Mechanotransduction and Vascular Remodeling

  • Nicolaas Westerhof
  • Nikolaos Stergiopulos
  • Mark I. M. Noble
  • Berend E. Westerhof


Blood vessels respond to pressure and flow, more exactly to hoop stress and wall shear. In the short term, a pressure increase results in a smooth muscle contraction and thus in a diameter decrease, so that hoop stress normalizes (myogenic response, see Chap. 19). A flow increase implies an increase in wall shear stress, which is sensed by the endothelium (glycokalix). The endothelium liberates smooth muscle dilators (e.g., NO), and an increase in diameter results which reduces the wall shear stress: Flow Mediated Dilation. In the long term, a sustained high blood pressure implies a high wall hoop stress leading to wall thickening (hypertrophy), and normalization of hoop stress. Increased flow gives increased wall shear stress and leads to increase in vessel diameter. In general, vascular remodeling leads, within limits, to a restoration to control levels of hoop stress and wall shear stress.


Zero stress state Classification of remodeling Glycokalix Myogenic response Flow mediated dilation 


  1. 1.
    Humphrey JD, Eberth JF, Dye WW, Gleason RL. Fundamental role of axial stress in compensatory adaptations by arteries. J Biomech. 2009;42:1–8.CrossRefPubMedGoogle Scholar
  2. 2.
    Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980;27.;288(5789):373–6.CrossRefGoogle Scholar
  3. 3.
    Palmer RMJ, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987;27:524–6.CrossRefGoogle Scholar
  4. 4.
    Kelly RF, Snow HM. Characteristics of the response of the iliac artery to wall shear stress in the anaesthetised pig. J Physiol. 2007;582:731–43.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Tarbell JM, Simon SI, Curry FR. Mechanosensing at the vascular interface. Annu Rev Biomed Eng. 2014;16:505–32. ReviewCrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Chatzizisis YS, Coskun AU, Jonas M, Edelman ER, Feldman CL, Stone PH. Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior. J Am Coll Cardiol. 2007;49:2379–793.CrossRefGoogle Scholar
  7. 7.
    Davies PF. Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat Clin Pract Cardiovasc Med. 2009;6:16–26.CrossRefPubMedGoogle Scholar
  8. 8.
    Matsumoto T, Hayashi K. Stress and strain in hypertensive and normotensive rat aorta considering residual strain. J Biomech Eng. 1996;118:62–73.CrossRefPubMedGoogle Scholar
  9. 9.
    Kamiya A, Togawa T. Adaptive regulation of wall shear stress to flow change in canine carotid artery. Am J Phys. 1980;239:14–29.Google Scholar
  10. 10.
    Langille BL, O'Donnell F. Reductions in arterial diameter produced by chronic decreases in blood flow are endothelium-dependent. Science. 1986;231:405–7.CrossRefPubMedGoogle Scholar
  11. 11.
    Tronc F, Wassef M, Esposito B, Henrion D, Glagov S, Tedgui A. Role of NO in flow-induced remodeling of the rabbit common carotid artery. Arterioscler Thromb Vasc Biol. 1996;16:1256–62.CrossRefPubMedGoogle Scholar
  12. 12.
    Van Loon P. Length-force and volume-pressure relationships of arteries. Biorheology. 1977;14:181–201.CrossRefPubMedGoogle Scholar
  13. 13.
    Lehman RM, Owens GK, Kassell NF, Hongo K. Mechanism of enlargement of major cerebral collateral arteries in rabbits. Stroke. 1991;22:499–504.CrossRefPubMedGoogle Scholar
  14. 14.
    Sho E, Nanjo H, Sho M, Kobayashi M, Komatsu M, Kawamura K, et al. Arterial enlargement, tortuosity, and intimal thickening in response to sequential exposure to high and low wall shear stress. J Vasc Surg. 2004;39:601–12.CrossRefPubMedGoogle Scholar
  15. 15.
    Jackson ZS, Gotlieb AI, Langille BL. Wall tissue remodeling regulates longitudinal tension in arteries. Circ Res. 2002;90:918–25.CrossRefPubMedGoogle Scholar
  16. 16.
    Eberth JF, Gresham VC, Reddy AK, Popovic N, Wilson E, Humphrey JD. Importance of pulsatility in hypertensive carotid artery growth and remodeling. J Hypertens. 2009;27:2010–21.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Fung YC, Liu SQ. Change of residual strains in arteries due to hypertrophy caused by aortic constriction. Circ Res. 1989;65:1340–9.CrossRefPubMedGoogle Scholar
  18. 18.
    Mulvany MJ. Vascular remodelling of resistance vessels: can we define this? Cardiovasc Res. 1999;41:9–13.CrossRefPubMedGoogle Scholar
  19. 19.
    Laurent S, Girerd X, Mourad J-J, Lacolley P, Beck L, Boutouyrie P, et al. Elastic modulus of the radial artery wall material is not increased in patients with essential hypertension. Arterioscler Thromb. 1994;14:1223–31.CrossRefPubMedGoogle Scholar
  20. 20.
    Lambert J, Aarsen M, Donker AJM, Stehouwer CDA. Endothelium-dependent and -independent vasodilation of large arteries in Normoalbuminuric insulin-dependent diabetes mellitus. Arterioscler Thromb Vasc Biol. 1996;16:705–11.CrossRefPubMedGoogle Scholar
  21. 21.
    Lavi T, Karasik A, Koren-Morag N, Kanety H, Feinberg MS, Shechter M. The acute effect of various glycemic index dietary carbohydrates on endothelial function in nondiabetic overweight and obese subjects. J Am Coll Cardiol. 2009;53:2283–7.CrossRefPubMedGoogle Scholar
  22. 22.
    Caro C, Fitzgerald J, Schroeter R. Arterial wall shear and distribution of early atheroma in man. Nature. 1969;223:1159–60.CrossRefPubMedGoogle Scholar
  23. 23.
    Helderman F, Segers D, de Crom R, Hierck BP, Poelmann RE, Evans PC, et al. Effect of shear stress on vascular inflammation and plaque development. Curr Opin Lipidol. 2007;18:527–33. ReviewCrossRefPubMedGoogle Scholar
  24. 24.
    Kelly R, Ruane-O'Hara T, Noble MIM, Drake-Holland AJ, Snow HM. Effect of hyperglycaemia on endothelial dependent dilatation in the iliac artery of the anaesthetized pig. J Physiol. 2006;573:133–45.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Rachev A, Manoach E, Berry J, Moore JE Jr. A model of stress-induced geometrical remodeling of vessel segments adjacent to stents and artery/graft anastomoses. J Theor Biol. 2000;206:429–43.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Nicolaas Westerhof
    • 1
  • Nikolaos Stergiopulos
    • 2
  • Mark I. M. Noble
    • 3
  • Berend E. Westerhof
    • 1
  1. 1.Department of Pulmonary Diseases, Amsterdam Cardiovascular SciencesVU University Medical CenterAmsterdamThe Netherlands
  2. 2.Laboratory of Hemodynamics and Cardiovascular TechnologyEcole Polytechnique Fédérale de Lausanne (EPFL), Institute of BioengineeringLausanneSwitzerland
  3. 3.Cardiovascular Medicine, Department of Medicine and TherapeuticsUniversity of AberdeenAberdeenUnited Kingdom

Personalised recommendations