Advertisement

Genetics and Breeding of Fruit Crops in the Annonaceae Family: Annona spp. and Asimina spp.

  • Jorge Lora
  • Nerea Larranaga
  • José I. Hormaza
Chapter

Abstract

The Annonaceae is the largest family in the early-divergent Magnoliid clade of angiosperms with a limited number of species producing edible fruits. The species of agronomic interest in the family belong to two genera, Annona and Asimina. Several of those species have been cultivated and used as a food source by pre-Columbian cultures in the Americas. Their cultivation has continued to the present day and now they are incipient but prosperous crops in several countries. The most widely cultivated species in the family are Annona cherimola (cherimoya), A. squamosa (sugar apple), A. muricata (soursop), A. cherimola × A. squamosa (hybrid atemoya) and Asimina triloba (pawpaw). With the exception of cherimoya, which is a distinct subtropical species, most of the fruit crops in the genus Annona originate from warm lowland tropical regions and they have naturalized in different regions with subtropical and tropical climates. The pawpaw is the most widespread and the only species in the Asimina genus that produces fruits of significant interest as a food source and the northernmost representative of the Annonaceae. In this review several aspects of genetics and breeding, mainly in cherimoya and pawpaw, are discussed.

Keywords

Annona Annonaceae Asimina Atemoya Cherimoya Pawpaw Soursop Sugar apple 

References

  1. Acosta J (1590) Historia natural y moral de las Indias. Casa Juan de Leon, SevillaGoogle Scholar
  2. Ahmad I, Bhagat S, Sharma TVRS et al (2010) ISSR and RAPD marker based DNA fingerprinting and diversity assessment of Annona spp. in South Andaman. Indian J Hortic 67:147–151Google Scholar
  3. Alaly FQ, Liu XX, McLaughlin JL (1999) Annonaceous acetogenins: recent progress. J Nat Prod 62:504–540CrossRefGoogle Scholar
  4. Andrés-Agustín J, González-Andrés F, Nieto-Ángel R et al (2006) Morphometry of the organs of cherimoya (Annona cherimola Mill.) and analysis of fruit parameters for the characterization of cultivars, and Mexican germplasm selections. Sci Hortic 107:337–346CrossRefGoogle Scholar
  5. Ansorge WJ (2009) Next-generation DNA sequencing techniques. New Biotechnol 25:195–203CrossRefGoogle Scholar
  6. Azcon-Aguilar C, Barea JM (1994) Saprophytic growth or arbuscular mycorrhizal fungi. In: Hock B, Varma A (eds) Mycorrhiza: structure, functions, molecular biology and biotechnology. Springer-Verlag, Heidelberg, pp 139–149Google Scholar
  7. Azcón-Aguilar C, Padilla IG, Encina CL et al (1996) Arbuscular mycorrhizal inoculation enhances plant growth and changes root system morphology in micropropagated Annona cherimola Mill. Agronomie 16:647–652CrossRefGoogle Scholar
  8. Benjoy M, Hariharam N (1992) In vitro plantlet differentiation in Annona muricata. Plant Cell Tiss Organ Cult 31:245–247Google Scholar
  9. Bharad SG, Kulwal PL, Bagal SA (2009) Genetic diversity study in Annona squamosa by morphological, biochemical and RAPD markers. Acta Hortic 839:615–623CrossRefGoogle Scholar
  10. Bioversity International and CHERLA (2008) Cherimoya descriptors for cherimoya (Annona cherimola Mill.). Bioversity International, Rome, Italy; CHERLA Project, Malaga, SpainGoogle Scholar
  11. Berry EW (1929) Fossil fruits in the Ancon sandstone of Ecuador. J Palaeontol 3:298–301Google Scholar
  12. Blazier JC, Ruhlman TA, Weng ML et al (2016) Divergence of RNA polymerase α subunits in angiosperm plastid genomes is mediated by genomic rearrangement. Sci Rep 6:24595CrossRefPubMedPubMedCentralGoogle Scholar
  13. Bonavia D, Ochoa CM, Tovar SO et al (2004) Archaeological evidence of cherimoya (Annona cherimola Mill.) and guanabana (Annona muricata L.) in ancient Peru. Econ Bot 58:509–522CrossRefGoogle Scholar
  14. Cautín R, Agustí M (2005) Phenological growth stages of the cherimoya tree (Annona cherimola Mill.). Sci Hortic 105:491–497CrossRefGoogle Scholar
  15. Chaowasku T, Thomas DC, van der Ham RW et al (2014) A plastid DNA phylogeny of tribe Miliuseae: insights into relationships and character evolution in one of the most recalcitrant major clades of Annonaceae. Am J Bot 101:691–709CrossRefPubMedGoogle Scholar
  16. Chatrou LW, Escribano MP, Viruel MA et al (2009) Flanking regions of monomorphic microsatellite loci provide a new source of data for plant species-level phylogenetics. Mol Phylogenet Evol 53:726–733CrossRefPubMedGoogle Scholar
  17. Chatrou LW, Pirie MD, Erkens RHJ et al (2012) A new subfamilial and tribal classification of the pantropical flowering plant family Annonaceae informed by molecular phylogenetics. Bot J Linn Soc 169:5–40CrossRefGoogle Scholar
  18. Chatrou LW, Rainer H, Maas PJM (2004) Annonaceae. In: Smith N, Mori SA, Henderson A et al (eds) Flowering plants of the neotropics. Princeton University Press, Princeton, pp 18–20Google Scholar
  19. Cobo B (1653) Historia del nuevo mundo por el Padre Bernabé Cobo de la Compañía de Jesús. Primera parte. http://www.cervantesvirtual.com/obra/historia-del-nuevo-mundo-por-el-padre-bernabe-cobo-de-la-compania-de-jesus-primera-parte-0/. Accessed 27 Sept 2017
  20. Collevatti RG, Telles MPC, Lima JS et al (2014) Contrasting spatial genetic structure in Annona crassiflora populations from fragmented and pristine savannas. Plant Syst Evol 300:1719–1727CrossRefGoogle Scholar
  21. Cota LG, Vieira FA, Melo JAF et al (2011) Genetic diversity of Annona crassiflora (Annonaceae) in northern Minas Gerais State. Genet Mol Res 10:2172–2180CrossRefPubMedGoogle Scholar
  22. Couvreur TL, van der Ham RW, Mbele YM et al (2009) Molecular and morphological characterization of a new monotypic genus of Annonaceae, Mwasumbia, from Tanzania. Syst Bot 34:266–276CrossRefGoogle Scholar
  23. Darwin CR (1835) Beagle diary (1831–1836) http://darwin-online.org.uk/content/frameset?pageseq=1&itemID=EHBeagleDiary&viewtype=text. Accessed 27 Sept 2017
  24. De Candolle A (1882) L’origine des plantes cultivés. GenèveGoogle Scholar
  25. Doyle JA, Le Thomas A (1994) Cladistic analysis and pollen evolution in Annonaceae. Acta Bot Gallica 141:149–170CrossRefGoogle Scholar
  26. Doyle JA, Le Thomas A (1996) Phylogenetic analysis and character evolution in Annonaceae. Adansonia 18:279–334Google Scholar
  27. Doyle JA, Le Thomas A (1997) Phylogeny and geographic history of Annonaceae. Geog Phys Quatern 51:353–361Google Scholar
  28. Ellstrand NC, Lee JM (1987) Cultivar identification of cherimoya (Annona cherimola Mill) using isozyme markers. Sci Hortic 32:25–31CrossRefGoogle Scholar
  29. Encina CL, Barceló-Muñoz A, Herrero-Castaño A et al (1994) In vitro morphogenesis of juvenile Annona cherimola Mill, bud explants. J Hortic Sci 69:1053–1059CrossRefGoogle Scholar
  30. Encina CL, Carmona-Martin E, Arana-Lopez A et al (2014) Biotechnology applied to Annona species: a review. Rev Bras Fruticultura 36:17–21CrossRefGoogle Scholar
  31. Endress PK (2010) The evolution of floral biology in basal angiosperms. Phil Tran Roy Soc B 365:411–421CrossRefGoogle Scholar
  32. Erkens RHJ, Chatrou LW, Couvreur TLP (2012) Radiations and key innovations in an early branching angiosperm lineage (Annonaceae; Magnoliales). Bot J Linn Soc 169:117–134CrossRefGoogle Scholar
  33. Escribano P, Viruel MA, Hormaza JI (2004) Characterization and cross-species amplification of microsatellite markers in cherimoya (Annona cherimola Mill., Annonaceae). Mol Ecol Notes 4:746–748CrossRefGoogle Scholar
  34. Escribano P, Viruel MA, Hormaza JI (2007) Molecular analysis of genetic diversity and geographic origin within an ex situ germplasm collection of cherimoya by using SSRs. J Am Soc Hortic Sci 132:357–367Google Scholar
  35. Escribano P, Viruel MA, Hormaza JI (2008a) Development of 52 new polymorphic SSR markers from cherimoya (Annona cherimola Mill.): transferability to related taxa and selection of a reduced set for DNA fingerprinting and diversity studies. Mol Ecol Notes 8:317–321CrossRefGoogle Scholar
  36. Escribano P, Viruel MA, Hormaza JI (2008b) Comparison of different methods to construct a core germplasm collection in woody perennial species with simple sequence repeat markers. A case study in cherimoya (Annona cherimola, Annonaceae), an underutilised subtropical fruit tree species. Ann Appl Biol 153:25–32CrossRefGoogle Scholar
  37. Farré JM, Hermoso JM, Guirado E et al (1999) Techniques of cherimoya cultivation in Spain. Acta Hortic 497:91–118CrossRefGoogle Scholar
  38. Fries RE (1959) Annonaceae. In: Engler A, Prantl K (eds) Die natürlichen Pflanzenfamilien. Duncker & Humblot, Berlin, pp 1–171Google Scholar
  39. Garcia D, Alegria A, Narvaez J et al (2012) Genetic transformation of soursop (Annona muricata L.) via Agrobacterium. In Vitro Cell Dev Pl 48:434–435CrossRefGoogle Scholar
  40. George AP, Nissen RJ, Ironside DA et al (1989) Effects of nitidulid beetles on pollination and fruit set of Annona spp. hybrids. Sci Hort-Amsterdam 39:289–299CrossRefGoogle Scholar
  41. George AP, Broadley RH, Nissen RJ et al (1999) Breeding strategies for atemoya and cherimoya. Acta Hortic 497:255–268CrossRefGoogle Scholar
  42. George AP, Broadley RH, Nissen RJ et al (2002) Breeding new varieties of atemoya (Annona spp. hybrids). Acta Hortic 575:323–328CrossRefGoogle Scholar
  43. George AP, Broadley R, Nissen RJ et al (2005) Breeding and selecting new varieties and rootstocks of custard apple (Annona spp. hybrids) in subtropical Australia. Acta Hortic 694:125–128CrossRefGoogle Scholar
  44. Glenn TC (2011) Field guide to next-generation DNA sequencers. Mol Ecol Res 11:759–769CrossRefGoogle Scholar
  45. Goodrich KR (2012) Floral scent in Annonaceae. Bot J Linn Soc 169:262–279CrossRefGoogle Scholar
  46. Gottsberger G (1999) Pollination and evolution in neotropical Annonaceae. Plant Species Biol 14:143–152CrossRefGoogle Scholar
  47. Gottsberger G (2012) How diverse are Annonaceae with regard to pollination? Bot J Linn Soc 169:245–261CrossRefGoogle Scholar
  48. Grossberger D (1999) The California cherimoya industry. Acta Hortic 497:119–142CrossRefGoogle Scholar
  49. Guimarães JFR, Nietsche S, Costa MR et al (2013) Genetic diversity in sugar apple (Annona squamosa L.) by using RAPD markers. Rev Ceres 60:428–431CrossRefGoogle Scholar
  50. Guirado E, Hermoso JM, Pérez de Oteyza MA et al (2001) Polinización del chirimoyo. Caja Rural de Granada, GranadaGoogle Scholar
  51. Guirado E, Hermoso JM, Pérez de Oteyza MA et al (2003) Introducción al cultivo del chirimoyo. Caja Rural de Granada, GranadaGoogle Scholar
  52. Gupta Y, Pathak AK, Singh K et al (2015) De novo assembly and characterization of transcriptomes of early-stage fruit from two genotypes of Annona squamosa L. with contrast in seed number. BMC Genom 16:86CrossRefGoogle Scholar
  53. Hackluyt R (1609) A narrative of the expedition of Hernando de Soto into Florida. By a Gentleman of Elvas. Published at Evora 1557. Translated from the Portuguese by Richard Hackluyt. London. http://archive.org/details/anarrativeofthee34997gut. Accessed 11 Dec 2017Æ
  54. Hermoso-González JM, Pérez de Oteyza MA, Ruiz Nieto A, Farré Massip JM (1999) The Spanish germplasm bank of cherimoya (Annona cherimola Mill.). Acta Hortic 497:201–224Google Scholar
  55. Hormaza JI (2014) The pawpaw, a forgotten North American fruit tree. Arnoldia 72:13–23Google Scholar
  56. Huang H, Layne DR, Kubisiak TL (2000) RAPD inheritance and diversity in pawpaw (Asimina triloba). J Am Soc Hortic Sci 125:454–459Google Scholar
  57. Huang HW, Layne DR, Peterson RN (1997) Using isozyme polymorphisms for identifying and assessing genetic variation in cultivated pawpaw [Asimina triloba (L) Dunal]. J Am Soc Hortic Sci 122:504–511Google Scholar
  58. Huang HW, Layne DR, Riemenschneider DE (1998) Genetic diversity and geographic differentiation in pawpaw [Asimina triloba (L) Dunal] populations from nine states as revealed by allozyme analysis. J Am Soc Hortic Sci 123:635–641Google Scholar
  59. Huang HW, Layne DR, Kubisiak TL (2003) Molecular characterization of cultivated pawpaw (Asimina triloba) using RAPD markers. J Am Soc Hortic Sci 128:85–93Google Scholar
  60. Kwapata K, Mwase WF, Bokosi JM et al (2007) Genetic diversity of Annona senegalensis Pers. populations as revealed by simple sequence repeats (SSRs). Afr J Biotechnol 6:1239–1247Google Scholar
  61. Koek-Noorman J (1987) Multidisciplinary approach to the systematics of neotropical Annonaceae. Annonaceae Newslett 6:2–6Google Scholar
  62. Larranaga N, Albertazzi F, Fontecha G et al (2017) A Mesoamerican origin of cherimoya (Annona cherimola Mill.): implications for the conservation of plant genetic resources. Mol Ecol 26:4116–4130CrossRefPubMedGoogle Scholar
  63. Larranaga N, Hormaza JI (2015) DNA barcoding of perennial fruit tree species of agronomic interest in the genus Annona (Annonaceae). Front Plant Sci 6:589CrossRefPubMedPubMedCentralGoogle Scholar
  64. Larranaga N, Hormaza JI (2016) Advances in genetic diversity analysis in fruit tree crops. Prog Bot 77:245–264Google Scholar
  65. Lemos EEP, Blake J (1996a) Micropropagation of juvenile and mature Annona muricata L. J Hortic Sci 71:395–403CrossRefGoogle Scholar
  66. Lemos EEP, Blake J (1996b) Micropropagation of juvenile and mature Annona squamosa L. Plant Cell Tiss Org 46:77–79CrossRefGoogle Scholar
  67. Liaw CC, Wu TY, Chang FR et al (2010) Historic perspectives on annonaceous acetogenins from the chemical bench to preclinical trials. Planta Med 76:1390–1404CrossRefPubMedGoogle Scholar
  68. Linnaeus C (1737) Hortus cliffortianus. AmsterdamGoogle Scholar
  69. Liu K, Li H, Yuan C et al (2014) Identification of phenological growth stages of sugar apple (Annona squamosa L.) using the extended BBCH-scale. Sci Hortic 181:76–80CrossRefGoogle Scholar
  70. Lora J, Herrero M, Hormaza JI (2009) The coexistence of bicellular and tricellular pollen in Annona cherimola (Annonaceae): implications for pollen evolution. Am J Bot 96:802–808CrossRefPubMedGoogle Scholar
  71. Lora J, Herrero M, Hormaza JI (2011a) Stigmatic receptivity in a dichogamous early-divergent angiosperm species, Annona cherimola (Annonaceae): influence of temperature and humidity. Am J Bot 98:265–274CrossRefPubMedGoogle Scholar
  72. Lora J, Hormaza JI, Herrero M (2010) The progamic phase of an early-divergent angiosperm, Annona cherimola (Annonaceae). Ann Bot 105:221–231CrossRefPubMedGoogle Scholar
  73. Lora J, Hormaza JI, Herrero M et al (2011b) Seedless fruits and the disruption of a conserved genetic pathway in angiosperm ovule development. Proc Natl Acad Sci USA 108:5461–5465CrossRefPubMedGoogle Scholar
  74. Lora J, Pérez de Oteyza MA, Fuentetaja P, Hormaza JI (2006) Low temperature storage and in vitro germination of cherimoya (Annona cherimola Mill.) pollen. Sci Hortic 108(1):91–94Google Scholar
  75. Losada JM, Hormaza JI, Lora J (2017) Pollen-pistil interaction in pawpaw (Asimina triloba), the northernmost species of the mainly tropical family Annonaceae. Amer J Bot (in press)Google Scholar
  76. Maas PJM, Westra LYT (1985a) Studies in Annonaceae II: A monograph of the genus Anaxagorea A. St. Hill. Part 1. Botanische Jahrbücher fur Systematik, Pflanzengeschichte und Pflanzengeographie 105:73–134Google Scholar
  77. Maas PJM, Westra LYT (1985b) Studies in Annonaceae II: A monograph of the genus Anaxagorea A. St. Hill. Part 2. Botanische Jahrbücher fur Systematik, Pflanzengeschichte und Pflanzengeographie 105:145–204Google Scholar
  78. Mendes HTA, Costa MR, Nietsche S et al (2012) Pollen grain germination and fruit set in “Brazilian seedless” sugar apple (Annona squamosa L.). Crop Breed Appl Biotechnol 12:277–280CrossRefGoogle Scholar
  79. Mols JB, Gravendeel B, Chatrou LW et al (2004) Identifying clades in Asian Annonaceae: monophyletic genera in the polyphyletic Miliuseae. Am J Bot 91:590–600CrossRefPubMedGoogle Scholar
  80. Morton J (1987) Cherimoya. In: Morton J (ed) Fruits of warm climates. Miami, Florida, US, pp 65–69Google Scholar
  81. Museo de la Nación (1995) Culturas precolombinas. Lima, PeruGoogle Scholar
  82. Nair S, Gupta PK, Mascarenhas AF (1983) Haploid plants from in vitro anther culture of Annona squamosa Linn. Plant Cell Rep 2:198–200CrossRefPubMedGoogle Scholar
  83. Nair S, Shirgurkar MV, Mascarenhas AF (1986) Studies on endosperm culture of Annona squamosa L. Plant Cell Rep 5:132–135CrossRefPubMedGoogle Scholar
  84. Padilla IMG, Encina CL (2003) In vitro germination of cherimoya (Annona cherimola Mill.) seeds. Sci Hortic 97:219–227CrossRefGoogle Scholar
  85. Padilla IMG, Encina CL (2004) Micropropagation of adult cherimoya (Annona cherimola Mill.) cv. Fino de Jete. In vitro Cell Dev B 40:210–214CrossRefGoogle Scholar
  86. Padilla IMG, Encina CL (2011) The use of consecutive micrografting improves micropropagation of cherimoya (Annona cherimola Mill.) cultivars. Sci Hortic 129:167–169CrossRefGoogle Scholar
  87. Pascual L, Perfectti F, Gutierrez M et al (1993) Characterizing isozymes of Spanish cherimoya cultivars. HortSci 28:845–847Google Scholar
  88. Peña JE, Nadel H, Barbosa-Pereira M et al (2002) Pollinators and pests of Annona species. In: Peña JE, Sharp JL, Wysoki M (eds) Tropical fruit pests and pollinators: biology, economic importance, natural enemies and control. CAB International, Wallingford, pp 197–221CrossRefGoogle Scholar
  89. Pereira MF, Bandeira LF, Blanco AJV et al (2008) Development of microsatellite markers in Annona crassiflora Mart., a Brazilian cerrado fruit tree species. Mol Ecol Res 8:1329–1331CrossRefGoogle Scholar
  90. Perfectti F, Pascual L (1996) Segregation distortion of isozyme loci in cherimoya (Annona cherimola Mill). Theor Appl Genet 93:440–446CrossRefPubMedGoogle Scholar
  91. Perfectti F, Pascual L (1998a) Characterization of cherimoya germplasm by isozyme markers. Fruit Varieties J 52:53–62Google Scholar
  92. Perfectti F, Pascual L (1998b) Genetic linkage of isozyme loci in Annona cherimola. Hereditas 128:87–90CrossRefGoogle Scholar
  93. Perfectti F, Pascual L (2004) Geographic variation for isozymes in cherimoya (Annona cherimola Mill.). Genet Res Crop Evol 51:837–843CrossRefGoogle Scholar
  94. Perfectti F, Pascual L (2005) Genetic diversity in a worldwide collection of cherimoya cultivars. Genet Res Crop Evol 52:959–966CrossRefGoogle Scholar
  95. Peterson RN (2003) Pawpaw variety development: a history and future prospects. HortTechnology 13:449–454Google Scholar
  96. Pirie MD, Chatrou LW, Erkens RHJ et al (2005) Phylogeny reconstruction and molecular dating in four Neotropical genera of Annonaceae: the effect of taxon sampling in age estimation. In: Bakker FT, Chatrou LW, Gravendeel B et al (eds) Plant species-level systematics: new perspectives on pattern and process. Gantner Verlag, Liechtenstein, pp 149–174Google Scholar
  97. Pomper KW, Crabtree SB, Brown SP et al (2003) Assessment of genetic diversity of pawpaw (Asimina triloba) cultivars with intersimple sequence repeat markers. J Am Soc Hortic Sci 128:521–525Google Scholar
  98. Pomper KW, Crabtree SB, Layne DR et al (2008) Flowering and fruiting characteristics of eight pawpaw [Asimina triloba (L.) Dunal] selections in Kentucky. J Am Pomological Soc 62:89–97Google Scholar
  99. Pomper KW, Layne DR (2005) The North American pawpaw: botany and horticulture. Hortic Rev 31:351–384Google Scholar
  100. Popenoe W (1920) Manual of tropical and subtropical fruits. Macmillan Publishing Co., New YorkGoogle Scholar
  101. Popenoe H, King SR, Leon J et al (1989) Lost crops of the Incas: little known plants of the Andes with promise of worldwide cultivation. National Academy Press, Washington DCGoogle Scholar
  102. Pozorski T, Pozorski S (1997) Cherimoya and guanabana in the archaeological record of Peru. J Ethnobiol 17:235–248Google Scholar
  103. Rahman SMM, Masahiko M, Yoshida M (1997) Relationship of Annona species as revealed by PCR-RPLP analysis. Breed Sci 47:335–339Google Scholar
  104. Rahman SMM, Shimada T, Yamamoto T et al (1998) Genetical diversity of cherimoya cultivars revealed by amplified fragment length polymorphism (AFLP) analysis. Breed Sci 48:5–10Google Scholar
  105. Rainer H (2007) Monographic studies in the genus Annona L. (Annonaceae): inclusion of the genus Rollinia A.St.-Hil. Annalen Naturhistorischen Museums in Wien. Serie B, Botanik und Zoologie Vienna 108:191–205Google Scholar
  106. Rasai S, George AP, Kantharajah AS (1995) Tissue culture of Annona spp. (cherimoya, atemoya, sugar apple and soursop): a review. Sci Hortic 62:1–14CrossRefGoogle Scholar
  107. Ribeiro PCC, De Carvalho-Muller LA, Lemos-Filho JP et al (2014) Transferability and characterization of nuclear microsatellite markers in populations of Annona coriacea (Annonaceae), a tree from the Brazilian cerrado. Braz J Bot 37:353–356CrossRefGoogle Scholar
  108. Richardson JE, Chatrou LW, Mols JB et al (2004) Historical biogeography of two cosmopolitan families of flowering plants: Annonaceae and Rhamnaceae. Phil Tran Roy Soc B 359:1495–1508CrossRefGoogle Scholar
  109. Ronning CM, Schnell RJ, Gazit S (1995) Using randomly amplified polymorphic DNA (RAPD) markers to identify Annona cultivars. J Am Soc Hortic Sci 120:726–729Google Scholar
  110. Saunders RMK (2012) The diversity and evolution of pollination systems in Annonaceae. Bot J Linn Soc 169:222–244CrossRefGoogle Scholar
  111. Scharaschkin T, Doyle JA (2005) Phylogeny and historical biogeography of Anaxagorea (Annonaceae) using morphology and non-coding chloroplast DNA sequence data. Syst Bot 30:712–735CrossRefGoogle Scholar
  112. Schroeder CA (1943) Hand pollination studies on the cherimoya. Proc Am Soc Hortic Sci 43:39–41Google Scholar
  113. Schroeder CA (1945) Cherimoya culture in California. University of California. Department of Horticulture, Mimeographed Circular S 15:1–6Google Scholar
  114. Schroeder CA (1971) Pollination of cherimoya. Calif Avocado Soc Yearb 44:119–122Google Scholar
  115. Stevens PF (2001 onwards) Angiosperm Phylogeny Website. Version 14, July 2017. http://www.mobot.org/MOBOT/research/APweb/. Accessed 27 Sept 2017
  116. Su YC, Chaowasku T, Saunders RM (2010) An extended phylogeny of Pseuduvaria (Annonaceae) with descriptions of three new species and a reassessment of the generic status of Oreomitra. Syst Bot 35:30–39CrossRefGoogle Scholar
  117. Su YC, Saunders RM (2006) Monograph of Pseuduvaria (Annonaceae). Syst Bot Monogr 79:1–204Google Scholar
  118. Su YC, Saunders RM (2009) Evolutionary divergence times in the Annonaceae: evidence of a late Miocene origin of Pseuduvaria in Sundaland with subsequent diversification in New Guinea. BMC Evol Biol 9:153CrossRefPubMedPubMedCentralGoogle Scholar
  119. Thomas DC, Surveswaran S, Xue B et al (2012) Molecular phylogenetics and historical biogeography of the Meiogyne-Fitzalania clade (Annonaceae): generic paraphyly and late Miocene-Pliocene diversification in Australasia and the Pacific. Taxon 61:559–575Google Scholar
  120. Towle MA (1961) The ethnobotany of precolumbian Peru. Aldine Publishing Co., ChicagoGoogle Scholar
  121. Van Damme P, Scheldeman X (1999) Commercial development of cherimoya (Annona cherimola Mill.) in Latin America. Acta Hortic 497:17–42CrossRefGoogle Scholar
  122. Vanhove W, Van Damme P (2013) Value chains of cherimoya (Annona cherimola Mill.) in a centre of diversity and its on-farm implications. Trop Conserv Sci 6:158–180CrossRefGoogle Scholar
  123. van Zonneveld M, Scheldeman X, Escribano P et al (2012) Mapping genetic diversity of cherimoya (Annona cherimola Mill.): application of spatial analysis for conservation and use of plant genetic resources. PLoS ONE 7:e29845CrossRefPubMedPubMedCentralGoogle Scholar
  124. Wang Y, Reighard GL, Layne DR et al (2005) Inheritance of AFLP markers and their use for genetic diversity analysis in wild and domesticated pawpaw [Asimina triloba (L.) Dunal]. J Am Soc Hortic Sci 130:561–568Google Scholar
  125. Wester P (1913) Annonaceous possibilities for the plant breeder. Philips Agric Rev 6:312–321Google Scholar
  126. Wünsch A, Hormaza JI (2002) Cultivar identification and genetic fingerprinting of temperate fruit tree species using DNA markers. Euphyt 125:59–67CrossRefGoogle Scholar
  127. Zanis MJ, Soltis DE, Soltis PS et al (2002) The root of the angiosperms revisited. Proc Natl Acad Sci USA 99:6848–6853CrossRefPubMedGoogle Scholar
  128. Zhichang Z, Guibing H, Ruo O et al (2011) Studies of the genetic diversity of seven sweetsop (Annona squamosa L.) cultivars by amplified fragment length polymorphism analysis. Afr J Biotechnol 10:6711–6715Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jorge Lora
    • 1
  • Nerea Larranaga
    • 1
  • José I. Hormaza
    • 1
  1. 1.Department of Subtropical Fruit CropsInstituto de Hortofruticultura, Subtropical y Mediterránea La Mayora, (IHSM La Mayora-CSIC-UMA)Algarrobo-Costa, MálagaSpain

Personalised recommendations