Wave Separation and Waveform Analysis

  • Nicolaas Westerhof
  • Nikolaos Stergiopulos
  • Mark I. M. Noble
  • Berend E. Westerhof


Wave separation is the calculation of forward and reflected pressure and flow waves. The calculation can be performed in the time domain (Chap. 12). Forward pressure and flow waves are similar in shape, and the reflected pressure and flow waves are also similar in shape, but the reflected flow wave is inverted with respect to the reflected pressure wave. This difference in polarity of the reflected waves leads to differences in the shape of the measured pressure and flow waves. The Reflection Magnitude is the ratio of the amplitudes of reflected and forward wave, and the Reflection Index is the amplitude ratio of reflected wave and measured pressure wave. In waveform analysis the pressure wave shape is analyzed in terms of Augmentation Index, AIx, defined as Augmented Pressure over Pulse Pressure and the return time of the reflected wave, as estimated from the inflection point in measured pressure.


Wave separation Forward pressure Reflected pressure Reflection magnitude Reflection index Augmentation index Inflection point 


  1. 1.
    Westerhof N, Sipkema P, van den Bos GC, Elzinga G. Forward and backward waves in the arterial system. Cardiovasc Res. 1972;6:648–56.CrossRefPubMedGoogle Scholar
  2. 2.
    Murgo JP, Westerhof N, Giolma JP, Altobelli SA. Manipulation of ascending aortic pressure and flow wave reflections with the Valsalva maneuver: relationship to input impedance. Circulation. 1981;63:122–32.CrossRefPubMedGoogle Scholar
  3. 3.
    Mynard JP, Smolich JJ. Novel wave power analysis linking pressure-flow waves, wave potential, and the forward and backward components of hydraulic power. Am J Physiol Heart Circ Physiol. 2016;310:H1026–38.CrossRefPubMedGoogle Scholar
  4. 4.
    Westerhof BE, Guelen I, Westerhof N, Karemaker JM, Avolio A. Quantification of wave reflection in the human aorta from pressure alone: a proof of principle. Hypertension. 2006;48:595–601.CrossRefPubMedGoogle Scholar
  5. 5.
    Mitchell GF. Triangulating the peaks of arterial pressure. Hypertension. 2006;48:543–5.CrossRefPubMedGoogle Scholar
  6. 6.
    Davies JE, Alastruey J, Francis DP, Hadjiloizou N, Whinnett ZI, Manisty CH, et al. Attenuation of wave reflection by wave entrapment creates a “horizon effect” in the human aorta. Hypertension. 2012;60:778–85.CrossRefPubMedGoogle Scholar
  7. 7.
    Tyberg JV, Bouwmeester JC, Parker KH, Shrive NG, Wang JJ. The case for the reservoir-wave approach. Int J Cardiol. 2014;172:299–306.CrossRefPubMedGoogle Scholar
  8. 8.
    Westerhof BE, Westerhof N. Magnitude and return time of the reflected wave: the effects of large artery stiffness and aortic geometry. J Hypertens. 2012;30:932–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Westerhof N, Westerhof BE. A review of methods to determine the functional arterial parameters stiffness and resistance. J Hypertens. 2013;31:1769–75.CrossRefPubMedGoogle Scholar
  10. 10.
    Segers P, Rietzschel ER, De Buyzere ML, De Bacquer D, Van Bortel LM, De Backer G, et al. Assessment of pressure wave reflection: getting the timing right! Physiol Meas. 2007;28:1045–56.CrossRefPubMedGoogle Scholar
  11. 11.
    Kelly RA, Hayward C, Avolio A, O’Rourke M. Noninvasive determination of age-related changes in the human arterial pulse. Circulation. 1989;80:1652–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Baksi AJ, Treibel TA, Davies JE, Hadjiloizou N, Foale RA, Parker KH, et al. A meta-analysis of the mechanism of blood pressure change with aging. J Am Coll Cardiol. 2009;54:2087–92.CrossRefPubMedGoogle Scholar
  13. 13.
    Qasem A, Avolio A. Determination of aortic pulse wave velocity from waveform decomposition of the central aortic pressure pulse. Hypertension. 2008;51:188–95.CrossRefPubMedGoogle Scholar
  14. 14.
    Sipkema P, Westerhof N. Effective length of the arterial system. Ann Biomed Eng. 1975;3:296–307.CrossRefPubMedGoogle Scholar
  15. 15.
    Westerhof BE, van den Wijngaard JP, Murgo JP, Westerhof N. Location of a reflection site is elusive: consequences for the calculation of aortic pulse wave velocity. Hypertension. 2008;52:478–83.CrossRefPubMedGoogle Scholar
  16. 16.
    Murgo JP, Westerhof N, Giolma JP, Altobelli SA. Aortic input impedance in normal man: relationship to pressure wave forms. Circulation. 1980;62:105–16.CrossRefPubMedGoogle Scholar
  17. 17.
    van den Bos GC, Westerhof N, Randall OS. Pulse wave reflection: can it explain the differences between systemic and pulmonary pressure and flow waves? A study in dogs. Circ Res. 1982;51:479–85.CrossRefPubMedGoogle Scholar
  18. 18.
    Latham RD, Westerhof N, Sipkema P, Rubal BJ, Reuderink P, Murgo JP. Regional wave travel and reflections along the human aorta: a study with six simultaneous micromanometric pressures. Circulation. 1985;72:1257–69.CrossRefPubMedGoogle Scholar
  19. 19.
    Fok H, Guilcher A, Brett S, Jiang B, Li Y, Epstein S, et al. Dominance of the forward compression wave in determining pulsatile components of blood pressure: similarities between inotropic stimulation and essential hypertension. Hypertension. 2014;64:1116–23.CrossRefPubMedGoogle Scholar
  20. 20.
    O’Rourke MG, Taylor MG. Vascular impedance of the femoral bed. Circ Res. 1966;18:126–39.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Nicolaas Westerhof
    • 1
  • Nikolaos Stergiopulos
    • 2
  • Mark I. M. Noble
    • 3
  • Berend E. Westerhof
    • 1
  1. 1.Department of Pulmonary Diseases, Amsterdam Cardiovascular SciencesVU University Medical CenterAmsterdamThe Netherlands
  2. 2.Laboratory of Hemodynamics and Cardiovascular TechnologyEcole Polytechnique Fédérale de Lausanne (EPFL), Institute of BioengineeringLausanneSwitzerland
  3. 3.Cardiovascular Medicine, Department of Medicine and TherapeuticsUniversity of AberdeenAberdeenUnited Kingdom

Personalised recommendations