ARZ et al (2016a) Molecular identification of sex in Phoenix dactylifera using inter simple sequence repeat markers. Biomed Res Int.  https://doi.org/10.1155/2016/4530846CrossRefPubMedPubMedCentralGoogle Scholar
  16. Al-Ameri AA, Al-Qurainy F, Gaafar ARZ et al (2016b) Male specific gene expression in dioecious Phoenix dactylifera (date palm) tree at flowering stage. Pak J Bot 48(1):131–135Google Scholar
  17. Al-Bahrany AM, Al-Khayri JM (2012) In vitro responses of date palm cell suspensions under osmotic stress induced by sodium potassium and calcium salts at different exposure durations. Am J Plant Phys 7:120–134CrossRefGoogle Scholar
  18. Al-Dous EK, George B, Al-Mahmoud ME et al (2011) De novo genome sequencing and comparative genomics of date palm (Phoenix dactylifera). Natl Biotechnol 29:521–527CrossRefGoogle Scholar
  19. Al-Enezi NA, Al-Khayri JM (2012a) Alterations of DNA, ions and photosynthetic pigments content in date palm seedlings induced by X-irradiation. Int J Agric Biol 14:329–336Google Scholar
  20. Al-Enezi NA, Al-Khayri JM (2012b) Effect of X-irradiation on proline accumulation, growth and water content of date palm (Phoenix dactylifera L.) seedlings. J Biol Sci 12(3):146–153CrossRefGoogle Scholar
  21. Al-Faifi SA, Migdadi HM, Algamdi SS et al (2016) Development, characterization and use of genomic SSR markers for assessment of genetic diversity in some Saudi date palm (Phoenix dactylifera L.) cultivars. Electr J Biotechnol 21:18–25CrossRefGoogle Scholar
  22. Al-Farsi M, Alasalvar C, Al-Abid M (2007) Compositional characteristics of dates, syrups, and their by-products. Food Chem 104:943–947CrossRefGoogle Scholar
  23. Al-Farsi M, Alasalvar C, Morris A et al (2005a) Compositional and sensory characteristics of three native sun-dried date (Phoenix dactylifera L.) varieties grown in Oman. J Agric Food Chem 53:7586–7591CrossRefPubMedGoogle Scholar
  24. Al-Farsi M, Alasalvar C, Morris A et al (2005b) Comparison of antioxidant activity, anthocyanins, carotenoids, and phenolics of three native fresh and sun-dried date (Phoenix dactylifera L.) varieties grown in Oman. J Agric Food Chem 53:7592–7599CrossRefPubMedGoogle Scholar
  25. Al-Farsi MA, Lee CY (2008) Nutritional and functional properties of dates: a review. Crit Rev Food Sci Nutr 48(10):877–887CrossRefPubMedGoogle Scholar
  26. Al-Kaabi HH, Zaid A, Ainsworth C (2007) Plant-off-types in tissue culture-derived date palm (Phoenix dactylifera L.) plants. Acta Hortic 736:267–281CrossRefGoogle Scholar
  27. Al-Khalifah NS, Askari E, Khan AES (2012) Molecular and morphological identification of some elite varieties of date palms grown in Saudi Arabia. Emir J Food Agric 24(5):456–461Google Scholar
  28. Al-Khalifah NS, Khan FA, Askari E et al (2006) In vitro culture and genetic analysis of male and female date palm. Acta Hortic 725:653–662CrossRefGoogle Scholar
  29. Al-Khayri JM (2001) Optimization of biotin and thiamine requirements for somatic embryogenesis of date palm (Phoenix dactylifera L). In Vitro Cell Dev Biol Plant 37:453–456CrossRefGoogle Scholar
  30. Al-Khayri JM (2003) In vitro germination responses of date palm: Effect of auxin concentrations and MS salts. Curr Sci 84:680–683Google Scholar
  31. Al-Khayri JM (2005) Date palm (Phoenix dactylifera L.). In: Jain SM, Gupta PK (eds) Protocols of somatic embryogenesis in woody plants. Springer, Berlin, pp 309–319CrossRefGoogle Scholar
  32. Al-Khayri JM (2007) Date palm Phoenix dactylifera L. micropropagation. In: Jain SM, Haggman H (eds) Protocols for micropropagation of woody trees and fruits. Springer, Berlin, pp 509–526CrossRefGoogle Scholar
  33. Al-Khayri JM (2010) Somatic embryogenesis of date palm (Phoenix dactylifera L.) improved by coconut water. Biotechnology 9:477–484CrossRefGoogle Scholar
  34. Al-Khayri JM (2011) Basal salt requirements differ according to culture stage and cultivar in date palm somatic embryogenesis. Am J Biochem Biotechnol 7:32–42CrossRefGoogle Scholar
  35. Al-Khayri JM (2012) Determination of the date palm cell suspension growth curve, optimum plating efficiency, and influence of liquid medium on somatic embryogenesis. Emir J Food Agric 24(5):444–455Google Scholar
  36. Al-Khayri JM (2013) Factors affecting somatic embryogenesis in date palm (Phoenix dactylifera L.) In: Aslam J, Srivastava PS, Sharma MP (eds) Somatic embryogenesis and genetic transformation in plants. Narosa Publishing House, New Delhi, pp 15–38Google Scholar
  37. Al-Khayri JM, Al-Bahrany AM (2001) Silver nitrate and 2-isopentyladenine promote somatic embryogenesis in date palm (Phoenix dactylifera L.). Sci Hort 89:291–298CrossRefGoogle Scholar
  38. Al-Khayri JM, Al-Bahrany AM (2004a) Genotype-dependent in vitro response of date palm (Phoenix dactylifera L.) cultivars to silver nitrate. Sci Hort 99:153–162CrossRefGoogle Scholar
  39. Al-Khayri JM, Al-Bahrany AM (2004b) Growth, water content, and proline accumulation in drought-stressed callus of date palm. Biol Plant 48:105–108CrossRefGoogle Scholar
  40. Al-Khayri JM, Ibraheem Y (2014) In vitro selection of abiotic stress tolerant date palm (Phoenix dactylifera L.): A review. Emirates J Food Agric 26(11):921–933Google Scholar
  41. Al-Khayri JM, Jain SM, Johnson DV (eds) (2015a) Date palm genetic resources and utilization: volume 1: Africa and the Americas. Springer, Dordrecht, 456 pGoogle Scholar
  42. Al-Khayri JM, Jain SM, Johnson DV (eds) (2015b) Date palm genetic resources and utilization: volume 2: Asia and Europe. Springer, Dordrecht, 566 pGoogle Scholar
  43. Al-Khayri JM, Naik PM (2017) Date palm micropropagation: advances and applications. Cienc Agrotec 41(4):347–358CrossRefGoogle Scholar
  44. Al-Khayri JM, Naik PM, Alwael HA (2017) In vitro assessment of abiotic stress in date palm: salinity and drought. Al-Khayri JM, Jain SM, Johnson DV (eds) Date palm biotechnology protocols: volume 1, tissue culture applications. Methods in molecular biology, vol 1637. Springer, New York, pp 333–346Google Scholar
  45. Al-Mssallem IS, Hu S, Zhang X et al (2013) Genome sequence of the date palm Phoenix dactylifera L. Natl Commun 4:2274.  https://doi.org/10.1038/ncomms3274CrossRefGoogle Scholar
  46. Al-Mulla L, Bhat NR, Khalil M (2013) Salt tolerance of tissue-cultured date palm cultivars under controlled environment. Int J Biol Vet Agri Food Eng 7(8):476–479Google Scholar
  47. Alrasbi SAR, Hussain N, Schmeisky H (2010) Evaluation of the growth of date palm seedlings irrigated with saline water in the Sultanate of Oman. Acta Hortic 882:233–246CrossRefGoogle Scholar
  48. Al-Sakran MS, Muneer SE (2006) Adoption of date palm tissue culture technology among date palm producers in the central region of Saudi Arabia. Res Bull 145:1–20Google Scholar
  49. Al-Shahib W, Marshall RJ (2002) Dietary fibre content of dates from 13 varieties of date palm Phoenix dactylifera L. Int J Food Sci Technol 37:719–721CrossRefGoogle Scholar
  50. Al-Shahib W, Marshall RJ (2003) The fruit of the date palm: its possible use as the best food for the future? Int J Food Sci Nutr 54:247–259CrossRefPubMedGoogle Scholar
  51. Al-Shreed F, Al-Jamal M, Al-Abbad A et al (2012) A study on the export of Saudi Arabian dates in the global markets. J Dev Agric Econ 4(9):268–274Google Scholar
  52. Alwael HA, Naik PM, Al-Khayri JM (2017) Synchronization of somatic embryogenesis in date palm suspension culture using abscisic acid. Al-Khayri JM, Jain SM, Johnson DV (eds) Date palm biotechnology protocols: volume 1, tissue culture applications. Methods in molecular biology, vol. 1637. Springer, New York, pp 215–226Google Scholar
  53. Al-Zubaydi S, Jassim A, Zair H (2013) Effect of sodium chloride and proline on embryo formation and germination through in vitro micropropagation of date palm (Phoenix dactylifera L.) cv. Barhee. J Agr Sci Technol 3:313–320Google Scholar
  54. Andlauer W, Furst P (2003) Special characteristics of non-nutrient food constituents of plants – phytochemicals. Introductory lecture. Int J Vitam Nutr Res 73:55–62CrossRefPubMedGoogle Scholar
  55. Aslam J, Khan SA, Azad MAK (2015) Agrobacterium-mediated genetic transformation of date palm (Phoenix dactylifera L.) cultivar “Khalasah” via somatic embryogenesis. Plant Sci Today 2(3):93–101Google Scholar
  56. Assirey EAR (2015) Nutritional composition of fruit of 10 date palm (Phoenix dactylifera L.) cultivars grown in Saudi Arabia. J Taibah Univ Sci 9:75–79CrossRefGoogle Scholar
  57. Augustin LS, Franceschi S, Jenkins DJ et al (2002) Glycemic index in chronic disease: A review. Eur J Clin Nutr 56(11):1049–1071CrossRefPubMedGoogle Scholar
  58. Bekheet S (2013) Direct organogenesis of date palm (Phoenix dactylifera L.) for propagation of true-to-type plants. Sci. Agri 4(3):85–92Google Scholar
  59. Bekheet S, Taha H, Hanafy M et al (2008) Morphogenesis of sexual embryos of date palm cultured in vitro and early identification of sex type. J Appl Sci Res 4:345–352Google Scholar
  60. Bekheet SA (2011) In vitro conservation of date palm germplasm. In: Jain SM, Al-Khayri JM, Johnson DV (eds) Date palm biotechnology. Springer, Dordrecht, pp 337–360CrossRefGoogle Scholar
  61. Bekheet SA (2015) Effect of cryopreservation on salt and drought tolerance of date palm cultured in vitro. Sci Agri 9(3):142–149Google Scholar
  62. Bekheet SA, Hanafy MS (2011) Towards sex determination of date palm. In: Jain SM, Al-Khayri JM, Johnson DV (eds) Date palm biotechnology. Springer, Dordrecht, pp 551–566CrossRefGoogle Scholar
  63. Bekheet SA, Taha HS, Saker MM (2001) In vitro long-term storage of date palm. Biol Plant 45(1):121–124CrossRefGoogle Scholar
  64. Bekheet SA, Taha HS, Solliman ME et al (2007) Cryopreservation of date palm (Phoenix dactylifera L.) cultured in vitro. Acta Hortic 736:283–291CrossRefGoogle Scholar
  65. Bekheet SA, Taha HS, Saker MM (2002) In vitro long-term storage of date palm. Biol Plant 45:121–124CrossRefGoogle Scholar
  66. Ben-Abdallah A, Stiti K, Lepoivre P et al (2000) Date palm (Phoenix dactylifera L.) cultivar identification using random amplified polymorphic DNA (RAPD). Cah Agric 9:103–107Google Scholar
  67. Bendiab K, Baaziz M, Brakez Z et al (1993) Correlation of isoenzyme polymorphism and bayoud-disease resistance in date palm cultivars and progeny. Euphytica 65:23–32CrossRefGoogle Scholar
  68. Ben-Yehoshua S, Ben-Yehoshua LJ (2012) Ancient dates and their potential use in breeding. In: Janick J (ed) Horticultural Reviews, vol 40. Wiley, Hoboken, pp 183–213CrossRefGoogle Scholar
  69. Bhansali RR (2010) Date palm cultivation in the changing scenario of Indian arid zones: challenges and prospects. In: Ramawat K (ed) Desert plants. Springer, Berlin, pp 423–459CrossRefGoogle Scholar
  70. Bhore SJ, Shah FH (2012) Genetic transformation of the American oil palm (Elaeis oleifera) immature zygotic embryos with antisense palmitoyl-acyl carrier protein thioesterase (PATE) gene. World Appl Sci J 16(3):362–369Google Scholar
  71. Biglari F, AlKarkhi AFM, Easa AM (2008) Antioxidant activity and phenolic content of various date palm (Phoenix dactylifera) fruits from Iran. Food Chem 107:1636–1641CrossRefGoogle Scholar
  72. Bouguedoura N (1991) Connaissance de la morphogénèse du palmier dattier (Phoenix dactylifera L.): Etude in situ et in vitro du développement morphogénétique des appareils végétatif et reproducteur. Dissertation, University of Sciences and Technology Houari BoumedieneGoogle Scholar
  73. Bouguedoura N, Michaux-Ferriere N, Bompar JL (1990) Comportement in vitro de bourgeons axillaires de type indetermine du palmier dattier (Phoenix dactylifera L.). Can J Bot 68(9):2004–2009CrossRefGoogle Scholar
  74. Bourgis F, Kilaru A, Cao X, Ngando-Ebongue GF, Drira N, Ohlrogge JB, Arondel V (2011) Comparative transcriptome and metabolite analysis of oil palm and date palm mesocarp that differ dramatically in carbon partitioning. Proc Natl Acad Sci USA 108(30):12527–12532 Google Scholar
  75. Brand-Miller JC (2003) Glycemic load and chronic disease. Nutr Rev 61:S49–S55CrossRefPubMedGoogle Scholar
  76. Cao BR, Chao CCT (2002) Identification of date cultivars in California using AFLP markers. Hortic Sci 37:966–968Google Scholar
  77. Chabane D, Assani A, Bouguedoura N et al (2007) Induction of callus formation from difficile date palm protoplasts by means of nurse culture. C R Biol 330:392–401CrossRefPubMedGoogle Scholar
  78. Chabane D, Bouguedoura N, Assani A (2010) Importance of protoplast culture in the genetic improvement of date palm (Phoenix dactylifera L). Acta Hortic 882:185–192CrossRefGoogle Scholar
  79. Chao CCT, Krueger RR (2007) The date palm (Phoenix dactylifera L.): overview of biology, uses, and cultivation. Hortic Sci 42(5):1077–1082Google Scholar
  80. Chavarri M, Garcıa AV, Zambrano AY et al (2010) Insertion of Agrobacterium rhizogenes rolB gene in mango. Interciencia 35(7):521–525Google Scholar
  81. Chuda A, Adamus A (2012) Hybridization and molecular characterization of F1 Allium cepa × Allium roylei plants. Acta Biol Cracov Bot 54(2):25–31Google Scholar
  82. Davey MR, Anthony P, Power JB et al (2005) Plant protoplast technology: current status. Acta Phys Plant 27:117–129CrossRefGoogle Scholar
  83. Dhawan C, Kharb P, Sharma R et al (2013) Development of male-specific SCAR marker in date palm (Phoenix dactylifera L.). Tree Genet Genomes 9:1143–1150CrossRefGoogle Scholar
  84. Diaz S, Pire C, Ferrer J et al (2003) Identification of Phoenix dactylifera L. varieties based on amplified fragment length polymorphism (AFLP) markers. Cell Mol Biol Lett 8(4):891–899PubMedGoogle Scholar
  85. El Hadrami A, Al-Khayri JM (2012) Socioeconomic and traditional importance of date palm. Emir J Food Agric 24(5):371–385Google Scholar
  86. El Hadrami A, Daayf F, El Hadrami I (2011a) Date palm genetics and breeding. In: Jain SM, Al-Khayri JM, Johnson DV (eds) Date palm biotechnology. Springer, Dordrecht, pp 479–512CrossRefGoogle Scholar
  87. El Hadrami A, Daayf F, El Hadrami I (2011b) Secondary metabolites of date palm. In: Jain SM, Al-Khayri JM, Johnson DV (eds) Date palm biotechnology. Springer, Dordrecht, pp 653–674CrossRefGoogle Scholar
  88. El Hadrami A, Daayf F, Elshibli S et al (2011c) Somaclonal variation in date palm. In: Jain SM, Al-Khayri JM, Johnson DV (eds) Date palm biotechnology. Springer, Dordrecht, pp 183–203CrossRefGoogle Scholar
  89. El Hadrami A, Daayf F, El Hadrami I (2011d) In vitro selection for abiotic stress in date palm. In: Jain SM, Al-Khayri JM, Johnson DV (eds) Date palm biotechnology. Springer, Dordrecht, pp 237–252CrossRefGoogle Scholar
  90. El Hadrami I (1995) L’embryogenese somatique chez Phoenix dactylifera L. quelques facteurs limitants et marqueurs biochimiques. Dissertation, Université Cadi AyyadGoogle Scholar
  91. El Hadrami I, El Hadrami A (2009) Breeding date palm. In: Jain SM, Priyadarshan PM (eds) Breeding plantation tree crops. Springer, New York, pp 191–216Google Scholar
  92. El-Dawayati MM, Ghazzawy HS, Munir M (2018) Somatic embryogenesis enhancement of date palm cultivar Sewi using different types of polyamines and glutamine amino acid concentration under in-vitro solid and liquid media conditions. Int J Biosci 12(1):149–159CrossRefGoogle Scholar
  93. El-Habba MS, Al-Mulhim F (2013) The competitiveness of the Saudi Arabian date palm: an analytical study. Afr J Agric Res 8(43):5260–5267Google Scholar
  94. El-Juhany LI (2010) Degradation of date palm trees and date production in Arab countries: causes and potential rehabilitation. Austral J Basic Appl Sci 4(8):3998–4010Google Scholar
  95. Elleuch M, Besbes S, Roiseux O et al (2008) Date flesh: chemical composition and characteristics of the dietary fibre. Food Chem 111:67–82CrossRefGoogle Scholar
  96. Elmeer K, Mattat I (2012) Marker-assisted sex differentiation in date palm using simple sequence repeats. 3. Biotechnology 2:241–247Google Scholar
  97. Elsafy M, Zborowska A, Bryngelsson T et al (2016) Elucidating the genetic diversity of farmer cultivars of female date palms (Phoenix dactylifera L.) from Sudan by microsatellite markers. Genet Resour Crop Evol 63(6):975–986Google Scholar
  98. El-Shiaty OH, El-Sharabasy SF, Abd El-Kareim AH (2004) Effect of some amino acids and biotin on callus and proliferation of date palm (Phoenix dactylifera L.) Sewy cultivar. Arab J Biotechnol 7:265–272Google Scholar
  99. Eshraghi P, Zarghami R, Mirabdulbaghi M (2005) Somatic embryogenesis in two Iranian date palm cultivars. Afr J Biotechnol 4:1309–1312Google Scholar
  100. Fang Y, Wu H, Zhang T et al (2012) A complete sequence and transcriptomic analyses of date palm (Phoenix dactylifera L.) mitochondrial genome. PLoS ONE 7:e37164.  https://doi.org/10.1371/journal.pone.0037164CrossRefPubMedPubMedCentralGoogle Scholar
  101. FAOSTAT (2005) Rome: Food and Agricultural Organization Corporate Statistical Database. Crop Production, Statistics Division. Retrieved from http://faostat.fao.org/. Accessed on 1 Aug 2016
  102. FAOSTAT (2010) Rome: Food and Agricultural Organization Corporate Statistical Database. Retrieved from http://faostat.fao.org/. Accessed on 1 Aug 2016
  103. FAOSTAT (2012) Rome: Food and Agricultural Organization Corporate Statistical Database. Retrieved from http://faostat.fao.org/. Accessed on 1 Aug 2016
  104. Fayadh JM, Al-Showiman SS (1990) Chemical composition of date palm (Phoenix dactylifera L). J Chem Soc Pak 12:84–103Google Scholar
  105. Fernandez D, Ouinten M, Tantaoui A et al (1998) Fot1 Insertions in the Fusarium oxysporum f. sp. albedinis genome provide diagnostic PCR targets for detection of the date palm pathogen. Appl Envir Microbiol 64:633–636Google Scholar
  106. Finer JJ (2010) Plant nuclear transformation. In: Kempken F, Jung C (eds) Genetic modification of plants: biotechnology in agriculture and forestry. Springer, Berlin, pp 3–21CrossRefGoogle Scholar
  107. Finkle BJ, Ulrich JM, Rains DW et al (1979) Survival of alfalfa, Medicago sativa, rice Oryza sativa and date palm Phoenix dactylifera, callus after liquid nitrogen freezing. Cryobiol 16:583CrossRefGoogle Scholar
  108. Fki L, Masmoudi R, Drira N et al (2003) An optimised protocol for plant regeneration from embryogenic suspension cultures of date palm, (Phoenix dactylifera L.), cv. Deglet Nour. Plant Cell Rep 21:517–524PubMedGoogle Scholar
  109. Fki L, Masmoudi R, Kriaa W et al (2011) Date palm micropropagation via somatic embryogenesis. In: Jain SM, Al-Khayri JM, Johnson DV (eds) Date palm biotechnology. Springer, Dordrecht, pp 47–68CrossRefGoogle Scholar
  110. Gerritsen ME, Carley WW, Ranges GE et al (1995) Flavonoids inhibit cytokine induced endothelial cell adhesion protein gene expression. Am J Pathol 147:278–292PubMedPubMedCentralGoogle Scholar
  111. Gong S, Liu J (2013) Genetic transformation and genes for resistance to abiotic and biotic stresses in Citrus and its related genera. Plant Cell Tissue Org Cult 113:137–147CrossRefGoogle Scholar
  112. Habashi AA, Kaviani M, Mousavi A et al (2008) Transient expression of b-glucuronidase reporter gene in date palm (Phoenix dactylifera L.) embryogenic calli and somatic embryos via microprojectile bombardment. J Food Agric Environ 6:160–163Google Scholar
  113. Haider N, Nabulsi I, Ali NM (2012) Phylogenetic relationships among date palm (Phoenix dactylifera L.) cultivars in Syria using RAPD and ISSR markers. J Plant Biol Res 1(2):12–24Google Scholar
  114. Hammadi H, Mokhtar R, Mokhtar E et al (2009) New approach for morphological identification of date palm (Phoenix dactylifera L.) cultivars from Tunisia. Pak J Bot 41:2671–2681Google Scholar
  115. Hanning E (1904) Uber die kultur von cruciferne, embryonen ausenhalb des embryosachs. Bot Ztg 62:45–80Google Scholar
  116. Hao YJ, Wen XP, Deng XX (2004) Genetic and epigenetic evaluation of citrus calluses recovered from slow growth cultures. J Plant Physiol 161:479–484CrossRefPubMedGoogle Scholar
  117. Hazzouri KM, Flowers JM, Visser HJ et al (2015) Whole genome re-sequencing of date palms yields insights into diversification of a fruit tree crop. Nat Commun 6:8824.  https://doi.org/10.1038/ncomms9824CrossRefPubMedPubMedCentralGoogle Scholar
  118. Heikrujam M, Sharma K, Prasad M (2015) Review on different mechanisms of sex determination and sex-linked molecular markers in dioecious crops: a current update. Euphytica 201:161–194CrossRefGoogle Scholar
  119. Hong YJ, Tomas-Barberan FAA, Kader A (2006) The flavonoids glycosides and procyanidin composition of Deglet Nour dates (Phoenix dactylifera). J Agric Food Chem 54:2405–2411CrossRefPubMedGoogle Scholar
  120. Horsch RB, Fry JE, Hoffmann NL et al (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231CrossRefGoogle Scholar
  121. Ibraheem Y, Pinker MI, Böhme M (2012) The effect of sodium chloride-stress on ‘Zaghloul’ date palm somatic embryogenesis. Acta Hortic 961:367–373CrossRefGoogle Scholar
  122. IPGRI (2005) Descripteurs du palmier dattier (Phoenix dactylifera L.). Institut International des Resources Phytogenetiques, Rome. http://ipgri.cgiar.org.et; http://www.magrebdatepalm.org
  123. Jain SM (2001) Tissue culture-derived variation in crop improvement. Euphytica 118:153–166CrossRefGoogle Scholar
  124. Jain SM (2005) Major mutation-assisted plant breeding programmes supported by FAO/IAEA. Plant Cell Tissue Org Cult 82:113–121CrossRefGoogle Scholar
  125. Jain SM (2006) Radiation-induced mutations for developing Bayoud disease resistant date palm in North Africa. In: Zaid A (ed) Proceedings of the international workshop on true-to-typeness of date palm tissue cultured-derived plants, Plant Tissue Culture Laboratory, UAE University, Al Ain, 2006, pp 31–41Google Scholar
  126. Jain SM (2007) Recent advances in date palm tissue culture and mutagenesis. Acta Hortic 736:205–211CrossRefGoogle Scholar
  127. Jain SM (2010) Date palm genetic diversity conservation for sustainable production. Acta Hortic 882:785–792CrossRefGoogle Scholar
  128. Jain SM, Al-Khayri JM, Johnson DV (eds) (2011) Date palm biotechnology. Springer, DordrechtGoogle Scholar
  129. Jaiti F, Verdeil JL, El Hadrami I (2009) Effect of jasmonic acid on the induction of polyphenoloxidase and peroxidase activities in relation to date palm resistance against Fusarium oxysporum f. sp. albedinis. Phys Mol Plant Path 74:84–90CrossRefGoogle Scholar
  130. Jasim AM, Abbas MF, Alzubaidy BH (2010) Effect of salt stress and proline on chemical on content of embryogenic callus and somatic embryos of date palm (Phoenix dactylifera L. ‘Ashkar’). Acta Hortic 882:219–224CrossRefGoogle Scholar
  131. Jazinizadeh E, Zarghami R, Majd A et al (2015) In vitro production of date palm (Phoenix dactylifera L.) cv. ‘Barhee’ plantlets through direct organogenesis. Biol Forum Int J 7(2):566–572Google Scholar
  132. Jenkins DJ, Kendall CW, Augustin LS et al (2002) Glycemic index: Overview of implications in health and disease. Am J Clin Nutr 76(1):266S–273SCrossRefPubMedGoogle Scholar
  133. Johnson DV, Al-Khayri JM, Jain SM (2013) Seedling date palms (Phoenix dactylifera L.) as genetic resources. Emir J Food Agric 25(11):809–830Google Scholar
  134. Johnson DV, Al-Khayri JM, Jain SM (2015) Introduction: Date production status and prospects in Africa and the Americas. In: Al-Khayri JM, Jain SM, Johnson DV (eds) Date palm genetic resources and utilization, vol 1. Africa and the Americas. Springer, Dordrecht, pp 3–18Google Scholar
  135. Kadir APG (2008) Biolistic-mediated production of transgenic of oil palm. Methods Mol Biol 477:301–320CrossRefGoogle Scholar
  136. Kamal-Eldin A, Ghnimi S (2018) Classification of date fruit (Phoenix dactylifera, L.) based on chemometric analysis with multivariate approach. J Food Meas Charact  https://doi.org/10.1007/s11694-018-9717-4
  137. Kassem HA, Marzouk HA (2010) Effect of different organic fertilizer sources on improving fruit nutritional value and yield of Zaghloul dates. Acta Hortic 882:737–744CrossRefGoogle Scholar
  138. Kaul A, Khanduja KJ (1998) Polyphenols inhibit promotional phase of tumorigenesis: Relevance of superoxide radicals. Nurt Cancer 32:81–85Google Scholar
  139. Khan S, Bi TB (2012) Direct shoot regeneration system for date palm (Phoenix dactylifera L.) cv. Dhakki as a means of micropropagation. Pak J Bot 44(6):1965–1971Google Scholar
  140. Khierallah HS, Bader MSM (2007) Micropropagation of date palm (Phoenix dactylifera L.) var. Maktoom through organogenesis. Acta Hortic 736:213–223CrossRefGoogle Scholar
  141. Khierallah HSM, Al-Sammarraie SKI, Mohammed HI (2014) Molecular characterization of some Iraqi date palm cultivars using RAPD and ISSR markers. J Asian Sci Res 4(9):490–503Google Scholar
  142. Khierallah HSM, Hussein NH (2013) The role of coconut water and casein hydrolysate in somatic embryogenesis of date palm and genetic stability detection using RAPD markers. Res Biotechnol 4(3):20–28Google Scholar
  143. Khosla PK, Kumari A (2015) Methods of sex determination in dioecious angiospermous plants. Lakshya: J Sci Manage 1:1–9Google Scholar
  144. Kristina FC, Towill LE (1993) Pollen-handling protocol and hydration/dehydration characteristics of pollen for application to long-term storage. Euphytica 68:77–84CrossRefGoogle Scholar
  145. Krueger RR (2011) Date Palm Germplasm. In: Jain SM, Al-Khayri JM, Johnson DV (eds) Date palm biotechnology. Springer, Dordrecht, p 313CrossRefGoogle Scholar
  146. Lanteri S, Barcaccia G (2005) Molecular markers based analysis for crop germplasm preservation. In: Proceedings international workshop on the role of biotechnology for characterisation and conservation of crop, forestry, animal and fishery genetic resources. www.fao.org/biotech/docs/lanteri.pdf
  147. Larkin PJ, Scowcroft WR (1981) Somaclonal variation: a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–214CrossRefPubMedPubMedCentralGoogle Scholar
  148. Louvet J, Toutain G (1973) Recherches sur les fusarioses. VII. Nouvelles observations sur la fusariose du palmier dattier et précisions concernant la lutte. Ann Phytopathol 5:35–52Google Scholar
  149. Ludwig DS (2002) The glycemic index: Physiological mechanisms relating to obesity, diabetes, and cardiovascular disease. JAMA 287(18):2414–2423CrossRefPubMedGoogle Scholar
  150. Lulsdorf MM, Ferrie A, Slater SM et al (2014) Methods and role of embryo rescue technique in alien gene transfer. In: Partab A, Kumar J (eds) Alien gene transfer in crop plants, vol 1. Springer, New York, pp 77–103CrossRefGoogle Scholar
  151. Mahatre M (2013) Agrobacterium-mediated genetic transformation of pineapple (Ananas comosus L., Merr.). Methods Mol Biol 11013:435–453Google Scholar
  152. Maluszynski M, Nichterlein K, van Zanten L et al (2000) Officially released mutant varieties – the FAO/IAEA database. Mut Breed Rev 12:1–84Google Scholar
  153. Mansouri A, Embarek G, Kokkalou E et al (2005) Phenolic profile and antioxidant activity of the Algerian ripe date palm fruit (Phoenix dactylifera). Food Chem 89:411–420CrossRefGoogle Scholar
  154. Marsafari M, Mehrabi AA (2013) Molecular identification and genetic diversity of Iranian date palm (Phoenix dactylifera L.) cultivars using ISSR and RAPD markers. Aus. J Crop Sci 7(8):1160–1166Google Scholar
  155. Maryam, Jaskani MJ, Awan FS (2016) Development of molecular method for sex identification in date palm (Phoenix dactylifera L.) plantlets using novel sex-linked microsatellite markers. 3 Biotechnology 6(1):22.  https://doi.org/10.1007/s13205-015-0321-6
  156. Mater AA (1987) Production and cryogenic freezing of date palm germplasm and regeneration of plantlets from frozen material. Iraqi J Agric Sci Zanco 5:35–49Google Scholar
  157. Matheron B, Benbadis A (1985) Etude comparée des premières phases de l’infection du palmier dattier (Phoenix dactylifera L.) par deux formes spéciales de Fusarium oxysporum la f. sp. albedinis (agent du bayoud) et la f. sp. Melonis. Bull Soc Bot Fr Lett Bot 132:203–212Google Scholar
  158. Mathew LS, Spannag M, Al-Malki A et al (2014) A first genetic map of date palm (Phoenix dactylifera) reveals long-range genome structure conservation in the palms. BMC Genom 15:285.  https://doi.org/10.1186/1471-2164-15-285CrossRefGoogle Scholar
  159. Mazri MA, Belkoura I, Meziani R et al (2017) Somatic embryogenesis from bud and leaf explants of date palm (Phoenix dactylifera L.) cv. Najda. 3. Biotechnology 7:58.  https://doi.org/10.1007/s13205-017-0676-yCrossRefGoogle Scholar
  160. McCue PP, Shetty K (2004) Inhibitory effects of rosmarinic acid extracts on porcine pancreatic amylase in vitro. Asia Pac J Clin Nutr 13:101–106PubMedGoogle Scholar
  161. Meilleur BA, Hodgkin T (2004) In situ conservation of crop wild relatives: status and trends. Biodivers Conser 13:663–684CrossRefGoogle Scholar
  162. Milewicz M, Sawicki J (2013) Sex-linked markers in dioecious plants. Plant Omics J 6(2):144–149Google Scholar
  163. Miller CJ, Dunn EV, Hashim IB (2003) The glycaemic index of dates and date/yoghurt mixed meals. Are dates ‘the candy that grows on trees’? Eur J Clin Nutr 57:427–430CrossRefPubMedGoogle Scholar
  164. Mirbahar AA, Markhand GS, Khan S (2014) Molecular characterization of some Pakistani date palm (Phoenix dactylifera L.) cultivars by RAPD markers. Pak J Bot 46(2):619–625Google Scholar
  165. Mohsen A, Amara SB, Salem NB (2003) Effect of vacuum and modified atmosphere packaging on Deglet Nour date storage in Tunisia. Fruits 85:205–212Google Scholar
  166. Mondal TK, Kundu PK, Ahula PS (1997) Gene silencing: a problem in transgenic research. Curr Sci 72:699–700Google Scholar
  167. Mousavi M, Mousavi A, Habashi AA et al (2009) Efficient transformation and expression of gus gene in somatic embryos of date palm (Phoenix dactylifera L.) via particle bombardment. Afr J Biotechnol 8:3721–3730Google Scholar
  168. Mousavi M, Mousavi A, Habashi AA et al (2014) Genetic transformation of date palm (Phoenix dactylifera L. cv. ‘Estamaran’) via particle bombardment. Mol Biol Rep 41:8185–8194CrossRefPubMedGoogle Scholar
  169. Mujeeb-Kazi A (2003) Wheat improvement facilitated by novel genetic diversity and in vitro technology. Plant Tissue Cult 13:179–210Google Scholar
  170. Muldoon MF, Kritchvesky SB (1996) Flavonoids and heart disease. BMJ 312:458–459CrossRefPubMedPubMedCentralGoogle Scholar
  171. Munier P (ed) (1973) Le palmier dattier. Maisonneuve et Larose, Paris, pp 141–150Google Scholar
  172. Munns R, Tester M (2008) Mechanism of salinity tolerance. Ann Rev Plant Biol 59:651–681CrossRefGoogle Scholar
  173. Murashige T, Skoog FA (1962) Revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  174. MyCock DJ, Berjak P, Pammenter NW et al (1997) Cryopreservation of somatic embryoids of Phoenix dactylifera. In: Ellis RH, Black M, Murdoch AJ, Hong TD (eds) Basic and applied aspects of seed biology. Kluwer, Dordrecht, pp 75–82CrossRefGoogle Scholar
  175. Naik PM, Al-Khayri JM (2016) Somatic embryogenesis of date palm (Phoenix dactylifera L.) through cell suspension culture. In: Jain SM (ed) Protocols for in vitro cultures and secondary metabolite analysis of aromatic and medicinal plants, 2nd edn. Methods in molecular biology. vol 1391. Springer, New York, pp 357–366Google Scholar
  176. National Gene Bank (2007) Country report on the state of plant genetic resources for food and agriculture. Arab Republic of Egypt. Cairo, Egypt, pp 13–14Google Scholar
  177. Nixon RW (1951) The date palm: “tree of life” in the subtropical deserts. Econ Bot 5:274–301CrossRefGoogle Scholar
  178. Osman SM (2009) Response of Sakkoty date palm cultivar propagated by tissue culture-derived to different sources of fertilization. World J Agr Sci 5:631–638Google Scholar
  179. Othmani A, Bayoudh C, Drira N et al (2009a) Somatic embryogenesis and plant regeneration in date palm Phoenix dactylifera L., cv. Boufeggous is significantly improved by fine chopping and partial desiccation of embryogenic callus. Plant Cell Tissue Org Cult 97:71–79CrossRefGoogle Scholar
  180. Othmani A, Bayoudh C, Drira N et al (2009b) In vitro cloning of date palm Phoenix dactylifera L., cv. Deglet Bey by using embryogenic suspension and temporary immersion bioreactor (TIB). Biotechnol Equip 23(2):1181–1188Google Scholar
  181. Othmani A, Bayoudh C, Drira N et al (2009b) Regeneration and molecular analysis of date palm (Phoenix dactylifera L.) plantlets using RAPD markers. Afr J Biotechnol 8(5):813–820Google Scholar
  182. Pintaud JC, Zehdi S, Couvreur T et al (2010) Species delimitation in the genus Phoenix (Arecaceae) based on SSR markers, with emphasis on the identity of the date palm (Phoenix dactylifera L.). In: Seberg O, Petersen G, Barfod A, Davis J (eds) Diversity, phylogeny, and evolution in the monocotyledons. Arhus University Press, Denmark, pp 267–286Google Scholar
  183. Puri, HS (2002) Rasayana: Ayurvedic herbs for longevity and rejuvenation. CRC PressGoogle Scholar
  184. Purseglove JW (1972) Tropical crops. Monocotyledons, vol 2. Wiley, New YorkGoogle Scholar
  185. Qacif N, Baaziz M, Bendiab K (2007) Biochemical investigations on peroxidase contents of male and female inflorescences of date palm (Phoenix dactylifera L.). Sci Hort 114:298–301CrossRefGoogle Scholar
  186. Racchi ML, Bove A, Turchi A et al (2014) Genetic characterization of Libyan date palm resources by microsatellite markers. 3. Biotechnology 4(1):21–32.  https://doi.org/10.1007/s13205-013-0116-6CrossRefGoogle Scholar
  187. Radwan O, Arro J, Keller C et al (2015) RNA-Seq transcriptome analysis in date palm suggests multi-dimensional responses to salinity stress. Trop Plant Biol 8:74–86CrossRefGoogle Scholar
  188. Ramoliya PJ, Pandey AN (2003) Soil salinity and water status affect growth of Phoenix dactylifera seedlings. New Zeal J Crop Hort 4:345–353CrossRefGoogle Scholar
  189. Renau-Morata B, Arrillaga I, Segura J (2006) In vitro storage of cedar shoot culture under minimal growth conditions. Plant Cell Rep 25:636–642CrossRefPubMedGoogle Scholar
  190. Rivera D, Johnson D, Delgadillo J et al (2013) Historical evidence of the Spanish introduction of date palm (Phoenix dactylifera L., Arecaceae) into the Americas. Genet Resour Crop Evol 60:1433–1452CrossRefGoogle Scholar
  191. Roshanfekrrad M, Zarghami R, Hassani H et al (2017) Effect of AgNO3 and BAP on root as a novel explant in date palm (Phoenix dactylifera cv. Medjool) somatic embryogenesis. Pak J Biol Sci 20(1):20–27CrossRefPubMedGoogle Scholar
  192. Rizkalla AA, Badr-Elden AM, Nower AA (2007) Protoplast isolation, salt stress and callus formation of two date palm genotypes. J Appl Sci Res 3(10):1186–1194Google Scholar
  193. Saafi EB, El Arem A, Issaoui M et al (2009) Phenolic content and antioxidant activity of four date palm (Phoenix dactylifera L.) fruit varieties grown in Tunisia. Int J Food Sci Technol 44:2314–2319CrossRefGoogle Scholar
  194. Saafi EB, Trigui M, Thabet R et al (2008) Common date palm in Tunisia: chemical composition of pulp and pits. Int J Food Sci Technol 43:2033–2037CrossRefGoogle Scholar
  195. Saaidi M (1992) Comportement au champ de 32 cultivars de palmier dattier vis-à-vis du bayoud: 25 années d’observations. Agro EDP Sci 12:359–370Google Scholar
  196. Sabir JSM, Abo-Aba S, Bafeel S et al (2014a) Characterization of ten date palm (Phoenix dactylifera L.) cultivars from Saudi Arabia using AFLP and ISSR markers. C R Biol 337:6–18CrossRefPubMedGoogle Scholar
  197. Sabir JSM, Arasappan D, Bahieldin A et al (2014b) Whole mitochondrial and plastid genome SNP analysis of nine date palm cultivars reveals plastid heteroplasmy and close phylogenetic relationships among cultivars. PLoS ONE 9(4):e94158.  https://doi.org/10.1371/journal.pone.0094158CrossRefPubMedPubMedCentralGoogle Scholar
  198. Saker M, Allam MA, Goma AH (2007) Optimization of some factors affecting genetic transformation of semidry Egyptian date palm cultivar (Sewi) using particle bombardment. J Genet Eng Biotechnol 5:1–6Google Scholar
  199. Saker M, Bekheet M, Taha HS et al (2000) Detection of seasonal variations in tissue culture derived date palm plants using isozyme analysis and RAPD fingerprints. Biol Plant 43:347–351CrossRefGoogle Scholar
  200. Saker M, Ghareeb H, Kumlehn J (2009) Factors influencing transient expression of Agrobacterium mediated transformation of GUS gene in embryogenic callus of date palm. Adv Hortic Sci 23:150–157Google Scholar
  201. Saker MM (2011) Transgenic date palm. In: Jain SM, Al Khayri JM, Johnson DV (eds) Date palm biotechnology. Springer, Dordrecht, pp 631–650CrossRefGoogle Scholar
  202. Sallon S, Solowey E, Cohen Y et al (2008) Germination, genetics, and growth of an ancient date seed. Science 320:1464.  https://doi.org/10.1126/science.1153600CrossRefPubMedGoogle Scholar
  203. Sauca F, Lazar DA (2011) Scientific results regarding the gene(s) introgression of drought resistance to Helianthus annuus species, using embryo rescue. Rom Biotechnol Lett 16:3–8Google Scholar
  204. Sedra, M (2011a) Development of new Moroccan selected date palm varieties resistant to bayoud and of good fruit quality. In: Jain SM, Al-Khayri JM, Johnson DV (eds) Date palm biotechnology. Springer, Dordrecht, pp 513–533Google Scholar
  205. Sedra, M (2011b) Molecular markers for genetic diversity and bayoud disease resistance in date palm. In: Jain SM, Al-Khayri JM, Johnson DV (eds) Date palm biotechnology. Springer, Dordrecht, pp 533–550Google Scholar
  206. Sedra, M, Lazrek BH (2011) Fusarium oxysporum f. sp. albedinis toxin characterization and use for selection of resistant date palm to bayoud disease. In: Jain SM, Al-Khayri JM, Johnson DV (eds) Date palm biotechnology. Springer, Dordrecht, pp 253–270Google Scholar
  207. Sghaier B, Jorrín-Novo JV, Gargouri-Bouzid R et al (2010) Abscisic acid and sucrose increase the protein content in date palm somatic embryos causing changes in 2-DE profile. Phytochem 71:1223–1236CrossRefGoogle Scholar
  208. Sghaier B, Kriaa W, Bahloul M et al (2009) Effect of ABA, arginine and sucrose on protein content of date palm somatic embryos. Sci Hort 120:379–385CrossRefGoogle Scholar
  209. Shabani F, Kumar L, Taylor S (2012) Climate change impacts on the future distribution of date palms: a modeling exercise using CLIMEX. PLoS ONE 7:e48021.  https://doi.org/10.1371/journal.pone.0048021CrossRefPubMedPubMedCentralGoogle Scholar
  210. Shaheen M (1990) Propagation of date palm through tissue culture: a review and an interpretation. Ann Agric Sci Ain Shams Univ Cairo Egypt 35:895–909Google Scholar
  211. Sidky RA, Gadalla EG (2013) Somatic embryogenesis in Phoenix dactylifera: maturation, germination and reduction of hyperhydricity during embryogenic cell suspension culture. Arab J Biotech 16(1):119–130Google Scholar
  212. Sidky RA, Zaid ZE (2011) Direct production of somatic embryos and plant regeneration using TDZ and CPPU of date palm (Phoenix dactylifera L.). Int J Acad Res 3:792–796Google Scholar
  213. Singh RS, Krishna H, Bhargava R (2012) Conservation and management of plant genetic resources of arid fruits: a review. Ind J Arid Hort 7:1–11Google Scholar
  214. Soliman SS, Al-Obeed RS, Omar AA et al (2013) A Comparative study of the morphological characteristics of some seedling date palm males. J Appl Sci Res 9(7):4463–4468Google Scholar
  215. Soliman SS, Bahy A, Morsy MM (2003) Genetic comparisons of Egyptian date palm cultivars (Phoenix dactylifera L.) by RAPD-PCR. Afr J Biotechnol 2:86–87Google Scholar
  216. Sonia DDS, Laurent CL, Cosette P et al (2013) The date palm (Phoenix dactylifera L.) leaf proteome: identification of a gender biomarker to screen male parents. Plant Omics J 6(1):18–23Google Scholar
  217. Srivashtav VS, Kapadia CV, Mahatma MK et al (2013) Genetic diversity analysis of date palm (Phoenix dactylifera L.) in the Kutch region of India using RAPD and ISSR markers Emir J Food Agric 25(11):907–915Google Scholar
  218. Sudhersan C, Al-Shayji Y (2011) Interspecific hybridization and embryo rescue in date palm. In: Jain SM, Al-Khayri JM, Johnson DV (eds) Date palm biotechnology. Springer, Dordrecht, pp 567–584CrossRefGoogle Scholar
  219. Sudhersan C, Al-Shayji Y, Jibi Manuel S (2009) Date palm crop improvement via T × D hybridization integrated with in vitro culture technique. Acta Hortic 829:219–224CrossRefGoogle Scholar
  220. Suprasanna P, Meenakshi S, Bapat VA (2009) Integrated approaches of mutagenesis and in vitro selection for crop improvement. In: Kumar A, Shekhawat NS (eds) Plant tissue culture and molecular markers, their role in improving crop productivity. IK International Publishing House, New Delhi, pp 73–92Google Scholar
  221. Taha HS, Bekheet SA, Saker MM (2001) Factors affecting in vitro multiplication of date palm. Biol Plant 44:431–433CrossRefGoogle Scholar
  222. Tahraoui A, El-Hilaly J, Israili ZH et al (2007) Ethnopharmacological survey of plants used in the traditional treatment of hypertension and diabetes in south-eastern Morocco (Errachidia province). J Ethnopharmacol 110(1):105–117CrossRefPubMedGoogle Scholar
  223. Tisserat B (1979) Propagation of date palm (Phoenix dactylifera L.), in vitro. J Exp Bot 30:1275–1283CrossRefGoogle Scholar
  224. Tisserat B (1982) Factors involved in the production of plantlets from date palm callus cultures. Euphy 31:201–214CrossRefGoogle Scholar
  225. Tisserat B, Gabr MF, Sabour MT (1985) Viability of cryogenically treated date palm pollen. Date Palm J 4:25–31Google Scholar
  226. Titouh K, Khelifi L, Slaoui M et al (2015) A simplified protocol to induce callogenesis in protoplasts of date palm (Phoenix dactylifera L.) cultivars. Iran J Biotechnol 13(1):26–35CrossRefPubMedPubMedCentralGoogle Scholar
  227. Trethowan R (2014) Delivering drought tolerance to those who need it: from genetic resource to cultivar. Crop Pastor Sci 65(7):645–654Google Scholar
  228. Trifi MA, Rhouma A, Marrakchi M (2000) Phylogenetic relationships in Tunisian date palm (Phoenix dactylifera L.) germplasm collection using DNA amplification fingerprinting. Agronom 20:665–671CrossRefGoogle Scholar
  229. Triki MA, Zouba A, Khouldia O et al (2003) Maladie des feuilles cassantes or brittle leaf disease of date palms in Tunisia: biotic or abiotic disease? J Plant Pathol 85(2):71–79Google Scholar
  230. Tripathi JN, Muwonge A, Tripathi L (2012) Efficient regeneration and transformation of plantain cv. ‘‘Gonja manjaya’’ (Musa spp. AAB) using embryogenic cell suspensions. In Vitro Cell Dev Biol Plant 48:216–224CrossRefGoogle Scholar
  231. Ulrich JM, Finkle BJ, Moore PH et al (1979) Effect of a mixture of cryoprotectants in attaining liquid nitrogen survival of cells. Fiziol Rast 15:749–756Google Scholar
  232. United States Department of Agriculture (2016) National nutrient database for standard reference, Basic Report 9087 and 9421. Report 9087 https://ndb.nal.usda.gov/ndb/foods/show/2199?manu=&fgcd=, Report 9421 https://ndb.nal.usda.gov/ndb/foods/show/09421?fgcd=&manu=&format=&count=&max=25&offset=&sort=default&order=asc&qlookup=date&ds=&qt=&qp=&qa=&qn=&q=&ing=. Accessed 1 Aug 2016
  233. Vayalil PK (2002) Antioxidant and antimutagenic properties of aqueous extract of date fruit (Phoenix dactylifera L. Arecaceae). J Agric Food Chem 50:610–617CrossRefPubMedGoogle Scholar
  234. Vayalil PK (2012) Date fruits (Phoenix dactylifera Linn): an emerging medicinal food. Crit Rev Food Sci Nutr 52(3):249–271CrossRefPubMedGoogle Scholar
  235. Wakil W, Faleiro JR, Miller TA et al (2015) Date palm production and pest management challenges. In: Wakil W, Faleiro JR, Miller TA (eds) Sustainable pest management in date palm: current status and emerging challenges, sustainability in plant and crop protection. Springer, Switzerland, pp 1–11Google Scholar
  236. Wrigley G (1995) Date palm. In: Smartt J, Simmonds NW (eds) Evolution of crop plants, 2nd edn. Longman Group, UK, Essex, pp 399–403Google Scholar
  237. Yaish MW, Sunkar R, Zheng Y et al (2015) A genome-wide identification of the miRNAome in response to salinity stress in date palm (Phoenix dactylifera L.). Front. Plant Sci 6:946Google Scholar
  238. Yang M, Zhang X, Liu G et al (2010) The complete chloroplast genome sequence of date palm (Phoenix dactylifera L.). PLoS ONE 5:e12762.  https://doi.org/10.1371/journal.pone.0012762CrossRefPubMedPubMedCentralGoogle Scholar
  239. Yatta D, Abed F, Amara B (2013) Protoplast isolation from cell suspension of two Algerian cultivars of date palm (‘Takerbucht’ and ‘Tegaza’). Acta Hortic 994:323–329CrossRefGoogle Scholar
  240. Younis RAA, Ismail OM, Soliman SS (2008) Identification of sex-specific DNA markers for date palm (Phoenix dactylifera L.) using RAPD and ISSR techniques. Res J Agric Biol Sci 4:278–284Google Scholar
  241. Yusuf AO, Culham A, Aljuhani W et al (2015) Genetic diversity of Nigerian date palm (Phoenix dactylifera) germplasm based on microsatellite markers. Int J Biosci Biotechnol 7(1):121–132Google Scholar
  242. Zaid A (1987) Morphogenetic variation in palm embryos in vitro. Date Palm J 5:36–47Google Scholar
  243. Zaid A, Al-Kaabi H (2003) Plant-off types in tissue culture-derived date palm. (Phoenix dactylifera L.). Emir J Agric Sci 15:17–35CrossRefGoogle Scholar
  244. Zhang G, Pan L, Yin Y, Liu W, Huang D, Zhang T, Wang L, Xin C, Lin Q, Sun G, Abdullah MMB, Zhang X, Hu S, Al-Mssallem IS, Yu J (2012) Large-scale collection and annotation of gene models for date palm (Phoenix dactylifera, L.). Plant Mol Biol 79(6):521–536Google Scholar
  245. Zhang X, Tan J, Yang M et al (2011) Date palm genome project at the Kingdom of Saudi Arabia. In: Jain SM, Al-Khayri JM, Johnson DV (eds) Date palm biotechnology. Springer, Dordrecht, pp 427–448CrossRefGoogle Scholar
  246. Zouine J, El Bellaj M, Meddich A et al (2005) Proliferation and germination of somatic embryos from embryogenic suspension cultures in Phoenix dactylifera. Plant Cell Tissue Org Cult 82:83–92CrossRefGoogle Scholar
  247. Zouine J, El Hadrami I (2007) Effect of 2,4-D, glutamine and BAP on embryogenic suspension culture of date palm (Phoenix dactylifera L.). Sci Hort 112:221–226CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jameel M. Al-Khayri
    • 1
  • Poornananda M. Naik
    • 1
  • Shri Mohan Jain
    • 2
  • Dennis V. Johnson
    • 3
  1. 1.Department of Agricultural Biotechnology, College of Agriculture and Food SciencesKing Faisal UniversityAl-HassaSaudi Arabia
  2. 2.Department of Agricultural SciencesUniversity of HelsinkiHelsinkiFinland
  3. 3.ConsultantCincinnatiUSA

Personalised recommendations