Solving the Tree Containment Problem for Reticulation-Visible Networks in Linear Time

  • Andreas D. M. GunawanEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10849)


The tree containment problem (TCP) is a fundamental problem in phylogenetic study. It was introduced as a mean for verifying whether a network is consistent with a binary tree. The containment problem is NP-complete, even if the network input is binary. If the input is restricted to reticulation-visible networks, the TCP has been proved to be solvable in quadratic time. In this paper, we show that there is a linear time TCP algorithm for binary reticulation-visible networks.


Phylogeny reconstruction Tree containment problem Reticulation-visible 



I’d like to thank Prof. Zhang Louxin for his guidance and help. The project is financially supported by Singapore MoE-ARF Tier 1 grant, R-146-000-238-114.


  1. 1.
    Bender, M.A., Farach-Colton, M., Pemmasani, G., Skiena, S., Sumazin, P.: Lowest common ancestors in trees and directed acyclic graphs. J. Algorithms 57(2), 75–94 (2005)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bordewich, M., Semple, C.: Reticulation-visible networks. Adv. Appl. Math. 78, 114–141 (2016)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Chan, J.M., Carlsson, G., Rabadan, R.: Topology of viral evolution. PNAS 110(46), 18566–18571 (2013)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Gunawan, A.D.M., DasGupta, B., Zhang, L.: A decomposition theorem and two algorithms for reticulation-visible networks. Inf. Comput. 252, 161–175 (2017)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Gunawan, A.D.M., Lu, B., Zhang, L.: A program for verification of phylogenetic network models. Bioinformatics 32(17), i503–i510 (2016)CrossRefGoogle Scholar
  6. 6.
    Gunawan, A.D.M., Zhang, L.: Bounding the size of a network defined by visibility property (2015).
  7. 7.
    van Iersel, L., Semple, C., Steel, M.: Locating a tree in a phylogenetic network. Inf. Process. Lett. 110(23), 1037–1043 (2010)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Kanj, I.A., Nakhleh, L., Than, C., Xia, G.: Seeing the trees and their branches in the network is hard. Theor. Comput. Sci. 401, 153–164 (2008)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Lu, B., Zhang, L., Leong, H.W.: A program to compute the soft Robinson-Foulds distance between phylogenetic networks. BMC Genomics 18(2), 111 (2017)CrossRefGoogle Scholar
  10. 10.
    Marcussen, T., Sandve, S.R., Heier, L., Spannagl, M., Pfeifer, M., Jakobsen, K.S., Wulff, B.B.H., Steuernagel, B., Mayer, K.F.X., Olsen, O., et al.: Ancient hybridizations among the ancestral genomes of bread wheat. Science 345(6194), 1250092 (2014)CrossRefGoogle Scholar
  11. 11.
    Weller, M.: Linear-time tree containment in phylogenetic networks. arXiv preprint arXiv:1702.06364 (2017)

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsNational University of SingaporeSingaporeSingapore

Personalised recommendations