Advertisement

Strategies for Olive (Olea europaea L.) Breeding: Cultivated Genetic Resources and Crossbreeding

  • Luis Rallo
  • Diego Barranco
  • Concepción M. Díez
  • Pilar Rallo
  • María Paz Suárez
  • Carlos Trapero
  • Fernando Pliego-Alfaro
Chapter

Abstract

Olive cultivars represent an invaluable heritage of genetic variability selected over more than 5500 years of cultivation. This high diversity of local cultivars is a common feature in traditional olive-producing countries. Most cultivars are old and continue to be cultivated around areas where they have likely been selected. Crossbreeding in olives was only initiated in the second half of the twentieth century and currently represents the most promising strategy to provide farmers with new cultivars that are well adapted to the new high density olive plantations spreading in traditional and new olive-growing countries. This chapter focuses on cultivated genetic resources and crossbreeding strategies in olive. Exploration, cataloguing and authentication for the conservation and sustainability of true-to-type cultivars by morphological and DNA markers in the Network of Germplasm Banks promoted by the International Olive Council, is the most extensive and worldwide initiative to date. The strategies, methodologies and advances in crossbreeding programs worldwide are reviewed. Shortening the juvenile period, early selection and other strategies for the evaluation of valuable agronomical traits are integrated into the framework of alternative protocols that also provide information regarding the variability and heritability of these traits. In addition, the possibilities provided by new genomics tools to shorten the protracted crossbreeding process are also presented. Finally, new developments on in vitro culture and genetic transformation as well as the feasibility of using these tools in breeding programs are discussed.

Keywords

Olea europaea Clonal selection Cryopreservation Biotechnology Genomics In vitro regeneration Morphological descriptors Molecular markers 

Notes

Acknowledgments

We dedicated this review to the collective effort of all researchers working on olive genetic resources and breeding in different Andalusia institutions since the establishment of the Olive Work Germplasm Bank of Córdoba in 1970, a landmark on olive breeding. We also acknowledge Isabel Trujillo for critical reading of the Section on Genetic Resources and to the graduate students Diego Cabello, Hristofor Miho, Pablo Morello and Pedro Valverde for their photographs and support in preparing the manuscript. Authors also recognize the plant breeding group of IFAPA-Alameda del Obispo, the biotechnology groups at IHSM (UMA-CSIC), Plant Biology Department, Malaga University, and IFAPA-Churriana, for their contributions to part of the research reviewed. Finally, we acknowledge the Spanish funding research agencies for their economic support for more than 40 years. Project P11-AGR-7992 is currently supporting part of the research indicated in Sect. 14.5.

References

  1. Alagna F, D’Agostino N, Torchia L et al (2009) Comparative 454 pyrosequencing of transcripts from two olive genotypes during fruit development. BMC Genom 10:399.  https://doi.org/10.1186/1471-2164-10-399CrossRefGoogle Scholar
  2. Alcántara E, Cordeiro AM, Barranco D (2003) Selection of olive varieties for tolerance to iron chlorosis. J Plant Phys 160(12):1467–1472CrossRefGoogle Scholar
  3. Arias-Calderón R, Rodríguez-Jurado D, Bejarano-Alcázar J et al (2015a) Evaluation of verticillium wilt resistance in selections from olive breeding crosses. Euphy 206(3):619–629.  https://doi.org/10.1007/s10681-015-1463-7CrossRefGoogle Scholar
  4. Arias-Calderón R, Rodríguez-Jurado D, León L et al (2015b) Pre-breeding for resistance to verticillium wilt in olive: fishing in the wild relative gene pool. Crop Prot 75:25–33.  https://doi.org/10.1016/j.cropro.2015.05.006CrossRefGoogle Scholar
  5. Arias-Calderon R, Rouiss H, Rodriguez-Jurado D et al (2014) Variability and heritability of fruit characters in olive progenies from open-pollination. Sci Hort 169:94–98CrossRefGoogle Scholar
  6. Atienza SG, De la Rosa R, Domínguez-García MC et al (2013) Use of DArT markers as a means of better management of the diversity of olive cultivars. Food Res Int 54:2045–2053CrossRefGoogle Scholar
  7. Atienza SG, de la Rosa R, León L et al (2014) Identification of QTL for agronomic traits of importance for olive breeding. Mol Breed 34:725–737.  https://doi.org/10.1007/s11032-014-0070-yCrossRefGoogle Scholar
  8. Avidan B, Meni Y, Lavee S (2012) Inheritance potential of fruit quality traits within olive (Olea europaea L.) cultivars. Acta Hort 949:105–111CrossRefGoogle Scholar
  9. Azzarello E, Mugnai S, Pandolfi C et al (2009) Comparing image (fractal analysis) and electrochemical (impedance spectroscopy and electrolyte leakage) techniques for the assessment of the freezing tolerance in olive. Trees-Struct Funct 23(1):159–167.  https://doi.org/10.1007/s00468-008-0264-1CrossRefGoogle Scholar
  10. Baccouri B, Ben Temime S, Campeol E et al (2007) Application of solid-phase microextraction to the analysis of volatile compounds in virgin olive oils from five new cultivars. Food Chem 102:850–856CrossRefGoogle Scholar
  11. Bacelar EA, Moutinho-Pereira JM, Gonçalves BC et al (2009) Physiological responses of different olive genotypes to drought conditions. Acta Phys Plant 31(3):611–621.  https://doi.org/10.1007/s11738-009-0272-9CrossRefGoogle Scholar
  12. Badenes ML, Byrne DH (eds) (2012) Fruit breeding. Handbook of plant breeding, vol 8. Springer, DordrechtGoogle Scholar
  13. Bairu MW, Aremu AO, van Staden J (2011) Somaclonal variation in plants: causes and detection methods. Plant Growth Regul 63:147–173CrossRefGoogle Scholar
  14. Barranco D, Cimato A, Fiorino P et al (2000) World catalogue of olive varieties. International Olive Council, MadridGoogle Scholar
  15. Barranco D, Fernández-Escobar R, Rallo L (eds) (2010) Olive growing, 1st English edition of the 5th edition of El cultivo del olivo. Co-edition. Junta de Andalucia-Mundi-Prensa-RIRDC, AustraliaGoogle Scholar
  16. Barranco D, Fernández-Escobar R, Rallo L (eds) (2017) El cultivo del olivo, 7th edn. Mundi- Prensa, MadridGoogle Scholar
  17. Barranco D, Rallo L (1984) Las variedades de olivo cultivadas en Andalucía. Ministerio de Agricultura-Junta de Andalucía, MadridGoogle Scholar
  18. Barranco D, Rallo L, Trujillo I (2005a) Elaiografía hispánica. In: Rallo L, Barranco D, Caballero JM et al (eds) Variedades de olivo en España. Junta de Andalucía, MAPA, Ediciones Mundi-Prensa, Madrid, pp 80–231Google Scholar
  19. Barranco D, Ruiz N, Gómez-Del Campo M (2005b) Frost tolerance of eight olive cultivars. HortSci 40(3):558–560Google Scholar
  20. Bartolini G (2008) Olive germplasm (Olea europaea L.): cultivars, synonyms, cultivation area, collections, descriptors. http://www.oleadb.it/
  21. Bartolini G, Prevost G, Messeri C et al (1998) Olive germplasm: cultivars and world-wide collections. FAO, RomeGoogle Scholar
  22. Bartolozzi F, Fontanazza G (1999) Assessment of frost tolerance in olive (Olea europaea L.). Sci Hort 81(3):309–319.  https://doi.org/10.1016/S0304-4238(99)00019-9CrossRefGoogle Scholar
  23. Bazakos C, Manioudaki ME, Therios I et al (2012) Comparative transcriptome analysis of two olive cultivars in response to NaCl-stress. PLoS ONE 7:e42931.  https://doi.org/10.1371/journal.pone.0042931CrossRefPubMedPubMedCentralGoogle Scholar
  24. Bazakos C, Manioudaki ME, Sarropoulou E et al (2015) 454 pyrosequencing of olive (Olea europaea L.) transcriptome in response to salinity. PLoS ONE 10:e0143000.  https://doi.org/10.1371/journal.pone.0143000CrossRefPubMedPubMedCentralGoogle Scholar
  25. Belaj A, Trujillo I, de la Rosa R et al (2001) Polymorphism and discriminating capacity of randomly amplified polymorphic markers in an olive germplasm bank. J Am Soc Hort Sci 126:64–71Google Scholar
  26. Belaj A, Satovic Z, Rallo L, Trujillo I (2002) Genetic diversity and relationships in olive (Olea europaea L.) germplasm collections as determined by randomly amplified polymorphic DNA. Theor Appl Genet 105:638–644CrossRefPubMedGoogle Scholar
  27. Belaj A, Caballero JM, Barranco D et al (2003a) Genetic characterization and identification of new accessions from Syria in an olive germplasm bank by means of RAPD markers. Euphy 134:261–268CrossRefGoogle Scholar
  28. Belaj A, Satovic Z, Ismaili H et al (2003b) RAPD genetic diversity of Albanian olive germplasm and its relationships with other Mediterranean countries. Euphy 130:387–395CrossRefGoogle Scholar
  29. Belaj A, Rallo L, Trujillo I et al (2004a) Using RAPD and AFLP markers to distinguish individuals obtained by clonal selection of ‘Arbequina’ and ‘Manzamila de Sevilla’ olive. HortSci 39(7):1566–1570Google Scholar
  30. Belaj A, Satovic Z, Cipriani G et al (2003c) Comparative study of the discriminating capacity of RAPD, AFLP and SSR markers and of their effectiveness in establishing genetic relationships in olive. Theor Appl Genet 107:736–744Google Scholar
  31. Belaj A, Satovic Z, Rallo L (2004b) Optimal use of RAPD markers for identifying varieties in olive (Olea europaea L.) germplasm collections. J Am Soc Hort Sci 129(2):266–270Google Scholar
  32. Belaj A, Trujillo I, Barranco D et al (2004c) Characterization and identification of Spanish olive germplasm by means of RAPD markers. HortSci 39(2):346–350Google Scholar
  33. Belaj A, Muñoz-Diez C, Baldoni L et al (2007) Genetic diversity and population structure of wild olives from the north-western Mediterranean assessed by SSR markers. Ann Bot 100:449–458CrossRefPubMedPubMedCentralGoogle Scholar
  34. Belaj A, Muñoz-Diez C, Baldoni L et al (2010) Genetic diversity and relationships of wild and cultivated olives at regional level in Spain. Sci Hort 124:323–330CrossRefGoogle Scholar
  35. Belaj A, León L, Satovic Z et al (2011) Variability of wild olives (Olea europaea subsp. europaea var. sylvestris) analyzed by agromorphological traits and SSR markers. Sci Hort 129:561–569CrossRefGoogle Scholar
  36. Belaj A, Dominguez-Garcia MD, Atienza SG et al (2012) Developing a core collection of olive (Olea europaea L.) based on molecular markers (DArTs, SSRs, SNPs) and agronomic traits. Tree Genet Genom 8:365–378CrossRefGoogle Scholar
  37. Belaj A, Gurbuz VM, Sikaoui H et al (2016) Olive genetic resources. In: Rugini E, Baldoni L, Mulea R, Sabastini L (eds) The olive tree genome, compendium of plant genomes. Springer International Publishing AG, New York, pp 26–54.  https://doi.org/10.1007/978-3-319-48887-5_3CrossRefGoogle Scholar
  38. Bellincontro A, Caruso G, Mencarelli F, Gucci R (2013) Oil accumulation in intact olive fruits measured by near infrared spectroscopy-acousto-optically tunable filter. J Sci Food Agr 93(6):1259–1265.  https://doi.org/10.1002/jsfa.5899CrossRefGoogle Scholar
  39. Bellini E (1992) Behaviour of some genetic characters in olive seedlings obtained by cross-breeding. Acta Hort 317:197–208CrossRefGoogle Scholar
  40. Bellini E (1993) Variabilità genetica ed ereditarietà di alcuni caratteri in semenzali d’incrocio di olivo. Olivae 49:21–34Google Scholar
  41. Bellini E, Giordani E, Parlati MV (2004) Arno, Tevere e Basento: nuove cultivar di olivo ottenute per incrocio. Olivae 102:42–46Google Scholar
  42. Bellini E, Giordani E, Parlati MV et al (2002a) Olive genetic improvement: thirty years of research. Acta Hort 586:105–108CrossRefGoogle Scholar
  43. Bellini E, Giordani E, Parlati MV et al (2002b) Olive genetic improvement: variability within the progeny “Picholine x Grossane”. Acta Hort 586:183–186CrossRefGoogle Scholar
  44. Bellini E, Giordani E, Ranalli A et al (2002c) Analytical characteristics of the virgin olive oils from three new genotypes obtained at Florence by cross-breeding. Acta Hort 586:125–128CrossRefGoogle Scholar
  45. Ben-Ari G, Biton I, Avidan B, Lavee S (2014) The diversity in performance of commercial olive clones selected from the autochthonous cv. Souri population for intensive irrigated cultivation. HortSci 49:425–429Google Scholar
  46. Ben Sadok I, Celton JM, Essalouh L et al (2013) QTL mapping of flowering and fruiting traits in olive. PLoS ONE 8:e62831CrossRefPubMedGoogle Scholar
  47. Ben Sadok I, Martinez S, Moutier N et al (2015) Plasticity in vegetative growth over contrasted growing sites of an f1 olive tree progeny during its juvenile phase PLoS One 10(6).  https://doi.org/10.1371/journal.pone.0127539
  48. Benelli C, Fabri A, Grassi S et al (2001) Histology of somatic embryogenesis in mature tissues of olive (Olea europaea L.). J Hort Sci Biotech 76(1):112–119CrossRefGoogle Scholar
  49. Besnard G, Anthelme F, Baali-Cherif D (2012) The Laperrine’s olive tree (Oleaceae): a wild genetic resource of the cultivated olive and a model-species for studying the biogeography of the Saharan Mountains. Acta Bot Gallica 159(3):319–328.  https://doi.org/10.1080/12538078.2012.724281CrossRefGoogle Scholar
  50. Besnard G, Khadari B, Navascués M et al (2013) The complex history of the olive tree: from Late Quaternary diversification of Mediterranean lineages to primary domestication in the northern Levant. Proc R Soc B-Biol Sci 280:20122833.  https://doi.org/10.1098/rspb.2012.2833CrossRefGoogle Scholar
  51. Bogani P, Cavalieri D, Petruccelli R et al (1994) Identification of olive tree cultivars by using random amplified polymorphic DNA. Acta Hort 356:98–101CrossRefGoogle Scholar
  52. Boulouha B (1986) Sélection clonale de la Picholine Marrocaine. Olea 17:67–70Google Scholar
  53. Bourgin JP, Nitsch JP (1967) Production of haploid Nicotiana from excised stamens. Ann Phys Vég 9:377–382Google Scholar
  54. Bradai F, Pliego-Alfaro F, Sanchez-Romero C (2016a) Long-term somatic embryogenesis in olive (Olea europaea L.): influence on regeneration capability and quality of regenerated plants. Sci Hort 199:23–31CrossRefGoogle Scholar
  55. Bradai F, Pliego-Alfaro F, Sanchez-Romero C (2016b) Somaclonal variation in olive (Olea europaea L.) plants regenerated via somatic embryogenesis: influence of genotype and culture age on phenotypic stability. Sci Hort 213:208–215CrossRefGoogle Scholar
  56. Bradai F, Sánchez-Romero C (2017) Efecto de la crioconsevación y de un precultivo con alta concentracion de sacarosa sobre la embriogénesis somática de olivo. Madrid, Libro de Resúmenes, XII Reunión de la SECIVTV, p 98Google Scholar
  57. Brhadda N, Abousalim A, Walali LDE (2003a) Effets du milieu de culture et de la lumiére sur l’embriogenése somatique de l’olivier (Olea europaea L.) cv. Picholine Marocaine. Fruits 58:167–174CrossRefGoogle Scholar
  58. Brhadda N, Abousalim A, Walali LDE et al (2003b) Effets du milieu de culture sur le microbouturage de l’olivier (Olea europaea L.) cv. Picholine Marocaine. Biotechnol Agron Soc Envir 7(3–4):177–182Google Scholar
  59. Briccoli-Bati C, Godino G, Monardo D et al (2006) Influence of propagation techniques on growth and yield of olive trees cultivars ‘Carolea’ and ‘Nocellara Etnea’. Sci Hort 109:173–182CrossRefGoogle Scholar
  60. Caballero JM, Del Río C, Barranco D et al (2006) The olive world germplasm bank of Cordoba, Spain. Olea 25:14–19Google Scholar
  61. Cabello Moreno B, Barceló Muñoz A, Padilla IMG (2013) Petratamientos y encapsulación en alginato como método de conservación in vitro de olivo. X Reunión de la SECIVTV, Zaragoza, Libro de Resúmenes, p 55Google Scholar
  62. Caceres ME, Cecarelli M, Pupilli F et al (2015) Floral biology in Olea europaea subsp cuspidata: a comparative structural and functional characterization. Euphy 201(2):307–319CrossRefGoogle Scholar
  63. Cañas LA, Ávila J, Vicente M et al (1992) Micropropagation of olive (Olea europaea L.). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry Vol 18: High-tech and micropropagation II. Springer, Berlin, pp 493–505Google Scholar
  64. Cañas LA, Benbadis A (1988) In vitro plant regeneration from cotyledon fragments of the olive tree (Olea europaea L.). Plant Sci 54:65–74CrossRefGoogle Scholar
  65. Capelo AM, Silva S, Brito G et al (2010) Somatic embryogenesis induction in leaves and petioles of a mature wild olive. Plant Cell Tiss Organ Cult 103:237–242CrossRefGoogle Scholar
  66. Carmona R, Zafra A, Seoane P et al (2015) ReprOlive: a database with linked data for the olive tree (Olea europaea L.) reproductive transcriptome. Front Plant Sci 6:625.  https://doi.org/10.3389/fpls.2015.00625CrossRefPubMedPubMedCentralGoogle Scholar
  67. Caruso T, Marra FP, Costa F et al (2014) Genetic diversity and clonal variation within the main Sicilian olive cultivars based on morphological traits and microsatellite markers. Sci Hort 180:130–138CrossRefGoogle Scholar
  68. Casanova L, Suárez MP, Fernández-Cabanás VM et al (2014) From the juvenile to the adult vegetative phase in olive seedlings: the transition along the stem axis. Span J Agr Res 12(4):1149–1157.  https://doi.org/10.5424/sjar/2014124-6363CrossRefGoogle Scholar
  69. Cerezo S, Mercado JA, Pliego-Alfaro F (2011) An efficient regeneration system via somatic embryogenesis in olive. Plant Cell Tiss Organ Cult 106:337–344CrossRefGoogle Scholar
  70. Chaari A, Chelly-Chaabouni A, Maalej M et al (2002) Meski olive variety propagated by tissue culture. Acta Hort 586:871–874CrossRefGoogle Scholar
  71. Charafi J, El Meziane A, Moukhli A et al (2008) Menara gardens: a Moroccan olive germplasm collection identified by a SSR locus-based genetic study. Genet Res Crop Evol 55:893–900CrossRefGoogle Scholar
  72. Chiappetta A, Muto A, Bruno L et al (2015) A dehydrin gene isolated from feral olive enhances drought tolerance in Arabidopsis transgenic plants. Front Plant Sci 6:392.  https://doi.org/10.3389/fpls.2015.00392CrossRefPubMedPubMedCentralGoogle Scholar
  73. Ciccarese F, Ambrico A, Longo O et al (2002) Search for resistance to verticillium-wilt and leaf spot in olive. Acta Hort 586:717–720CrossRefGoogle Scholar
  74. Cipriani G, Marrazzo MT, Marconi R et al (2002) Microsatellite markers isolated in olive (Olea europaea L.) are suitable for individual fingerprinting and reveal polymorphism within ancient cultivars. Theor Appl Genet 104:223–228CrossRefPubMedGoogle Scholar
  75. Colella C, Miacola C, Amenduni M et al (2008) Sources of verticillium wilt resistance in wild olive germplasm from the Mediterranean region. Plant Pathol 57(3):533–539CrossRefGoogle Scholar
  76. Cozza R, Turco D, Briccoli-Bati C et al (1997) Influence of growth medium on mineral composition and leaf histology in micropropagated plantlets of Olea europaea. Plant Cell Tiss Organ Cul 51:215–223CrossRefGoogle Scholar
  77. Cruz F, Julca I, Gómez-Garrido J et al (2016) Genome sequence of the olive tree, Olea europaea. Gigasci 5:29.  https://doi.org/10.1186/s13742-016-0134-5CrossRefGoogle Scholar
  78. Daane KM, Johnson MW (2010) Olive fruit fly: managing an ancient pest in modern times. Ann Rev Entom 55.  https://doi.org/10.1146/annurev.ento.54.110807.090553
  79. Dabbou S, Chaieb I, Rjiba I et al (2012) Multivariate data analysis of fatty acid content in the classification of olive oils developed through controlled crossbreeding. J Am Oil Chem Soc 89:667–674CrossRefGoogle Scholar
  80. De la Guardia MD, Alcántara E (2002) A comparison of ferric-chelate reductase and chlorophyll and growth ratios as indices of selection of quince, pear and olive genotypes under iron deficiency stress. Plant Soil 241(1):49–56.  https://doi.org/10.1023/A:1016083512158CrossRefGoogle Scholar
  81. De la Rosa R, Angiolillo A, Guerrero C et al (2003) A first linkage map of olive (Olea europaea L.) cultivars using RAPD, AFLP, RFLP and SSR markers. Theor Appl Genet 106:1273–1282.  https://doi.org/10.1007/s00122-002-1189-5CrossRefPubMedGoogle Scholar
  82. De la Rosa R, Arias-Calderón R, Velasco L, León L (2016) Early selection for oil quality components in olive breeding progenies. Eur J Lipid Sci Tech 118:1160–1167.  https://doi.org/10.1002/ejlt.201500425CrossRefGoogle Scholar
  83. De la Rosa R, James CM, Tobutt KR (2004) Using microsatellites for paternity testing in olive progenies. HortSci 39(2):351–354Google Scholar
  84. De la Rosa R, Kiran AI, Barranco D, Leon L (2006) Seedling vigour as a preselection criterion for short juvenile period in olive breeding. Aust J Agr Res 57:477–481.  https://doi.org/10.1071/ar05219CrossRefGoogle Scholar
  85. De la Rosa R, Klepo T, Arias-Calderon R et al (2014) Current status of conservation, evaluation and usefulness of wild olive germplasm. Acta Hort 1057:515–520CrossRefGoogle Scholar
  86. De la Rosa R, Leon L, Guerrero N et al (2007) Preliminary results of an olive cultivar trial at high density. Aust J Agric Res 58:392–395.  https://doi.org/10.1071/AR06265CrossRefGoogle Scholar
  87. De la Rosa R, Talhaoui N, Rouis H et al (2013) Fruit characteristics and fatty acid composition in advanced olive breeding selections along the ripening period. Food Res Int 54(2):1890–1896CrossRefGoogle Scholar
  88. D’Hallewin G, Mulas M, Schirra M (1990) Characteristic of eleven table-olive clones selected from Nera cultivar. Acta Hort 286:48–52Google Scholar
  89. Díaz A, Martín A, Rallo P et al (2007) Cross-compatibility of the parents as the main factor for successful olive (Olea europaea L.) breeding crosses. J Am Soc Hort Sci 132:1–6Google Scholar
  90. Diez CM, Moral J, Cabello D et al (2016) Cultivar and tree density as key factors in the long-term performance of super high-density olive orchards Front. Plant Sci 7:1226.  https://doi.org/10.3339/fpls.2016.01226CrossRefGoogle Scholar
  91. Diez CM, Trujillo I, Barrio E et al (2011) Centennial olive trees as a reservoir of genetic diversity. Ann Bot 108:797–807.  https://doi.org/10.1093/aob/mcr194CrossRefPubMedPubMedCentralGoogle Scholar
  92. Díez CM, Trujillo I, Martinez-Urdiroz N et al (2015) Olive domestication and diversification in the Mediterranean Basin. New Phytol 206:436–447.  https://doi.org/10.1111/nph.13181CrossRefPubMedGoogle Scholar
  93. Dimassi-Theriou K (1994) In vitro propagation of cv. ‘Kalamon’ olives (Olea europaea sativa L.). Adv Hort Sci 8:185–189Google Scholar
  94. Domínguez-García MC, Belaj A, De La Rosa R et al (2012) Development of DArT markers in olive (Olea europaea L.) and usefulness in variability studies and genome mapping. Sci Hort 136:50–60.  https://doi.org/10.1016/j.scienta.2011.12.017CrossRefGoogle Scholar
  95. Driver JA, Kuniyuki A (1984) In vitro propagation of paradox walnut rootstock (Juglans hindsii x Juglans regia) by tissue culture. HortSci 19(4):507–509Google Scholar
  96. El Aabidine AZ, Charafi J, Grout C et al (2010) Construction of a genetic linkage map for the olive based on AFLP and SSR markers. Crop Sci 50:2291.  https://doi.org/10.2135/cropsci2009.10.0632CrossRefGoogle Scholar
  97. El Bakkali A, Haouan H, Moukhli A et al (2013) Construction of core collections suitable for association mapping to optimize use of Mediterranean olive (Olea europaea L.) genetic resources. PLoS ONE 8(5):e61265CrossRefPubMedPubMedCentralGoogle Scholar
  98. El Riachy M, Priego-Capote F, Leon L, de Castro MDL (2012a) Virgin olive oil phenolic profile and variability in progenies from olive crosses. J Sci Food Agr 92(12):2524–2533CrossRefGoogle Scholar
  99. El Riachy M, Priego-Capote F, Rallo L et al (2012b) Phenolic profile of virgin olive oil from advanced breeding selections. Span J Agr Res 10(2):443–453CrossRefGoogle Scholar
  100. El Riachy M, Priego-Capote F, Rallo L et al (2012c) Phenolic composition of virgin olive oils from cross breeding segregating populations. Eur J Lipid Sci Tech 114(5):542–551CrossRefGoogle Scholar
  101. El Riachy M, Rallo L, de la Rosa R, Leon L (2011) May soil solarization reduce the juvenile period in olive? HortSci 46(9):1241–1244Google Scholar
  102. Ersoy AH, Arsel F, Sefer U et al (2008) The first findings on the promising individuals from hybridization. Acta Hort 791:49–54CrossRefGoogle Scholar
  103. Fabbri A, Hormaza JI, Polito VS (1995) Random amplified polymorphic DNA analysis of olive (Olea europaea L.) cultivars. J Am Soc Hort Sci 120(3):538–542Google Scholar
  104. Farahani F, Yari R, Sheidai M (2011a) Molecular C-value and morphological analyses of somaclonal variation in three olive cultivars. Afr J Plant Sci 5(9):493–499Google Scholar
  105. Farahani F, Yari R, Sheidai M (2011b) Somaclonal variation in Dezful cultivar of olive (Olea europaea subsp. europaea). Gene Cons 40:216–233Google Scholar
  106. Faraloni C, Cutino I, Petruccelli R et al (2011) Chlorophyll fluorescence technique as a rapid tool for in vitro screening of olive cultivars (Olea europaea L.) tolerant to drought stress. Envir Exp Bot 73:49–56CrossRefGoogle Scholar
  107. Fendri M, Trujillo I, Trigui A et al (2010) Simple sequence repeat identification and endocarp characterization of olive tree accessions in a Tunisian germplasm collection. HortSci 45:1429–1436Google Scholar
  108. Fernandes Serrano JM (1990) Clonal selection in Portuguese olive varieties. Acta Hort 286:53–56CrossRefGoogle Scholar
  109. Fernández JE, Moreno F (1999) Water use by the olive tree. J Crop Prod 2(2):101–162CrossRefGoogle Scholar
  110. Fernández-Ocaña A, García-López MC, Jiménez-Ruiz J et al (2010) Identification of a gene involved in the juvenile-to-adult transition (JAT) in cultivated olive trees. Tree Genet Genom 6:891–903.  https://doi.org/10.1007/s11295-010-0299-5CrossRefGoogle Scholar
  111. Fiorino P (ed) (2003) Olea. Trattato di olivicoltura. Edagricole. BolognaGoogle Scholar
  112. Fontanazza G, Baldoni L (1990) Proposed programme for the genetic improvement of the olive. Olivae 34:32–40Google Scholar
  113. Fourati H, Cossentini M, Karray B, Khlif M (2002a) Classification of olive trees according to fruit and oil characterization. Acta Hort 586:687–690CrossRefGoogle Scholar
  114. Fourati H, Cossentini M, Khlif M (2002b) Study of the sterolic fraction of some free crossbreeding olive cultivars. Acta Hort 586:683–686CrossRefGoogle Scholar
  115. Frisullo S, Camele I, Agosteo GE et al (2014) Brief historical account of olive leaf scorch (“brusca”) in the Salento peninsula of Italy and state-of-the-art of the olive quick decline syndrome. J Plant Path 96(3):441–449Google Scholar
  116. Gabaldón-Leal C, Ruiz-Ramos M, de la Rosa R et al (2017) Impact of changes in mean and extreme temperatures caused by climate change on olive flowering in southern Spain. Int J Climat 37:940–957.  https://doi.org/10.1002/joc.5048CrossRefGoogle Scholar
  117. Garantonakis N, Varikou K, Birouraki A (2017) Influence of olive variety on biological parameters of Bactrocera oleae (Diptera: Tephritidae). Appl Entom Zool 52(2):189–196.  https://doi.org/10.1007/s13355-016-0467-7CrossRefGoogle Scholar
  118. Garcia Berenguer A (1988) Selección clonal en Olea europaea L. cultivar Picual. ITEA 75:9–13Google Scholar
  119. Garcia JL, Avidan N, Troncoso A et al (2000) Possible juvenile-related proteins in olive tree tissues. Sci Hort 85:271–284CrossRefGoogle Scholar
  120. Garcia-Diaz A, Oya R, Sanchez A, Luque F (2003) Effect of prolonged vegetative reproduction of olive tree cultivars (Olea europaea L.) in mitochondrial homoplasmy and heteroplasmy. Genome 46:377–381CrossRefPubMedPubMedCentralGoogle Scholar
  121. García-Férriz L, Ghorbel R, Ybarra M et al (2002) Micropropagation from adult olive trees. Acta Hort 586:879–882CrossRefGoogle Scholar
  122. Garcia-Gonzalez DL, Tena N, Aparicio R (2010) Quality characterization of the new virgin olive oil var. Sikitita by phenols and volatile compounds. J Agr Food Chem 58(14):8357–8364CrossRefGoogle Scholar
  123. Garcia-Lopez MC, Vidoy I, Jimenez-Ruiz J et al (2014) Genetic changes involved in the juvenile-to-adult transition in the shoot apex of Olea europaea L. occur years before the first flowering. Tree Genet Genom 10:585–603Google Scholar
  124. Garcia-Mozo H, Orlandi F, Galan C et al (2009) Olive flowering phenology variation between different cultivars in Spain and Italy: modeling analysis. Theor Appl Climat 95(3–4):385–395.  https://doi.org/10.1007/s00704-008-0016-6CrossRefGoogle Scholar
  125. Gaut BS, Díez CM, Morrell PL (2015) Genomics and the contrasting dynamics of annual and perennial domestication. Trends Genet 31:709–719.  https://doi.org/10.1016/j.tig.2015.10.002CrossRefPubMedPubMedCentralGoogle Scholar
  126. Gemas VJV, Almadanim MCC, Tenreiro R et al (2004) Genetic diversity in the olive tree (Olea europaea L. subsp europaea) cultivated in Portugal revealed by RAPD and ISSR markers. Genet Res Crop Evol 51:501–511.  https://doi.org/10.1023/B:GRES.0000024152.16021.40CrossRefGoogle Scholar
  127. George EF (1993) Plant propagation by tissue culture, vol I: The technology. Exegetics, Edington, UKGoogle Scholar
  128. Giovenzana V, Beghi R, Civelli R et al (2015) Postharvest characterization of olive oil fruits texture by NIR and Vis/NIR spectroscopy. In: Guidetti R, Bodria L, Best S (eds) Frutic Italy 2015: 9th Nut and Vegetable Production Engineering Symposium, vol 44, pp 61–66Google Scholar
  129. Gomes S, Martins-Lopes P, Lima-Brito J et al (2008) Evidence for clonal variation in ‘Verdeal-Trasmontana’ olive using RAPD, ISSR and SSR markers. J Hort Sci Biotech 83:395–400CrossRefGoogle Scholar
  130. Gómez-del-Campo M, Barranco D (2005) Field evaluation of frost tolerance in 10 olive cultivars. Plant Genet Resour-C 3(3):385–390.  https://doi.org/10.1079/PGR200592CrossRefGoogle Scholar
  131. Gonçalves MF, Malheiro R, Casal S et al (2012) Influence of fruit traits on oviposition preference of the olive fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae), on three Portuguese olive varieties (Cobrançosa, Madural and Verdeal Transmontana). Sci Hort 145:127–135.  https://doi.org/10.1016/j.scienta.2012.08.002CrossRefGoogle Scholar
  132. Grasso F, Coppola M, Carbone F et al (2017) The transcriptional response to the olive fruit fly (Bactrocera oleae) reveals extended differences between tolerant and susceptible olive (Olea europaea L.) varieties. PLoS One 12(8).  https://doi.org/10.1371/journal.pone.0183050
  133. Grigoriadou K, Vasilakakis M, Eleftheriou EP (2002) In vitro propagation of the Greek olive cultivar ‘Chondrolia Chalkidikis’. Plant Cell Tiss Organ Cult 71:47–54CrossRefGoogle Scholar
  134. Guerfel M, Boujnah D, Baccouri B, Zarrouk M (2007) Evaluation of morphological and physiological traits for drought tolerance in 12 Tunisian olive varieties (Olea europaea L.). J Agron 6(2):356–361CrossRefGoogle Scholar
  135. Guerra D, Lamontanara A, Bagnaresi P et al (2015) Transcriptome changes associated with cold acclimation in leaves of olive tree (Olea europaea L.). Tree Genet Genom 11:113.  https://doi.org/10.1007/s11295-015-0939-xCrossRefGoogle Scholar
  136. Haberman A, Bakhshian O, Cerezo-Medina S et al (2017) A possible role for flowering locus T-encoding genes in interpreting environmental and internal cues affecting olive (Olea europaea L.) flower induction. Plant, Cell Environ 40:1263–1280.  https://doi.org/10.1111/pce.12922CrossRefGoogle Scholar
  137. Hackett WP (1985) Juvenility, maturation, and rejuvenation in woody plants. Hort Rev 7:109–155Google Scholar
  138. Hammami SBM, De la Rosa R, Sghaier-Hammami B et al (2012) Reliable and relevant qualitative descriptors for evaluating complex architectural traits in olive progenies. Sci Hort 143:157–166.  https://doi.org/10.1016/j.scienta.2012.06.009CrossRefGoogle Scholar
  139. Hammami SBM, Leon L, Rapoport HF, De la Rosa R (2011) Early growth habit and vigour parameters in olive seedlings. Sci Hort 129(4):761–768.  https://doi.org/10.1016/j.scienta.2011.05.038CrossRefGoogle Scholar
  140. Hancock JF (2008) Temperate fruit crop breeding. Springer, New YorkCrossRefGoogle Scholar
  141. Haouane H, El Bakkali A, Moukhli A et al (2011) Genetic structure and core collection of the World Olive Germplasm Bank of Marrakech: towards the optimized management and use of Mediterranean olive genetic resources. Genet 139(9):1083–1094CrossRefGoogle Scholar
  142. Hartmann H, Schnathorst WC, Whisler J (1971) Oblonga—clonal olive rootstock resistant to verticillium wilt. Calif Agr 25(6):12–15Google Scholar
  143. Hartmann HT, Kester DE, Davies FT Jr, Geneve RL (2002) Plant propagation principles and practices. Prentice Hall, Englewood CliffsGoogle Scholar
  144. Hartmann HT, Porlingis I (1957) Effect of different amounts of winter chilling on fruitfulness of several olive varieties. Bot Gaz 119(2):102–104CrossRefGoogle Scholar
  145. Hassani D, Tombesi A (2008) Vegetative growth of olive genotypes from a diallel cross. Acta Hort 791:137–142CrossRefGoogle Scholar
  146. Heinze B, Fussy B (2008) Somatic mutations as a useful tool for studying clonal dynamics in trees. Mol Ecol 17:4779–4781.  https://doi.org/10.1111/j.1365-294X.2008.03964CrossRefPubMedPubMedCentralGoogle Scholar
  147. Hernandez ML, Belaj A, Sicardo MD et al (2017) Mapping quantitative trait loci controlling fatty acid composition in olive. Euphy 213:7CrossRefGoogle Scholar
  148. Hosseini-Mazinani M, Torkzaban B, Arab J (2013) Iranian Olive Catalogue. National Institute of Genetic Engineering and Biotechnology Press, TehranGoogle Scholar
  149. Iannotta N, Noce ME, Ripa V et al (2007) Assessment of susceptibility of olive cultivars to the Bactrocera oleae (Gmelin, 1790) and Camarosporium dalmaticum (Thüm.) Zachos & Tzav.-Klon attacks in Calabria (southern Italy). J Envir Sci Heal B 42(7):789–793.  https://doi.org/10.1080/03601230701551426CrossRefGoogle Scholar
  150. Imbroda I, Cabello Moreno B, Gallego J et al (2014) Frigoconservación in vitro de olivo (cultivar Arbequina). Acta Hort 69:139–140Google Scholar
  151. IOC (2017). International Olive Council. http://www.internationaloliveoil.org. Accessed 13 Nov 2017
  152. İpek A, İpek M, Ercişli S, Tangu NA (2017) Transcriptome-based SNP discovery by GBS and the construction of a genetic map for olive. Funct Integr Genom 17:493–501.  https://doi.org/10.1007/s10142-017-0552-1CrossRefGoogle Scholar
  153. Jimenez R, Rallo P, Suarez MP et al (2011) Cultivar susceptibility and anatomical evaluation of table olive fruit bruising. Acta Hort 924:419–424CrossRefGoogle Scholar
  154. Jiménez-Díaz RM, Cirulli M, Bubici G et al (2012) Verticillium wilt, a major threat to olive production: status and future prospects for its management. Plant Dis 96(3):304–329.  https://doi.org/10.1094/pdis-06-11-0496CrossRefGoogle Scholar
  155. Jiménez-Fernández D, Trapero-Casas JL, Landa BB et al (2016) Characterization of resistance against the olive-defoliating Verticillium dahliae pathotype in selected clones of wild olive. Plant Path 65(8):1279–1291.  https://doi.org/10.1111/ppa.12516CrossRefGoogle Scholar
  156. Jiménez-Ruiz J, García-López MC, Vidoy I et al (2015) Transcriptional analysis of adult cutting and juvenile seedling olive roots. Tree Genet Genom 11:77.  https://doi.org/10.1007/s11295-015-0898-2CrossRefGoogle Scholar
  157. Johnson R, Jellis GJ (1992) Breeding for disease resistance, vol 1. Kluwer Academic Publishers, DordrechtGoogle Scholar
  158. Kamoun NG, Khilf M, Ayadi M, Karray B (2002) Clonal selection of olive tree variety “Chemlali Sfax”: preliminary results. Acta Hort 586:147–150CrossRefGoogle Scholar
  159. Kaya HB, Cetin O, Kaya HS et al (2016) Association mapping in Turkish olive cultivars revealed significant markers related to some important agronomic traits. Biochem Gen 54:506–533CrossRefGoogle Scholar
  160. Khlif M, Trigui A (1990) Olive cultivars investigations. Preliminary results. Acta Hort 286:65–68CrossRefGoogle Scholar
  161. Klepo T, Toumi A, de la Rosa R et al (2014) Agronomic evaluation of seedlings from crosses between the main Spanish olive cultivar ‘Picual’ and two wild olive trees. J Hort Sci Biotech 89(5):508–512CrossRefGoogle Scholar
  162. Koubouris GC, Breton CM, Metzidakis IT, Vasilakakis MD (2014) Self-incompatibility and pollination relationships for four Greek olive cultivars. Sci Hort 176:91–96.  https://doi.org/10.1016/J.Scienta.2014.06.043CrossRefGoogle Scholar
  163. Lambardi M, Amorisi S, Caricato G et al (1999) Microprojectile-DNA delivery in somatic embryos of olive (Olea europaea L.). Acta Hort 474:505–509CrossRefGoogle Scholar
  164. Lambardi M, Benelli C, Carlo De et al (2002) Medium and long-term in vitro conservation of olive germplasm (Olea europaea L.). Acta Hort 586:109–112CrossRefGoogle Scholar
  165. Lambardi M, Ozudogru EA, Roncasaglia R (2013) In vitro propagation of olive (Olea europaea L.) by nodal segmentation of elongated shoots. In: Lambardi M, Ozudogru EA, Jain SM (eds) Protocols for micropropagation of selected economically-important horticultural plants. Springer, New York, pp 33–44CrossRefGoogle Scholar
  166. Larkin PJ, Scowcroft SC (1981) Somaclonal variation-a novel source of variability from cell culture for plant improvement. Theor App Genet 60:197–214CrossRefGoogle Scholar
  167. Lavee S (1990) Aims, methods, and advances in breeding of new olive (Olea europaea L.) cultivars. Acta Hort 286:23–36CrossRefGoogle Scholar
  168. Lavee S (2012) From the olive tree to olive oil—new trends and future challenges. Acta Hort 924:263–276Google Scholar
  169. Lavee S (2013) Evaluation of the need and present potential of olive breeding indicating the nature of the available genetic resources involved. Sci Hort 161:333–339.  https://doi.org/10.1016/j.scienta.2013.07.002CrossRefGoogle Scholar
  170. Lavee S, Avidan B (2011) Heredity diversity in populations of free-, self-, and specific cross-pollinated progenies of some olive (Olea europaea L.) cultivars. Isr J Plant Sci 59(1):29–37CrossRefGoogle Scholar
  171. Lavee S, Avidan N, Haskal A, Ogrodovich A (1996) Juvenility period reduction in olive seedlings- a tool for enhancement of breeding. Olivae 60:33–41Google Scholar
  172. Lavee S, Harshemesh H, Haskal A et al (1999) ‘Maalot’ a new cultivar for oil extraction resistant to Spilocaea oleagina (Cast.). Acta Hort 474:125–128CrossRefGoogle Scholar
  173. Lavee S, Singer A, Haskal A et al (2008) Diversity in performance between trees within the traditional Souri olive cultivar (Olea europaea L.) in Israel under rain-fed conditions. Olivae 109:33–45Google Scholar
  174. Leitao F, Serrano JF, Potes MF et al (1999) Preliminary results on clonal and sanitary selection of Olea europaea L Cv ‘Santulhana’ in north-east of Portugal. Acta Hort 474:163–166CrossRefGoogle Scholar
  175. Leon L (2012) Usefulness of portable near infrared spectroscopy in olive breeding programs. Span J Agr Res 10:141–148CrossRefGoogle Scholar
  176. Leon L, Arias-Calderon R, de la Rosa R et al (2016) Optimal spatial and temporal replications for reducing environmental variation for oil content components and fruit morphology traits in olive breeding. Euphy 207(3):675–684CrossRefGoogle Scholar
  177. Leon L, Beltran G, Aguilera MP et al (2011) Oil composition of advanced selections from an olive breeding program. Eur J Lipid Sci Tech 113(7):870–875CrossRefGoogle Scholar
  178. Leon L, De la Rosa R, Barranco D, Rallo L (2007) Breeding for early bearing in olive. HortSci 42(3):499–502Google Scholar
  179. Leon L, De la Rosa R, Gracia A et al (2008) Fatty acid composition of advanced olive selections obtained by crossbreeding. J Sci Food Agr 88(11):1921–1926CrossRefGoogle Scholar
  180. Leon L, Downey G (2006) Preliminary studies by visible and near-infrared reflectance spectroscopy of juvenile and adult olive (Olea europaea L.) leaves. J Sci Food Agr 86:999–1004CrossRefGoogle Scholar
  181. Leon L, Martin LM, Rallo L (2004a) Repeatability and minimum selection time for fatty acid composition in olive progenies. HortSci 39:477–480Google Scholar
  182. Leon L, Rallo L, Del Rio C, Martin M (2004b) Variability and early selection on the seedling stage for agronomic traits in progenies from olive crosses. Plant Breed 123:73–78CrossRefGoogle Scholar
  183. Leon L, Rallo L, Garrido A (2003) Near-infrared spectroscopy (NIRS) analysis of intact olive fruit: a useful tool in olive breeding programs. Grasas Aceites 54:41–47CrossRefGoogle Scholar
  184. Leon L, Velasco L, de la Rosa R (2015) Initial selection steps in olive breeding programs. Euphy 201(3):453–462CrossRefGoogle Scholar
  185. Leva A (2009) Morphological evaluation of olive plants micropropagated in vitro culture through axillary buds and somatic embryogenesis methods. Afric J Plant Sci 3(3):37–43Google Scholar
  186. Leva AR, Muleo R, Petruccelli R (1995) Long-term embryogenesis from immature olive cotyledons. J Hort Sci 70(3):417–421CrossRefGoogle Scholar
  187. Leva AR, Petruccelli R (2012) Monitoring of cultivar identity in micropropagated olive plants using RAPD and ISSR markers. Biolog Plant 56(2):373–376CrossRefGoogle Scholar
  188. Leva AR, Sadeghi H, Petruccelli R (2013) Carbohydrates modulate the in vitro growth of olive microshoots. I. The analysis of shoot growth and branching patterns. J Plant Growth Regul 32:53–60CrossRefGoogle Scholar
  189. Leyva-Pérez MD, Jiménez-Ruiz J, Gómez-Lama Cabanás C et al (2017) Tolerance of olive (Olea europaea) cv Frantoio to Verticillium dahliae relies on both basal and pathogen-induced differential transcriptomic responses. New Phytol.  https://doi.org/10.1111/nph.14833CrossRefPubMedGoogle Scholar
  190. Lloyd G, McCown B (1980) Commercially feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Proc Int Plant Prop Soc 30:421–427Google Scholar
  191. López-Doncel LM, Trapero A, García-Berenguer A (1999) Resistance of olive tree cultivars to leaf spot caused by Spilocaea oleagina. Acta Hort 474:549–554CrossRefGoogle Scholar
  192. López-Escudero FJ, Mercado-Blanco J (2011) Verticillium wilt of olive: a case study to implement an integrated strategy to control a soil-borne pathogen. Plant Soil 344(1):1–50CrossRefGoogle Scholar
  193. Luvisi A, Aprile A, Sabella E et al (2017) Xylella fastidiosa subsp. pauca (CoDiRO strain) infection in four olive (Olea europaea L.) cultivars: profile of phenolic compounds in leaves and progression of leaf scorch symptoms. Phytopath Medit 56(2):259–273.  https://doi.org/10.14601/phytopathol_mediterr-20578CrossRefGoogle Scholar
  194. Lynch PT, Siddika A, Johnston JW et al (2011) Effects of osmotic pretreatments on oxidative stress, antioxidant profiles and cryopreservation of olive somatic embryos. Plant Sci 181:47–56CrossRefPubMedGoogle Scholar
  195. Lynch PT, Siddika A, Mehra A et al (2007) The challenge of successful cryopreservation of olive (Olea europaea L.) shoot tip. Adv Hort Sci 21:211–214Google Scholar
  196. Mailer RJ (2004) Rapid evaluation of olive oil quality by NIR reflectance spectroscopy. J Am Oil Chem Soc 81:823–827CrossRefGoogle Scholar
  197. Malheiro R, Casal S, Baptista P, Pereira JA (2015) Physico-chemical characteristics of olive leaves and fruits and their relation with Bactrocera oleae (Rossi) cultivar oviposition preference. Sci Hort 194:208–214.  https://doi.org/10.1016/j.scienta.2015.08.017CrossRefGoogle Scholar
  198. Mancuso S, Azzarello E (2002) Heat tolerance in olive. Adv Hort Sci 16(3–4):125–130Google Scholar
  199. Marcelo A, Fernandes M, Fatima Potes M, Serrano JF (1999) Reactions of some cultivars of Olea europaea L. to experimental inoculation with Pseudomonas syringae pv. savastanoi. Acta Hort 474:581–584CrossRefGoogle Scholar
  200. Marchese A, Marra FP, Caruso T et al (2016) The first high-density sequence characterized SNP-based linkage map of olive (Olea europaea L. subsp. europaea) developed using genotyping by sequencing. Aust J Crop Sci 10:857–863CrossRefGoogle Scholar
  201. Marin L, Benlloch M, Fernández-Escobar R (1995) Screening of olive cultivars for salt tolerance. Sci Hort 64(1–2):113–116.  https://doi.org/10.1016/0304-4238(95)00832-6CrossRefGoogle Scholar
  202. Martinez D, Arroyo-Garcia R, Revilla MA (1999) Cryopreservation of in vitro grown shoots-tips of Olea europaea cv Arbequina. CryoLett 20:29–36Google Scholar
  203. Martins A, Santos L, Lopes J, Gouveia J (1998) Primeiros resultados da seleção da variedade de oliveira Cobrançosa. Rev Ciên Agr 21(1–4):35–46Google Scholar
  204. Martins-Lopes P, Gomes S, Lima-Brito J et al (2009) Assessment of clonal genetic variability in Olea europaea L. “Cobrançosa” by molecular markers. Sci Hort 123:82–89.  https://doi.org/10.1016/J.SCIENTA.2009.08.001CrossRefGoogle Scholar
  205. Mazri MA, Belkoura I, Pliego-Alfaro F et al (2013) Somatic embryogenesis from leaf and petiole explants of the Moroccan olive cultivar Dahbia. Sci Hort 159:88–95CrossRefGoogle Scholar
  206. Medina E, Morales-Sillero A, Ramirez EM et al (2012) New genotypes of table olives: profile of bioactive compounds. Int J Food Sci Tech 47(11):2334–2341CrossRefGoogle Scholar
  207. Mencuccini M, Rugini E (1993) In vitro shoot regeneration from olive cultivar tissues. Plant Cell Tiss Organ Cult 32:283–288CrossRefGoogle Scholar
  208. Mendil M, Sebai A (2006) L’olivier en Algérie. Institut Technique de l’Arboriculture Fruitiére et de la Vigne, pp 48–86Google Scholar
  209. Micheli M, Hafiz IA, Standardi A (2007) Encapsulation of in vitro-derived explants of olive (Olea europaea L. cv. Moraiolo) II. Effects of storage on capsule and derived shoots performance. Sci Hort 113:286–292CrossRefGoogle Scholar
  210. Micheli M, Mencuccini M, Standardi A (1998) Encapsulation of in vitro proliferated buds of olive. Adv Hort Sci 12:63–168Google Scholar
  211. Mitrakos K, Alexaki A, Papadimitriou P (1992) Dependence of olive morphogenesis on callus origin and age. J Plant Phys 139(3):269–273CrossRefGoogle Scholar
  212. Moore GA (2001) Oranges and lemons: clues to the taxonomy of citrus from molecular markers. Trends Genet 17:536–540.  https://doi.org/10.1016/S0168-9525(01)02442-8CrossRefPubMedPubMedCentralGoogle Scholar
  213. Moral J, Alsalimiya M, Roca LF et al (2015) Relative susceptibility of new olive cultivars to Spilocaea oleagina, Colletotrichum acutatum, and Pseudocercospora cladosporioides. Plant Dis 99(1):58–64.  https://doi.org/10.1094/PDIS-04-14-0355-RECrossRefGoogle Scholar
  214. Moral J, Diez CM, Leon L et al (2013) Female genitor effect on the juvenile period of olive seedlings. Sci Hort 156:99–105CrossRefGoogle Scholar
  215. Moral J, Trapero A (2009) Assessing the susceptibility of olive cultivars to anthracnose caused by Colletotrichum acutatum. Plant Dis 93(10):1028–1036.  https://doi.org/10.1094/PDIS-93-10-1028CrossRefGoogle Scholar
  216. Morales-Sillero A, Fernandez-Cabanas VM, Casanova L et al (2011) Feasibility of NIR spectroscopy for non-destructive characterization of table olive traits. J Food Eng 107(1):99–106.  https://doi.org/10.1016/j.jfoodeng.2011.05.039CrossRefGoogle Scholar
  217. Moreno-Alías I, León L, De la Rosa R, Rapoport HF (2009) Morphological and anatomical evaluation of adult and juvenile leaves of olive plants. Trees 23:181–187CrossRefGoogle Scholar
  218. Moreno-Alías I, Rapoport HF, León L, de la Rosa R (2010a) Olive seedling first-flowering position and management. Sci Hort 124:74–77CrossRefGoogle Scholar
  219. Moreno-Alías I, Rapoport HF, López R et al (2010b) Optimizing early flowering and pre-selection for short juvenile period in olives seedlings. Hort Sci 45:519–522Google Scholar
  220. Moutier N, Pinatel C, Martre A et al (2004) Identification et caractérisation des variétés d’olivier cultivées en France. Naturalia PublicationGoogle Scholar
  221. Muñoz-Diez C, Imperato A, Rallo L et al (2012) Worldwide Core Collection of olive cultivars based on simple sequence repeat and morphological markers. Crop Sci 52(1):211–221.  https://doi.org/10.2135/cropsci2011.02.0110CrossRefGoogle Scholar
  222. Muñoz-Mérida A, González-Plaza JJ, Cañada A et al (2013) De novo assembly and functional annotation of the olive (Olea europaea) transcriptome. DNA Res 20:93–108.  https://doi.org/10.1093/dnares/dss036CrossRefPubMedPubMedCentralGoogle Scholar
  223. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol 15:473–497CrossRefGoogle Scholar
  224. Muzzalupo I, Chiappetta A, Benincasa C, Perri E (2010) Intra-cultivar variability of three major olive cultivars grown in different areas of central-southern Italy and studied using microsatellite markers. Sci Hort 126:324–329CrossRefGoogle Scholar
  225. Nikoloudakis N, Banilas G, Gazis F et al (2003) Discrimination and genetic diversity among cultivated olives of Greece using RAPD markers. J Am Soc Hort Sci 128:741–746Google Scholar
  226. Noormohammadi Z, Hosseini-Mazinani M, Trujillo I et al (2007) Identification and classification of main Iranian olive cultivars using microsatellite markers. HortSci 42(7):1545–1550Google Scholar
  227. Orinos T, Mitrakos K (1991) Rhizogenesis and somatic embryogenesis in callus from wild olive [Olea europaea var. sylvestris (Miller) Lehr] mature zygotic embryos. Plant Cell Tiss Organ Cult 27:183–187CrossRefGoogle Scholar
  228. Ozdemir Y, Kurultay S (2015) Determination of physicochemical properties of some crossed olives and their convenience to black table olive fermentation by using Lactobacillus plantarum as a starter culture. J Int Sci Publ: Agric Food 3:416–424Google Scholar
  229. Ozdemir Y, Ozturk A, Guven E et al (2016) Fruit and oil characteristics of olive candidate cultivars from Turkey. Not Bot Horti Agrobo 44(1):147–154CrossRefGoogle Scholar
  230. Padula G, Giordani E, Bellini E et al (2008) Field evaluation of new olive (Olea europaea L.) selections and effects of genotype and environment on productivity and fruit characteristics. Adv Hort Sci 22(2):87–94Google Scholar
  231. Palliotti A, Bongi G (1996) Freezing injury in the olive leaf and effects of mefluidide treatment. J Hort Sci Biotech 71(1):57–63CrossRefGoogle Scholar
  232. Peixe A, Raposo A, Lourenço H et al (2007) Coconut water and BAP successfully replaced zeatin in olive (Olea europaea L.) micropropagation. Sci Hort 113:1–7CrossRefGoogle Scholar
  233. Pelsy F, Hocquigny S, Moncada X et al (2010) An extensive study of the genetic diversity within seven French wine grape variety collections. Theor Appl Genet 120:1219–1231.  https://doi.org/10.1007/s00122-009-1250-8CrossRefPubMedPubMedCentralGoogle Scholar
  234. Penyalver R, García A, Ferrer A et al (2006) Factors affecting Pseudomonas savastanoi pv. savastanoi plant inoculations and their use for evaluation of olive cultivar susceptibility. Phytopath 96(3):313–319.  https://doi.org/10.1094/phyto-96-0313CrossRefGoogle Scholar
  235. Perez AG, de la Rosa L, Pascual M et al (2016) Assessment of volatile compound profiles and the deduced sensory significance of virgin olive oils from the progeny of Picual x Arbequina cultivars. J Chromatogr A 1428:305–315CrossRefPubMedPubMedCentralGoogle Scholar
  236. Perez AG, Leon L, Pascual M et al (2014) Variability of virgin olive oil phenolic compounds in a segregating progeny from a single cross in Olea europaea l. and sensory and nutritional quality. PLoS ONE 9(3):e92898.  https://doi.org/10.1371/journal.pone.0092898CrossRefPubMedPubMedCentralGoogle Scholar
  237. Pérez-Barranco G, Torreblanca R, Padilla IMG et al (2009) Studies on genetic transformation of olive (Olea europaea L.) somatic embryos: I. Evaluation of different aminoglycoside antibiotics for nptII selection. II. Transient transformation via particle bombardment. Plant Cell Tiss Organ Cult 97:243–251CrossRefGoogle Scholar
  238. Peyvandi M, Farahani F, Noormohamadi Z et al (2009a) Mass production of Olea europaea L. (cv. Rowghani) through micropropagation. Gen Appl Plant Phys 35(1–2):35–43Google Scholar
  239. Peyvandi M, Noormohamadi Z, Baninashemi O et al (2009b) Molecular analysis of genetic stability in long-term micropropagated shoots of Olea europaea L. (cv. Dezful). Asian J Plant Sci 8(2):146–152CrossRefGoogle Scholar
  240. Pontikis CA, Loukas M, Kousonis G (1980) The use of biochemical markers to distinguish olive cultivars. J Hort Sci Biotech 55:333–343CrossRefGoogle Scholar
  241. Priego JM (1935) Las variedades de olivo generalizadas en España. Instituto de Investigaciones Agronómicas, MadridGoogle Scholar
  242. Pritsa TS, Voyiatzis DG (2004) The in vitro morphogenetic capacity of olive embryo explants at different developmental stages, as affected by L-Glutamine, L-Arginine and 2,4-D. J Biol Res 1:55–61Google Scholar
  243. Pritsa TS, Voyiatzis DG, Voyiatzis CJ, Sotiriou MS (2003) Evaluation of vegetative growth traits and their relation to time to first flowering of olive seedlings. Aust J Agr Res 54:371–376CrossRefGoogle Scholar
  244. Rallo L (1995) Selección y mejora genética del olivo en España. Olivae 59:46–53Google Scholar
  245. Rallo L (2014a) Breeding oil and table olives for mechanical harvesting in Spain. Horttechn 24:295–300Google Scholar
  246. Rallo L (2014b) Looking towards tomorrow in olive growing challenges in breeding. Acta Hort 1057:467–482CrossRefGoogle Scholar
  247. Rallo L, Barranco D, Caballero JM et al (eds) (2005) Variedades de olivo en España, Junta de Andalucía, MAPA. Ediciones Mundiprensa, Madrid, pp 80–231Google Scholar
  248. Rallo L, Barranco D, Castro-Garcia S et al (2013) High-Density Olive Plantations. Hortic Rev 41:303–384. https://doi.org/10.1007/s00122-003-1301-5
  249. Rallo L, Barranco D, De la Rosa R et al (2008a) ‘Chiquitita’ olive. HortSci 43(2):529–531Google Scholar
  250. Rallo L, Barranco D, De la Rosa R, León L (2016a) New olive cultivars and selections in Spain: results after 25 years of breeding. Abstract, VIII International Symposium in Olive Growing. ISHS. Splitz. CroatiaGoogle Scholar
  251. Rallo L, Caruso T, Díez CM, Campisi G (2016b) Olive growing in a time of change: from empiricism to genomics. In: Rugini E, Baldoni L, Mulea R, Sabastini L (eds) The olive tree genome, compendium of plant genomes. Springer International Publishing AG, New York, pp 55–64.  https://doi.org/10.1007/978-3-319-48887-5_4CrossRefGoogle Scholar
  252. Rallo L, Cuevas J, Rapoport HF (1990) Fruit-set pattern in self-pollinated and open-pollinated olive cultivars. Acta Hort 286:219–222CrossRefGoogle Scholar
  253. Rallo L, Díez CM, Morales-Sillero A et al (2017) Quality of olives: a focus on agricultural preharvest factors. Sci Hort in pressGoogle Scholar
  254. Rallo L, El Riachy M, Rallo P (2011) The time and place for fruit quality in olive breeding. In: Jenks MA, Bebeli JB (eds) Breeding for fruit quality. Wiley-Blackwell, West Sussex, pp 323–347CrossRefGoogle Scholar
  255. Rallo P (2000b) Desarrollo y aplicación de marcadores microsatélites en olivo (Olea europaea L.). PhD. diss. Universidad de Córdoba, SpainGoogle Scholar
  256. Rallo P, Dorado G, Martin A (2000a) Development of simple sequence repeats (SSR) in olive tree (Olea europaea L.). Theor Appl Genet 101:984–989CrossRefGoogle Scholar
  257. Rallo P, Jiménez R, Morales-Sillero A et al (2012) Evaluation of table-olive quality parameters in progenies obtained by cross-breeding. Acta Hort 949:527–532CrossRefGoogle Scholar
  258. Rallo P, Jiménez R, Ordovás J, Suárez MP (2008b) Possible early selection of short juvenile period olive plants based on seedling traits. Aust J Agr Res 59:933.  https://doi.org/10.1071/AR08013CrossRefGoogle Scholar
  259. Rallo P, Toledo E, Suárez MP et al (2008c) Variabilidad en los contenidos de azúcares y polifenoles en pulpa verde de aceituna: evaluación de progenies. Actas Hort 51:351–352Google Scholar
  260. Rallo P, Morales-Sillero A, Brenes M et al (2018) Elaboration of table olives: assessment of new olive genotypes. Eur J Lipid Sci Tech 1800008. https://doi.org/10.1002/ejlt.201800008
  261. Rama P, Pontikis CA (1990) In vitro propagation of olive (Olea europaea sativa L.) ‘Kalamon’. J Hort Sci 65(3):347–353CrossRefGoogle Scholar
  262. Ramos A, Rapoport HF, Cabello D, Rallo L (2018) Chilling accumulation, dormancy release temperature, and the role of leaves in olive reproductive budburst: evaluation using shoot explants. Sci Hort 230  https://doi.org/10.1016/j.scienta.2017.11.003
  263. Rapoport HF (2014) The reproductive biology of the olive tree and its relationship to extreme environmental conditions. Acta Hort 1057:41–50CrossRefGoogle Scholar
  264. Revilla MA, Pacheco J, Casares A et al (1996) In vitro reinvigoration of mature olive trees (Olea europaea L.) through micrografting. In Vitro Cell Dev Biol Plant 32:257–261CrossRefGoogle Scholar
  265. Rhouma A, Chettaoui M, Krid S et al (2013) Evaluation of susceptibility of an olive progeny (Picholine x Meski) to olive leaf spot disease caused by Fusicladium oleagineum. Eur J Plant Pathol 135(1):23–33.  https://doi.org/10.1007/s10658-012-0062-xCrossRefGoogle Scholar
  266. Ripa V, De Rose F, Caravita MA et al (2008) Qualitative evaluation of olive oils from new olive selections and effects of genotype and environment on oil quality. Adv Hort Sci 22(2):95–103Google Scholar
  267. Rjiba I, Dabbou S, Gazzah N, Hammami M (2010) Effect of crossbreeding on the chemical composition and biological characteristics of Tunisian new olive progenies. Chem Biodivers 7(3):649–655CrossRefPubMedPubMedCentralGoogle Scholar
  268. Roca M, Leon L, de La Rosa R (2011) Pigment metabolism of ‘Sikitita’ olive (Olea europaea L.): a new cultivar obtained by cross-breeding. J Agr Food Chem 59(5):2049–2055CrossRefGoogle Scholar
  269. Rodriguez-Castillo E, Diaz A, Belaj A, De la Rosa R (2009) Inter-compatibility relationships in olive as revealed by paternity tests with SSR markers. Acta Hort 814:659–662CrossRefGoogle Scholar
  270. Roselli G and Donini B. (1982) ‘Briscola’ nuova cultivar di a sviluppo compatto. Rivista di ortoflorofrutticoltura italiana 66:103–114Google Scholar
  271. Roussos PA, Pontikis CA (2002) In vitro propagation of olive (Olea europaea L.) cv. Koroneiki Plant Growth Rag 37:295–304CrossRefGoogle Scholar
  272. Rugini E (1984) In vitro propagation of some olive (Olea europaea sativa L.) cultivars with different root-ability, and medium development using analytical data from developing shoots and embryos. Sci Hort 24:123–134CrossRefGoogle Scholar
  273. Rugini E (1988) Somatic embryogenesis and plant regeneration in olive (Olea europaea L.). Plant Cell Tiss Organ Cult 14:207–214CrossRefGoogle Scholar
  274. Rugini E (1995) Somatic embryogenesis in olive. In: Jain SM, Gupta P, Newton R (eds) Somatic embryogenesis in woody plants, vol 2. Kluwer Academic Publishers, Dordrecht, pp 171–189CrossRefGoogle Scholar
  275. Rugini E, Baldoni L (2005) Olea europaea Olive. In: Litz RE (ed) Biotechnology of fruit and nut crops. CABI, Cambridge, pp 404–428CrossRefGoogle Scholar
  276. Rugini E, Biasi R, Muleo R (2000) Olive (Olea europaea var sativa) transformation. In: Jain SM, Minocha S (eds) Molecular biology of woody plants. Kluwer Academic Publishers, Dordrecht, pp 245–279Google Scholar
  277. Rugini E, Caricato G (1995) Somatic embryogenesis and plant recovery from mature tissues of olive cultivars (Olea europaea L.) “Canino” and “Moraiolo”. Plant Cell Rep 14:257–260CrossRefPubMedGoogle Scholar
  278. Rugini E, Cristofori V, Silvestri C (2016) Genetic improvement of olive (Olea europaea L.) by conventional and in vitro biotechnology methods. Biotech Adv 34:687–696.  https://doi.org/10.1016/j.biotechadv.2016.03.004CrossRefGoogle Scholar
  279. Rugini E, De Pace C (2016) Olive breeding with classical and modern approaches. In: Rugini E, Baldoni L, Mulea R, Sabastini L (eds) The olive tree genome, compendium of plant genomes. Springer International Publishing AG, New York, pp 163–191.  https://doi.org/10.1007/978-3-319-48887-5_10CrossRefGoogle Scholar
  280. Rugini E, Fontanazza G (1981) In vitro propagation of ‘Dolce Agogia´ olive. HortSci 16(4):492–493Google Scholar
  281. Rugini E, Gutiérrez-Pesce P, Muleo R (2008) Olive. In: Kole C, Hall TC (eds) Compendium of transgenic crops plants: transgenic temperate fruits and nuts. Blackwell Publishing, Oxford, pp 233–258CrossRefGoogle Scholar
  282. Rugini E, Jacoboni A, Luppino M (1993) Role of basal shoot darkening and exogenous putrescine treatments on in vitro rooting and on endogenous polyamine changes in difficult-to-root woody species. Sci Hort 53:63–72CrossRefGoogle Scholar
  283. Rugini E, Pezza A, Muganu M et al (1995) Somatic embryogenesis in olive (Olea europaea L.). In: Bajaj YPS (ed) Biotechnology in Agriculture and Forestry, vol 30, Somatic embryogenesis and synthetic seed I. Springer, Berlin, pp 404–414CrossRefGoogle Scholar
  284. Ruiz N, Barranco D, Rapoport HF (2006) Anatomical response of olive (Olea europaea L.) to freezing temperatures. J Hort Sci Biotech 81(5):783–790CrossRefGoogle Scholar
  285. Sakai A, Hirai D, Niino T (2008) Development of PVS-based vitrification and encapsulation-vitrification protocols. In: Reed B (ed) Plant cryopreservation: a practical guide. Springer, New York, pp 33–58CrossRefGoogle Scholar
  286. Sanchez de Medina V, Calderon-Santiago M, El Riachy M et al (2015a) Influence of genotype on the fatty acids composition of virgin olive oils from advanced selections obtained by crosses between Arbequina, Picual, and Frantoio cultivars along the ripening process. Eur J Lipid Sci Tech 117(8):1261–1270CrossRefGoogle Scholar
  287. Sanchez de Medina V, El Riachy M, Priego-Capote F, Luque de Castro MDL (2015b) Composition of fatty acids in virgin olive oils from cross breeding segregating populations by gas chromatography separation with flame ionization detection. J Sci Food Agr 95(14):2892–2900CrossRefGoogle Scholar
  288. Sanchez de Medina VM, Priego-Capote F, Luque de Castro MDL (2015c) The effect of genotype and ripening index on the phenolic profile and fatty acids composition of virgin olive oils from olive breeding programs. Eur J Lipid Sci Tech 117(7):954–966CrossRefGoogle Scholar
  289. Santos-Antunes F, León L, de la Rosa R et al (2005) The length of the juvenile period in olive as influenced by vigor of the seedlings and the precocity of the parents. HortSci 40:1213–1215Google Scholar
  290. Santos-Antunes F, Mohedo A, Trujillo I, Rallo L (1999) Influence of the genitors on the flowering of olive seedlings under forced growth. Acta Hort 474:103–105CrossRefGoogle Scholar
  291. Sanchez-Romero C, Swennen R, Panis B (2009) Cryopreservation of olive embryogenic cultures. CryoLett 30(5):359–372Google Scholar
  292. Saponari M, Boscia D, Nigro F, Martelli GP (2013) Identification of DNA sequences related to Xylella fastidiosa in oleander, almond and olive trees exhibiting leaf scorch symptoms in Apulia (Southern Italy). J Plant Path 95(3):668.  https://doi.org/10.4454/JPP.V95I3.035CrossRefGoogle Scholar
  293. Sarkar N, Schmid-Siegert E, Iseli C et al (2017) Low rate of somatic mutations in a long-lived oak tree. bioRxiv 149203.  https://doi.org/10.1101/149203
  294. Seifi E, Guerin J, Kaiser B, Sedgley M (2011) Sexual compatibility and floral biology of some olive cultivars. New Zeal J Crop Hort 39:141–151.  https://doi.org/10.1080/01140671.2011.560165CrossRefGoogle Scholar
  295. Selak GV, Cuevas J, Ban SG, Perica S (2014) Pollen tube performance in assessment of compatibility in olive (Olea europaea L.) cultivars. Sci Hort 165:36–43.  https://doi.org/10.1016/j.scienta.2013.10.041CrossRefGoogle Scholar
  296. Sgamma T, Jackson A, Muleo R et al (2014) TEMPRANILLO is a regulator of juvenility in plants. Sci Rep-UK 4:3704.  https://doi.org/10.1038/srep03704CrossRefGoogle Scholar
  297. Sghir S, Chatelet P, Ouazzani N et al (2005) Micropropagation of eight Moroccan and French olive cultivars. HortSci 40(1):193–196Google Scholar
  298. Shibli RA, AI-Juboory KH (2000) Cryopreservation of ‘Nabali’ olive (Olea europaea L.) somatic embryos by encapsulation-dehydration and encapsulation-vitrification. CryoLett 21(6):357–366Google Scholar
  299. Shibli RA, Shatnawi M, Abu E et al (2001) Somatic embryogenesis and plant recovery from callus of ‘Nabali’ olive (Olea europaea L.). Sci Hort 88:243–256CrossRefGoogle Scholar
  300. Sofo A, Dichio B, Xiloyannis C, Masia A (2004) Lipoxygenase activity and proline accumulation in leaves and roots of olive trees in response to drought stress. Phys Plant 121(1):58–65.  https://doi.org/10.1111/j.0031-9317.2004.00294.xCrossRefGoogle Scholar
  301. Sorrentino G, Muzzalupo I, Muccilli S et al (2016) New accessions of Italian table olives (Olea europaea): characterization of genotypes and quality of brined products. Sci Hort 213:34–41CrossRefGoogle Scholar
  302. Stokstad E (2015) Italy’s olives under siege: blight alarms officials across Europe. Science 348(35):620.  https://doi.org/10.1126/science.348.6235.620CrossRefPubMedGoogle Scholar
  303. Suárez MP, Casanova L, Jiménez R et al (2011) Variability of first flower to ground distance in olive seedlings and its relationship with the length of the juvenile period and the parent genotype. Sci Hort 129(4):747–751CrossRefGoogle Scholar
  304. Suarez MP, Lopez-Rivares EP, Cantero ML, Ordovas J (1990) Clonal selection on ‘Manzanilla de Sevilla’. Acta Hort 286:117–119CrossRefGoogle Scholar
  305. This P, Lacombe T, Thomas MR (2006) Historical origins and genetic diversity of wine grapes. Trends Genet 22:511–519.  https://doi.org/10.1016/j.tig.2006.07.008CrossRefPubMedGoogle Scholar
  306. Tous J, Romero A, Plana J (1999) IRTA-i 18 clon de la variedad de olivo Arbequina. Olivae 77:50–52Google Scholar
  307. Tous J, Romero A, Plana J et al (2005) Selección clonal en variedades. In: Rallo L, Barranco D, Caballero JM et al (eds) Variedades de olivo en España (Libro II: Variabilidad y selección). Junta de Andalucía, MAPA y Ediciones Mundi-Prensa, MadridGoogle Scholar
  308. Torreblanca R, Cerezo S, Palomo-Ríos E et al (2010) Development of a high throughput system for genetic transformation of olive (Olea europaea L.) plants. Plant Cell Tiss Organ Cult 103:61–69CrossRefGoogle Scholar
  309. Trapero C, Díez CM, Rallo L et al (2013a) Effective inoculation methods to screen for resistance to verticillium wilt in olive. Sci Hortic 162:252–259.  https://doi.org/10.1016/j.scienta.2013.08.036CrossRefGoogle Scholar
  310. Trapero C, Rallo L, López-Escudero FJ et al (2015) Variability and selection of verticillium wilt resistant genotypes in cultivated olive and in the Olea genus. Plant Pathol 64(4):890–900.  https://doi.org/10.1111/ppa.12330CrossRefGoogle Scholar
  311. Trapero C, Serrano N, Arquero O et al (2013b) Field resistance to Verticillium wilt in selected olive cultivars grown in two naturally infested soils. Plant Dis 97(5):668–674.  https://doi.org/10.1094/PDIS-07-12-0654-RECrossRefGoogle Scholar
  312. Trabelsi EB, Bouzid S, Bouzid M et al (2003) In vitro regeneration of olive tree by somatic embryogenesis. J Plant Biol 46(3):173–180CrossRefGoogle Scholar
  313. Trigui A, Msallem M, Yengui A et al (2002) Oliviers de Tunisie (1). Ministère de l’Agriculture IRESA, Institute l’Olivier, République TunisienneGoogle Scholar
  314. Trigui A, Yengui A, Belguith H (2006) Olive germplasm in Tunisia. Olea 25:19–23Google Scholar
  315. Trujillo I, Arus P, Rallo L (1995) Identification of olive cultivars by isozyme analysis. J Amer Soc Hort Sci 120(2):318–324Google Scholar
  316. Trujillo I, Ojeda MA, Urdiroz NM et al (2014) Identification of the Worldwide Olive Germplasm Bank of Córdoba (Spain) using SSR and morphological markers. Tree Genet Genom 10:141–155.  https://doi.org/10.1007/s11295-013-0671-3CrossRefGoogle Scholar
  317. Tugendhaft Y, Eppel A, Kerem Z et al (2016) Drought tolerance of three olive cultivars alternatively selected for rain fed or intensive cultivation. Sci Hort 199:158–162.  https://doi.org/10.1016/j.scienta.2015.12.043CrossRefGoogle Scholar
  318. Unver T, Wu Z, Sterck L et al (2017) Genome of wild olive and the evolution of oil biosynthesis. Proc Nat Acad Sci USA 114:E9413–E9422.  https://doi.org/10.1073/pnas.1708621114CrossRefPubMedGoogle Scholar
  319. Van Nocker S, Gardiner SE (2014) Breeding better cultivars, faster: applications of new technologies for the rapid deployment of superior horticultural tree crops. Hort Res 1:14022.  https://doi.org/10.1038/hortres.2014.22CrossRefGoogle Scholar
  320. Velasco L, Fernandez-Cuesta A, De la Rosa R et al (2014) Selection for some olive oil quality components through the analysis of fruit flesh. J Am Oil Chem Soc 91(10):1731–1736CrossRefGoogle Scholar
  321. Velázquez K, Agüero J, Vives MC et al (2016) Precocious flowering of juvenile citrus induced by a viral vector based on citrus leaf blotch virus: a new tool for genetics and breeding. Plant Biotech J.  https://doi.org/10.1111/pbi.12555CrossRefGoogle Scholar
  322. Vidoy-Mercado I, Imbroda-Solano I, Barceló-Muñoz A et al (2012) Differential in vitro behavior of the Spanish olive (Olea europaea L.) cultivars ‘Arbequina’ and ‘Picual’. Acta Hort 949:27–30CrossRefGoogle Scholar
  323. Viruega JR, Roca LF, Moral J, Trapero A (2011) Factors affecting infection and disease development on olive leaves inoculated with Fusicladium oleagineum. Plant Dis 95(9):1099–1108.  https://doi.org/10.1094/PDIS-11-10-0795CrossRefGoogle Scholar
  324. Wilhelm S, Taylor JB (1965) Control of verticillium wilt of olive through natural recovery and resistance. Phytopath 55(3):310–316Google Scholar
  325. Wu S, Collins G, Sedgley M (2004) A molecular linkage map of olive (Olea europaea L.) based on RAPD, microsatellite, and SCAR markers. Genome 47(1):26–35. https://doi.org/doi.org/10.1139/g03-091
  326. Wu SB, Collins G, Sedgley M (2002) Sexual compatibility within and between olive cultivars. J Hort Sci Biotech 77(6):665–673.  https://doi.org/10.1080/14620316.2002.11511554CrossRefGoogle Scholar
  327. Xavier CJ (2015) Resistencia y control químico en la Antracnosis del olivo causada por Colletotrichum spp. PhD Thesis, ETSIAM, Universidad de CórdobaGoogle Scholar
  328. Young JM, Wilkie JP, Fletcher MJ et al (2004) Relative tolerance of nine olive cultivars to Pseudomonas savastanoi causing bacterial knot disease. Phytopathol Mediterr 43(3):395–402Google Scholar
  329. Zeinanloo A, Shahsavari A, Mohammadi A, Naghavi MR (2009) Variance component and heritability of some fruit characters in olive (Olea europaea L.). Sci Hort 123(1):68–72CrossRefGoogle Scholar
  330. Zouari I, Mezghani A, Labidi F (2017) Flowering and heat requirements of four olive cultivars grown in the south of Tunisia. Acta Hort 1160:231–236.  https://doi.org/10.17660/ActaHortic.2017.1160.34CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Luis Rallo
    • 1
  • Diego Barranco
    • 1
  • Concepción M. Díez
    • 1
  • Pilar Rallo
    • 2
  • María Paz Suárez
    • 2
  • Carlos Trapero
    • 1
  • Fernando Pliego-Alfaro
    • 3
  1. 1.Departamento de Agronomía, Edificio Celestino MutisUniversidad de CórdobaCórdobaSpain
  2. 2.Departamento de Ciencias AgroforestalesUniversidad de Sevilla, ETSIASevilleSpain
  3. 3.Departamento de Biología Vegetal, Facultad de CienciasInstituto de Hortofruticultura Subtropical y Mediterránea (IHSM) “La Mayora” (UMA-CSIC)MálagaSpain

Personalised recommendations