Advertisement

Cardiac Power and Ventriculo-Arterial Coupling

  • Nicolaas Westerhof
  • Nikolaos Stergiopulos
  • Mark I. M. Noble
  • Berend E. Westerhof
Chapter

Abstract

In health the heart pumps at maximal external power and efficiency (ratio of Power Output and O2 consumption) with an efficiency of about 25%. Whether the heart is pumping at optimal efficiency or optimal power (ventriculo-arterial coupling), or neither, depends on both the cardiac and the arterial state. To test if efficiency is maintained in disease ventriculo-arterial coupling analysis can be used. The slope of the ESPVR (Ees, see Chap. 14) characterizes the ventricle and the effective arterial elastance (Ea), which approximately equals total peripheral resistance over heart period, R/T, characterizes the arterial system. When Ees/Ea ≈ 1–2, external work is maximized, and cardiac efficiency close to maximal.

Keywords

Cardiac efficiency Cardiac power Heart-arterial coupling Ees/Ea ratio Heart size 

References

  1. 1.
    Suga H. Ventricular energetics. Physiol Rev. 1990;70:247–77.CrossRefPubMedGoogle Scholar
  2. 2.
    Elzinga G, Westerhof N. Pump function of the feline left heart: changes with heart rate and its bearing on the energy balance. Cardiovasc Res. 1980;14:81–92.CrossRefPubMedGoogle Scholar
  3. 3.
    Toorop GP, Van den Horn GJ, Elzinga G, Westerhof N. Matching between feline left ventricle and arterial load: optimal external power or efficiency. Am J Phys. 1988;254:H279–85.Google Scholar
  4. 4.
    Burkhoff S, Sagawa K. Ventricular efficiency predicted by an analytical model. Am J Phys. 1986;250:R1021–7.Google Scholar
  5. 5.
    Prinzen FW, Hunter WC, Wyman BT, Mcveigh ER. Mapping of regional myocardial strain and work during ventricular pacing: experimental study using magnetic resonance imaging tagging. J Am Coll Cardiol. 1999;33:1735–42.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    van Beek JH, van Mil HG, King RB, de Kanter FJ, Alders DJ, Bussemaker J. A (13)C NMR double-labeling method to quantitate local myocardial O(2) consumption using frozen tissue samples. Am J Phys. 1999;277:H1630–40.Google Scholar
  7. 7.
    Wong YY, Westerhof N, Ruiter G, Lubberink M, Raijmakers P, Knaapen P, et al. Systolic pulmonary artery pressure and Heart Rate are main determinants of oxygen consumption in the right ventricular myocardium of patients with idiopathic pulmonary arterial hypertension. Eur J Heart Fail. 2011;13:1290–5. Erratum in: Eur J Heart Fail 2012;14:1190.CrossRefPubMedGoogle Scholar
  8. 8.
    Güçlü A, Knaapen P, Harms HJ, Vonk AB, Stooker W, Groepenhoff H, et al. Myocardial efficiency is an important determinant of unctional improvement after aortic valve replacement in aortic valve stenosis patients: a combined PET and CMR study. Eur Heart J Cardiovasc Imaging. 2015;16:882–9.CrossRefPubMedGoogle Scholar
  9. 9.
    ten Velden GH, Elzinga G, Westerhof N. Left ventricular energetics. Heat loss and temperature distribution of canine myocardium. Circ Res. 1982;50:63–73.CrossRefPubMedGoogle Scholar
  10. 10.
    Sunagawa K, Maughan WL, Sagawa K. Optimal arterial resistance for the maximal stroke work studied in the isolated canine left ventricle. Circ Res. 1985;56:586–95.CrossRefPubMedGoogle Scholar
  11. 11.
    Kelly RP, Ting CT, Yang TM, Liu CP, Maughan WL, Chang MS, et al. Effective arterial elastance as index of arterial vascular load in humans. Circulation. 1992;862:513–21.CrossRefGoogle Scholar
  12. 12.
    Chen CH, Fetics B, Nevo E, Rochitte CE, Chiou KR, Ding PA, et al. Noninvasive single-beat determination of left ventricular end-systolic elastance in humans. J Am Coll Cardiol. 2001;38:2028–34.CrossRefPubMedGoogle Scholar
  13. 13.
    Kjorstad KE, Korvald C, Myrmel T. Pressure-volume-based single beat estimations cannot predict left ventricular contractility in vivo. Am J Phys. 2002;282:H1739–50.Google Scholar
  14. 14.
    Grosu A, Bomgrosu A, Bombardini T, Senni M, Duino V, Gori M, et al. End-systolic pressure/volume relationship during dobutamine stress echo: a prognostically useful non-invasive index of left ventricular contractility. Eur Heart J. 2005;26:2404–12.CrossRefPubMedGoogle Scholar
  15. 15.
    Sanz J, García-Alvarez A, Fernández-Friera L, Nair A, Mirelis JG, Sawit ST, et al. Right ventriculo-arterial coupling in pulmonary hypertension: a magnetic resonance study. Heart. 2012;98:238–43.CrossRefGoogle Scholar
  16. 16.
    Elzinga G, Westerhof N. Matching between ventricle and arterial load. An evolutionary process. Circ Res. 1991;68:1495–500.CrossRefPubMedGoogle Scholar
  17. 17.
    Senzaki H, Iwamoto Y, Ishido H, Masutani S, Taketazu S, Kobayashi T, et al. Ventricular–Vascular stiffening in patients with repaired coarctation of aorta. Circulation. 2008;118:191–8.CrossRefGoogle Scholar
  18. 18.
    Fincke R, Hochman JS, Lowe AM, Menon V, Slater JN, Webb JG, et al. Cardiac power is the strongest hemodynamic correlate of mortality in cardiogenic shock: a report from the SHOCK trial registry. J Am Coll Cardiol. 2004;44:340–8.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Nicolaas Westerhof
    • 1
  • Nikolaos Stergiopulos
    • 2
  • Mark I. M. Noble
    • 3
  • Berend E. Westerhof
    • 1
  1. 1.Department of Pulmonary Diseases, Amsterdam Cardiovascular SciencesVU University Medical CenterAmsterdamThe Netherlands
  2. 2.Laboratory of Hemodynamics and Cardiovascular TechnologyEcole Polytechnique Fédérale de Lausanne (EPFL), Institute of BioengineeringLausanneSwitzerland
  3. 3.Cardiovascular Medicine, Department of Medicine and TherapeuticsUniversity of AberdeenAberdeenUnited Kingdom

Personalised recommendations