Cardiac Oxygen Consumption and Hemodynamics

  • Nicolaas Westerhof
  • Nikolaos Stergiopulos
  • Mark I. M. Noble
  • Berend E. Westerhof


Cardiac oxygen consumption can be determined from the product of coronary flow and arterio-venous oxygen content difference. To circumvent these preferentially simultaneous but difficult determinations, many indices for estimating oxygen consumption from mechanical variables have been proposed. Heart rate is a primary determinant of oxygen consumption. The second major determinant is tension (stress) generation of the cardiac muscle, mostly measured as ventricular pressure. The most used methods are the (Heart-)Rate Pressure Product (RPP), often used in biochemical studies, and the Tension Time Index (area under pressure during ejection, TTI). Total oxygen consumption depends on ‘unloaded’ contraction, i.e., ‘cell maintenance’, plus excitation-contraction coupling (Ees, the slope of the End-Systolic Pressure-Volume relation), and the Pressure-Volume Area (PVA) that is the sum of external work plus potential energy measurable from the Pressure-Volume Relation.


Cardiac oxygen consumption Rate pressure product Tension time index Pressure-volume area Potential energy 


  1. 1.
    Sarnoff SJ, Braunwald E, Welch GH, Case RB, Stainsby WN, Macruz R. Hemodynamic determinants of oxygen consumption of the heart with special relevance to the tension-time index. Am J Phys. 1958;192:148–56.Google Scholar
  2. 2.
    Suga H. Ventricular energetics. Physiol Rev. 1990;70:247–77.CrossRefPubMedGoogle Scholar
  3. 3.
    Suga H, Hisano R, Hirata S, Hayashi T, Ninomiya I. Mechanism of higher oxygen consumption rate: pressure-loaded vs. volume-loaded heart. Am J Phys. 1982;242:H942–8.Google Scholar
  4. 4.
    Suga H, Hisano R, Goto Y, Yamada O, Igarashi Y. Effect of positive inotropic agents on the relation between oxygen consumption and systolic pressure volume area in canine left ventricle. Circ Res. 1983;53:306–18.CrossRefPubMedGoogle Scholar
  5. 5.
    Rooke GA, Feigl EO. Work as a correlate of canine left ventricular oxygen consumption, and the problem of catecholamine oxygen wasting. Circ Res. 1982;50:273–86.CrossRefPubMedGoogle Scholar
  6. 6.
    van Beek JH, van Mil HG, King RB, de Kanter FJ, Alders DJ, Bussemaker J. A (13)C NMR double-labeling method to quantitate local myocardial O(2) consumption using frozen tissue samples. Am J Phys. 1999;277:H1630–40.Google Scholar
  7. 7.
    Alders DJ, Groeneveld AB, de Kanter FJ, van Beek JH. Myocardial O2 consumption in porcine left ventricle is heterogeneously distributed in parallel to heterogeneous O2 delivery. Am J Phys. 2004;287:H1353–61.Google Scholar
  8. 8.
    Hoffman JI, Buckberg GD. The myocardial oxygen supply: demand index revisited. J Am Heart Assoc. 2014;3:e000285.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Nicolaas Westerhof
    • 1
  • Nikolaos Stergiopulos
    • 2
  • Mark I. M. Noble
    • 3
  • Berend E. Westerhof
    • 1
  1. 1.Department of Pulmonary Diseases, Amsterdam Cardiovascular SciencesVU University Medical CenterAmsterdamThe Netherlands
  2. 2.Laboratory of Hemodynamics and Cardiovascular TechnologyEcole Polytechnique Fédérale de Lausanne (EPFL), Institute of BioengineeringLausanneSwitzerland
  3. 3.Cardiovascular Medicine, Department of Medicine and TherapeuticsUniversity of AberdeenAberdeenUnited Kingdom

Personalised recommendations