Advertisement

The Pump Function Graph

  • Nicolaas Westerhof
  • Nikolaos Stergiopulos
  • Mark I. M. Noble
  • Berend E. Westerhof
Chapter

Abstract

The heart as a pump can be described by the pump function graph, the relation between mean ventricular pressure, and Cardiac Output. A pump function graph completely describes the heart as a pump and is similar to the characterization of industrial pumps and ventricular assist devices. When the load on the heart is increased, it will generate a higher pressure but a smaller Cardiac Output, and vice versa, resulting in a curved inverse relation. Increased contractility ‘rotates’ the pump function graph around the intercept with the flow axis. When diastolic filling and/or Heart Rate is increased, the pump function graph shifts in an ‘outward’ manner. The working point, i.e., the pressure and flow during normal function at rest, is found at maximal cardiac efficiency. The cardiac pump function graph is related with the force-velocity relation of muscle (see Chap. 13), and also with the end-systolic pressure-volume relationship (Chap. 14).

Keywords

Cardiac pump function Hypertrophy Frank Starling Exercise Cardiac efficiency 

References

  1. 1.
    Moazami N, Fukamachi K, Kobayashi M, Smedira NG, Hoercher KJ, Massiello A, et al. Axial and centrifugal continuous-flow rotary pumps: a translation from pump mechanics to clinical practice. J Heart Lung Transplant. 2013;32:1–11.CrossRefGoogle Scholar
  2. 2.
    Elzinga G, Westerhof N. How to quantify pump function of the heart. Circ Res. 1979;44:303–8.CrossRefPubMedGoogle Scholar
  3. 3.
    Elzinga G, Westerhof N. Isolated cat trabeculae in a simulated feline heart and arterial system. Circ Res. 1982;51:430–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Noble MIM. The cardiac cycle. Oxford/London: Blackwell Scientific Publications; 1979.Google Scholar
  5. 5.
    Elzinga G, Westerhof N. The effect of an increase in inotropic state and end-diastolic volume on the pumping ability of the feline left heart. Circ Res. 1978;42:620–8.CrossRefPubMedGoogle Scholar
  6. 6.
    Elzinga G, Westerhof N. Pump function of the feline left heart: changes with heart rate and its bearing on the energy balance. Cardiovasc Res. 1980;14:81–92.CrossRefPubMedGoogle Scholar
  7. 7.
    Van den Horn GJ, Westerhof N, Elzinga G. Optimal power generation by the left ventricle. A study in the anesthetized open thorax cat. Circ Res. 1985;56:252–61.CrossRefPubMedGoogle Scholar
  8. 8.
    Elzinga G, Westerhof N. Workload as a determinant of ventricular hypertrophy. Cardiovasc Res. 1985;19:524.CrossRefGoogle Scholar
  9. 9.
    Westerhof N, O’Rourke MG. Haemodynamic basis for the development of left ventricular failure in systolic hypertension and for its logical therapy. J Hypertension. 1995;13:943–52.CrossRefGoogle Scholar
  10. 10.
    Rouleau JL, Roecker EB, Tendera M, Mohacsi P, Krum H, Katus HA, et al. Influence of pretreatment systolic blood pressure on the effect of carvedilol in patients with severe chronic heart failure (Copernicus study). J Am Coll Cardiol. 2004;43:1423–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Roest AA, Kunz P, Lamb HJ, Helbing WA, van der Wall EE, de Roos A. Biventricular response to supine physical exercise in young adults assessed with ultrafast magnetic resonance imaging. Am J Cardiol. 2001;87:601–5.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Nicolaas Westerhof
    • 1
  • Nikolaos Stergiopulos
    • 2
  • Mark I. M. Noble
    • 3
  • Berend E. Westerhof
    • 1
  1. 1.Department of Pulmonary Diseases, Amsterdam Cardiovascular SciencesVU University Medical CenterAmsterdamThe Netherlands
  2. 2.Laboratory of Hemodynamics and Cardiovascular TechnologyEcole Polytechnique Fédérale de Lausanne (EPFL), Institute of BioengineeringLausanneSwitzerland
  3. 3.Cardiovascular Medicine, Department of Medicine and TherapeuticsUniversity of AberdeenAberdeenUnited Kingdom

Personalised recommendations