Advertisement

Binary Systems and Their Nuclear Explosions

  • Jordi Isern
  • Margarita Hernanz
  • Jordi José
Chapter
Part of the Astrophysics and Space Science Library book series (ASSL, volume 453)

Abstract

The nuclear energy supply of a typical star like the Sun would be ∼1052 erg if all the hydrogen could be incinerated into iron peak elements. Since the gravitational binding energy is ∼1049 erg, it is evident that the nuclear energy content is more than enough to blow up the Sun. However, stars are stable thanks to the fact that their matter obeys the equation of state of a classical ideal gas that acts as a thermostat: if some energy is released as a consequence of a thermal fluctuation, the gas expands, the temperature drops and the instability is quenched. The first researchers to discuss the scenario under which stars could explosively release their nuclear energy were Hoyle and Fowler (1960). They showed that this could occur under conditions of dynamic compression, as a consequence of collapse, or under electron degeneracy.

References

  1. Abbott BP, Abbott R, Abbott TD, Acernese F, Ackley K, Adams C, Adams T, Addesso P, Adhikari RX, Adya VB, et al (2017) GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys Rev Lett 119(16):161101.  https://doi.org/10.1103/PhysRevLett.119.161101, arXiv:1710.05832
  2. Abdo AA, Ackermann M, Ajello M, Atwood WB, Baldini L, Ballet J, Barbiellini G, Bastieri D, Bechtol K, Bellazzini R, et al (2010) Gamma-ray emission concurrent with the nova in the symbiotic binary V407 Cygni. Science 329:817–821.  https://doi.org/10.1126/science.1192537, arXiv:1008.3912
  3. Ackermann M, Ajello M, Albert A, Baldini L, Ballet J, Barbiellini G, Bastieri D, Bellazzini R, Bissaldi E, Blandford RD, Bloom ED, Bottacini E, Brandt TJ, Bregeon J, Bruel P, Buehler R, Buson S, Caliandro GA, Cameron RA, Caragiulo M, Caraveo PA, Cavazzuti E, Charles E, Chekhtman A, Cheung CC, Chiang J, Chiaro G, Ciprini S, Claus R, Cohen-Tanugi J, Conrad J, Corbel S, D’Ammando F, de Angelis A, den Hartog PR, de Palma F, Dermer CD, Desiante R, Digel SW, Di Venere L, do Couto e Silva E, Donato D, Drell PS, Drlica-Wagner A, Favuzzi C, Ferrara EC, Focke WB, Franckowiak A, Fuhrmann L, Fukazawa Y, Fusco P, Gargano F, Gasparrini D, Germani S, Giglietto N, Giordano F, Giroletti M, Glanzman T, Godfrey G, Grenier IA, Grove JE, Guiriec S, Hadasch D, Harding AK, Hayashida M, Hays E, Hewitt JW, Hill AB, Hou X, Jean P, Jogler T, Jóhannesson G, Johnson AS, Johnson WN, Kerr M, Knödlseder J, Kuss M, Larsson S, Latronico L, Lemoine-Goumard M, Longo F, Loparco F, Lott B, Lovellette MN, Lubrano P, Manfreda A, Martin P, Massaro F, Mayer M, Mazziotta MN, McEnery JE, Michelson PF, Mitthumsiri W, Mizuno T, Monzani ME, Morselli A, Moskalenko IV, Murgia S, Nemmen R, Nuss E, Ohsugi T, Omodei N, Orienti M, Orlando E, Ormes JF, Paneque D, Panetta JH, Perkins JS, Pesce-Rollins M, Piron F, Pivato G, Porter TA, Rainò S, Rando R, Razzano M, Razzaque S, Reimer A, Reimer O, Reposeur T, Saz Parkinson PM, Schaal M, Schulz A, Sgrò C, Siskind EJ, Spandre G, Spinelli P, Stawarz Ł, Suson DJ, Takahashi H, Tanaka T, Thayer JG, Thayer JB, Thompson DJ, Tibaldo L, Tinivella M, Torres DF, Tosti G, Troja E, Uchiyama Y, Vianello G, Winer BL, Wolff MT, Wood DL, Wood KS, Wood M, Charbonnel S, Corbet RHD, De Gennaro Aquino I, Edlin JP, Mason E, Schwarz GJ, Shore SN, Starrfield S, Teyssier F, Fermi-LAT Collaboration (2014) Fermi establishes classical novae as a distinct class of gamma-ray sources. Science 345:554–558.  https://doi.org/10.1126/science.1253947, arXiv:1408.0735
  4. Alibés A, Labay J, Canal R (2002) Galactic cosmic rays from superbubbles and the abundances of lithium, beryllium, and boron. Astrophys J 571:326–333. https://doi.org/10.1086/339937, arXiv:astro-ph/0202097ADSCrossRefGoogle Scholar
  5. Amari S (2002) Presolar grains from novae: their isotopic ratios and radioactivities. New Astron Rev 46:519–524. https://doi.org/10.1016/S1387-6473(02)00194-X ADSCrossRefGoogle Scholar
  6. Amari S, Anders A, Virag A, Zinner E (1990) Interstellar graphite in meteorites. Nature 345:238–240. https://doi.org/10.1038/345238a0 ADSCrossRefGoogle Scholar
  7. Amari S, Hoppe P, Zinner E, Lewis RS (1992) Interstellar SiC with unusual isotopic compositions – grains from a supernova? Astrophys J 394:L43–L46. https://doi.org/10.1086/186468 ADSCrossRefGoogle Scholar
  8. Amari S, Gao X, Nittler LR, Zinner E, José J, Hernanz M, Lewis RS (2001a) Presolar grains from novae. Astrophys J 551:1065–1072. https://doi.org/10.1086/320235, arXiv:astro-ph/0012465ADSCrossRefGoogle Scholar
  9. Amari S, Nittler LR, Zinner E, Gallino R, Lugaro M, Lewis RS (2001b) Presolar SIC grains of Type Y: origin from low-metallicity asymptotic giant branch stars. Astrophys J 546:248–266. https://doi.org/10.1086/318230 ADSCrossRefGoogle Scholar
  10. Amari S, Nittler LR, Zinner E, Lodders K, Lewis RS (2001c) Presolar SiC grains of Type A and B: their isotopic compositions and stellar origins. Astrophys J 559:463–483. https://doi.org/10.1086/322397 ADSCrossRefGoogle Scholar
  11. Ambwani K, Sutherland P (1988) Gamma-ray spectra and energy deposition for Type IA supernovae. Astrophys J 325:820–827. https://doi.org/10.1086/166052 ADSCrossRefGoogle Scholar
  12. Amthor MA, Galaviz D, Heger A, Sakharuk A, Schatz H, Smith K (2006) Sensitivity of Type I X-ray bursts to rp-process reaction rate. In: International symposium on nuclear astrophysics – nuclei in the cosmosGoogle Scholar
  13. Antonini F, Perets HB (2012) Secular evolution of compact binaries near massive black holes: gravitational wave sources and other exotica. Astrophys J 757:27. https://doi.org/10.1088/0004-637X/757/1/27, arXiv:1203.2938ADSCrossRefGoogle Scholar
  14. Arnett WD (1969) A possible model of supernovae: detonation of 12C. Astrophys Space Sci 5:180–212. https://doi.org/10.1007/BF00650291 ADSCrossRefGoogle Scholar
  15. Arnett D (1996) Supernovae and nucleosynthesis: an investigation of the history of matter from the big bang to the present. Princeton University Press, PrincetonGoogle Scholar
  16. Arnould M, Norgaard H (1975) The explosive thermonuclear formation of 7Li and 11B. Astron Astrophys 42:55–70ADSGoogle Scholar
  17. Audouze J, Reeves H (1982) The origin of the light elements. In: Essays in Nuclear Astrophysics. Cambridge University Press, Cambridge, pp 355–375Google Scholar
  18. Axelrod TS (1980) Late time optical spectra from the Ni-56 model for Type 1 supernovae. PhD thesis, California University, Santa CruzGoogle Scholar
  19. Ayasli S, Joss PC (1982) Thermonuclear processes on accreting neutron stars – a systematic study. Astrophys J 256:637–665. https://doi.org/10.1086/159940 ADSCrossRefGoogle Scholar
  20. Aznar-Siguán G, García-Berro E, Lorén-Aguilar P, José J, Isern J (2013) Detonations in white dwarf dynamical interactions. Mon Not R Astron Soc 434:2539–2555.  https://doi.org/10.1093/mnras/stt1198, arXiv:1306.6559ADSCrossRefGoogle Scholar
  21. Aznar-Siguán G, García-Berro E, Magnien M, Lorén-Aguilar P (2014) On the possible observational signatures of white dwarf dynamical interactions. Mon Not R Astron Soc 443:2372–2383.  https://doi.org/10.1093/mnras/stu1309, arXiv:1407.0200ADSCrossRefGoogle Scholar
  22. Aznar-Siguán G, García-Berro E, Lorén-Aguilar P, Soker N, Kashi A (2015) Smoothed particle hydrodynamics simulations of the core-degenerate scenario for Type Ia supernovae. Mon Not R Astron Soc 450:2948–2962.  https://doi.org/10.1093/mnras/stv824, arXiv:1503.02444ADSCrossRefGoogle Scholar
  23. Badenes C, Borkowski KJ, Hughes JP, Hwang U, Bravo E (2006) Constraints on the physics of Type Ia supernovae from the X-ray spectrum of the Tycho supernova remnant. Astrophys J 645:1373–1391. https://doi.org/10.1086/504399, arXiv:astro-ph/0511140ADSCrossRefGoogle Scholar
  24. Balman S, Krautter J, Oegelman H (1998) The X-ray spectral evolution of classical Nova V1974 Cygni 1992: a reanalysis of the ROSAT data. Astrophys J 499:395–406ADSCrossRefGoogle Scholar
  25. Barbon R, Ciatti F, Rosino L (1973) Light curves and characteristics of recent supernovae. Astron Astrophys 29:57–67ADSGoogle Scholar
  26. Basinska EM, Lewin WHG, Sztajno M, Cominsky LR, Marshall FJ (1984) X-ray observations of the burst source MXB 1728-34. Astrophys J 281:337–353. https://doi.org/10.1086/162103 ADSCrossRefGoogle Scholar
  27. Bazin D, Montes F, Becerril A, Lorusso G, Amthor A, Baumann T, Crawford H, Estrade A, Gade A, Ginter T, Guess CJ, Hausmann M, Hitt GW, Mantica P, Matos M, Meharchand R, Minamisono K, Perdikakis G, Pereira J, Pinter J, Portillo M, Schatz H, Smith K, Stoker J, Stolz A, Zegers RGT (2008) Production and β decay of rp-process nuclei Cd96, In98, and Sn100. Phys Rev Lett 101(25):252501/1–252501/4.  https://doi.org/10.1103/PhysRevLett.101.252501, arXiv:0810.3597
  28. Belian RD, Conner JP, Evans WD (1976) The discovery of X-ray bursts from a region in the constellation Norma. Astrophys J 206:L135–L138. https://doi.org/10.1086/182151 ADSCrossRefGoogle Scholar
  29. Benz W, Thielemann FK, Hills JG (1989) Three-dimensional hydrodynamical simulations of stellar collisions. II – White dwarfs. Astrophys J 342:986–998. https://doi.org/10.1086/167656 ADSCrossRefGoogle Scholar
  30. Benz W, Cameron AGW, Press WH, Bowers RL (1990) Dynamic mass exchange in doubly degenerate binaries. I – 0.9 and 1.2 solar mass stars. Astrophys J 348:647–667. https://doi.org/10.1086/168273 ADSCrossRefGoogle Scholar
  31. Berger E, Fong W, Chornock R (2013) An r-process Kilonova associated with the short-hard GRB 130603B. Astrophys J 774:L23. https://doi.org/10.1088/2041-8205/774/2/L23, arXiv:1306.3960ADSCrossRefGoogle Scholar
  32. Bernatowicz T, Fraundorf G, Ming T, Anders E, Wopenka B, Zinner E, Fraundorf P (1987) Evidence for interstellar SiC in the Murray carbonaceous meteorite. Nature 330:728–730. https://doi.org/10.1038/330728a0 ADSCrossRefGoogle Scholar
  33. Bildsten L (1995) Propagation of nuclear burning fronts on accreting neutron stars: X-ray bursts and sub-hertz noise. Astrophys J 438:852–875. https://doi.org/10.1086/175128 ADSCrossRefGoogle Scholar
  34. Bildsten L (1998) Thermonuclear burning on rapidly accreting neutron stars. In: Buccheri R, van Paradijs J, Alpar A (eds) NATO ASIC Proc. 515: the many faces of neutron stars, p 419CrossRefGoogle Scholar
  35. Bildsten L, Chang P, Paerels F (2003) Atomic spectral features during thermonuclear flashes on neutron stars. Astrophys J 591:L29–L32. https://doi.org/10.1086/377066, arXiv:astro-ph/0303147ADSCrossRefGoogle Scholar
  36. Bildsten L, Shen KJ, Weinberg NN, Nelemans G (2007) Faint thermonuclear supernovae from AM Canum Venaticorum binaries. Astrophys J 662:L95–L98. https://doi.org/10.1086/519489, arXiv:astro-ph/0703578ADSCrossRefGoogle Scholar
  37. Blinnikov SI, Khokhlov AM (1986) Development of detonations in degenerate stars. Sov Astron Lett 12:131–133ADSGoogle Scholar
  38. Blondin S, Dessart L, Hillier DJ, Khokhlov AM (2017) Evidence for sub-Chandrasekhar-mass progenitors of Type Ia supernovae at the faint end of the width-luminosity relation. Mon Not R Astron Soc 470:157–165.  https://doi.org/10.1093/mnras/stw2492, arXiv:1706.01901ADSCrossRefGoogle Scholar
  39. Bloom JS, Kasen D, Shen KJ, Nugent PE, Butler NR, Graham ML, Howell DA, Kolb U, Holmes S, Haswell CA, Burwitz V, Rodriguez J, Sullivan M (2012) A compact degenerate primary-star progenitor of SN 2011fe. Astrophys J 744:L17. https://doi.org/10.1088/2041-8205/744/2/L17, arXiv:1111.0966ADSCrossRefGoogle Scholar
  40. Bode MF, Evans A (2008) Classical Novae. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  41. Boffin HMJ, Paulus G, Arnould M, Mowlavi N (1993) The explosive thermonuclear formation of Li-7 revisited. Astron Astrophys 279:173–178ADSGoogle Scholar
  42. Branch D (1981) Some statistical properties of Type I supernovae. Astrophys J 248:1076–1080. https://doi.org/10.1086/159237 ADSCrossRefGoogle Scholar
  43. Branch D, Fisher A, Nugent P (1993) On the relative frequencies of spectroscopically normal and peculiar Type IA supernovae. Astron J 106:2383–2391. https://doi.org/10.1086/116810 ADSCrossRefGoogle Scholar
  44. Branch D, Romanishin W, Baron E (1996) Statistical connections between the properties of Type IA supernovae and the B-V colors of their parent galaxies, and the value of H 0. Astrophys J 465:73–78. https://doi.org/10.1086/177402, arXiv:astro-ph/9510071ADSCrossRefGoogle Scholar
  45. Bravo E, García-Senz D (1999) Coulomb corrections to the equation of state of nuclear statistical equilibrium matter: implications for SNIa nucleosynthesis and the accretion-induced collapse of white dwarfs. Mon Not R Astron Soc 307:984–992. https://doi.org/10.1046/j.1365-8711.1999.02694.x ADSCrossRefGoogle Scholar
  46. Bravo E, Isern J, Canal R, Labay J (1992) On the contribution of Ne-22 to the synthesis of Fe-54 and Ni-58 in thermonuclear supernovae. Astron Astrophys 257:534–538ADSGoogle Scholar
  47. Bravo E, Tornambe A, Dominguez I, Isern J (1996) Clues to Type IA SN progenitors from degenerate carbon ignition models. Astron Astrophys 306:811–822ADSGoogle Scholar
  48. Brown EF (2000) Nuclear heating and melted layers in the inner crust of an accreting neutron star. Astrophys J 531:988–1002. https://doi.org/10.1086/308487, arXiv:astro-ph/9910215ADSCrossRefGoogle Scholar
  49. Brown EF, Bildsten L (1998) The ocean and crust of a rapidly accreting neutron star: implications for magnetic field evolution and thermonuclear flashes. Astrophys J 496:915–933. https://doi.org/10.1086/305419, arXiv:astro-ph/9710261ADSCrossRefGoogle Scholar
  50. Burrows A, The L (1990) X- and gamma-ray signatures of Type IA supernovae. Astrophys J 360:626–638. https://doi.org/10.1086/169150 ADSCrossRefGoogle Scholar
  51. Bussard RW, Ramaty R, Drachman RJ (1979) The annihilation of galactic positrons. Astrophys J 228:928–934. https://doi.org/10.1086/156920 ADSCrossRefGoogle Scholar
  52. Cadonau R, Tammann GA, Sandage A (1985) Type I supernovae as standard candles. In: Bartel N (ed) Supernovae as distance indicators. Lecture notes in physics, vol 224. Springer, Berlin, pp 151–165. https://doi.org/10.1007/3-540-15206-7-56 CrossRefGoogle Scholar
  53. Cameron AGW (1955) Origin of anomalous abundances of the elements in giant stars. Astrophys J 121:144–160. https://doi.org/10.1086/145970 ADSCrossRefGoogle Scholar
  54. Cameron AGW (1962) The formation of the sun and planets. Icarus 1:13–69. https://doi.org/10.1016/0019-1035(62)90005-2 ADSCrossRefzbMATHGoogle Scholar
  55. Cameron AGW (1973) Interstellar grains in museums? In: Greenberg JM, van de Hulst HC (eds) Interstellar dust and related topics, IAU symposium, vol 52, pp 545–547CrossRefGoogle Scholar
  56. Canal R, Isern J, Labay J (1990) The origin of neutron stars in binary systems. Annu Rev Astron Astrophys 28:183–214.  https://doi.org/10.1146/annurev.aa.28.090190.001151 ADSCrossRefGoogle Scholar
  57. Cappellaro E, Barbon R, Turatto M (2003) Supernova statistics. Astrophysics. arXiv:astro-ph/0310859Google Scholar
  58. Carter B, Luminet J (1983) Tidal compression of a star by a large black hole. I Mechanical evolution and nuclear energy release by proton capture. Astron Astrophys 121:97–113ADSzbMATHGoogle Scholar
  59. Casanova J, José J, García-Berro E, Calder A, Shore SN (2010) On mixing at the core-envelope interface during classical nova outbursts. Astron Astrophys 513:L5. https://doi.org/10.1051/0004-6361/201014178, arXiv:1004.2792ADSCrossRefGoogle Scholar
  60. Casanova J, José J, García-Berro E, Calder A, Shore SN (2011a) Mixing in classical novae: a 2-D sensitivity study. Astron Astrophys 527:A5. https://doi.org/10.1051/0004-6361/201015895, arXiv:1012.3199ADSCrossRefGoogle Scholar
  61. Casanova J, José J, García-Berro E, Shore SN, Calder AC (2011b) Kelvin-Helmholtz instabilities as the source of inhomogeneous mixing in nova explosions. Nature 478:490–492.  https://doi.org/10.1038/nature10520 ADSCrossRefGoogle Scholar
  62. Casanova J, José J, García-Berro E, Shore SN (2016) Three-dimensional simulations of turbulent convective mixing in ONe and CO classical nova explosions. Astron Astrophys 595:A28. https://doi.org/10.1051/0004-6361/201628707 ADSCrossRefGoogle Scholar
  63. Casanova J, José J, Shore SN (2018) Two-dimensional simulations of mixing in classical novae: the effect of the white dwarf composition and mass. Astron Astrophys. https://doi.org/10.1051/0004-6361/201628707 ADSCrossRefGoogle Scholar
  64. Champagne AE, Wiescher M (1992) Explosive hydrogen burning. Annu Rev Nucl Part Sci 42: 39–76.  https://doi.org/10.1146/annurev.ns.42.120192.000351 ADSCrossRefGoogle Scholar
  65. Chan K, Lingenfelter RE (1993) Positrons from supernovae. Astrophys J 405:614–636. https://doi.org/10.1086/172393 ADSCrossRefGoogle Scholar
  66. Chang P, Bildsten L, Wasserman I (2005) Formation of resonant atomic lines during thermonuclear flashes on neutron stars. Astrophys J 629:998–1007. https://doi.org/10.1086/431730, arXiv:astro-ph/0505062ADSCrossRefGoogle Scholar
  67. Chang P, Morsink S, Bildsten L, Wasserman I (2006) Rotational broadening of atomic spectral features from neutron stars. Astrophys J 636:L117–L120. https://doi.org/10.1086/499428, arXiv:astro-ph/0511246ADSCrossRefGoogle Scholar
  68. Cheung CC, Jean P, Shore SN, Stawarz Ł, Corbet RHD, Knödlseder J, Starrfield S, Wood DL, Desiante R, Longo F, Pivato G, Wood KS (2016) Fermi-LAT gamma-ray detections of classical Novae V1369 Centauri 2013 and V5668 Sagittarii 2015. Astrophys J 826:142. https://doi.org/10.3847/0004-637X/826/2/142, arXiv:1605.04216ADSCrossRefGoogle Scholar
  69. Choi B, Huss GR, Wasserburg GJ, Gallino R (1998) Presolar corundum and spinel in ordinary chondrites: origins from AGB stars and a supernova. Science 282:1284–1289.  https://doi.org/10.1126/science.282.5392.1284 ADSCrossRefGoogle Scholar
  70. Choi B, Wasserburg GJ, Huss GR (1999) Circumstellar hibonite and corundum and nucleosynthesis in asymptotic giant branch stars. Astrophys J 522:L133–L136. https://doi.org/10.1086/312239 ADSCrossRefGoogle Scholar
  71. Chomiuk L, Linford JD, Yang J, O’Brien TJ, Paragi Z, Mioduszewski AJ, Beswick RJ, Cheung CC, Mukai K, Nelson T, Ribeiro VARM, Rupen MP, Sokoloski JL, Weston J, Zheng Y, Bode MF, Eyres S, Roy N, Taylor GB (2014) Binary orbits as the driver of γ-ray emission and mass ejection in classical novae. Nature 514:339–342.  https://doi.org/10.1038/nature13773, arXiv:1410.3473ADSCrossRefGoogle Scholar
  72. Churazov E, Sunyaev R, Isern J, Knödlseder J, Jean P, Lebrun F, Chugai N, Grebenev S, Bravo E, Sazonov S, Renaud M (2014) Cobalt-56 γ-ray emission lines from the Type Ia supernova 2014J. Nature 512:406–408.  https://doi.org/10.1038/nature13672, arXiv:1405.3332ADSCrossRefGoogle Scholar
  73. Churazov E, Sunyaev R, Isern J, Bikmaev I, Bravo E, Chugai N, Grebenev S, Jean P, Knödlseder J, Lebrun F, Kuulkers E (2015) Gamma-rays from Type Ia Supernova SN2014J. Astrophys J 812:62. https://doi.org/10.1088/0004-637X/812/1/62, arXiv:1502.00255ADSCrossRefGoogle Scholar
  74. Clayton DD (1981) Li-7 gamma-ray lines from novae. Astrophys J 244:L97. https://doi.org/10.1086/183488 ADSCrossRefGoogle Scholar
  75. Clayton DD (2013) Analytic approximation of carbon condensation issues in Type II Supernovae. Astrophys J 762:5. https://doi.org/10.1088/0004-637X/762/1/5 ADSCrossRefGoogle Scholar
  76. Clayton DD, Hoyle F (1974) Gamma-ray lines from novae. Astrophys J 187:L101+. https://doi.org/10.1086/181406 ADSCrossRefGoogle Scholar
  77. Clayton DD, Hoyle F (1976) Grains of anomalous isotopic composition from novae. Astrophys J 203:490–496. https://doi.org/10.1086/154104 ADSCrossRefGoogle Scholar
  78. Clayton DD, Nittler LR (2004) Astrophysics with presolar stardust. Annu Rev Astron Astrophys 42:39–78.  https://doi.org/10.1146/annurev.astro.42.053102.134022 ADSCrossRefGoogle Scholar
  79. Clayton DD, Liu W, Dalgarno A (1999) Condensation of carbon in radioactive supernova gas. Science 283:1290.  https://doi.org/10.1126/science.283.5406.1290 ADSCrossRefGoogle Scholar
  80. Clayton DD, Deneault EAN, Meyer BS (2001) Condensation of carbon in radioactive supernova gas. Astrophys J 562:480–493. https://doi.org/10.1086/323467 ADSCrossRefGoogle Scholar
  81. Coc A, Hernanz M, José J, Thibaud J (2000) Influence of new reaction rates on 18F production in novae. Astron Astrophys 357:561–571. arXiv:astro-ph/0003166Google Scholar
  82. Colgate SA, McKee C (1969) Early supernova luminosity. Astrophys J 157:623–644. https://10.1086/150102 ADSCrossRefGoogle Scholar
  83. Cornelisse R, Heise J, Kuulkers E, Verbunt F, in’t Zand JJM (2000) The longest thermonuclear X-ray burst ever observed? A BeppoSAX Wide Field Camera observation of 4U 1735-44. Astron Astrophys 357:L21–L24. arXiv:astro-ph/0003454Google Scholar
  84. Cottam J, Paerels F, Mendez M (2002) Gravitationally redshifted absorption lines in the X-ray burst spectra of a neutron star. Nature 420:51–54.  https://doi.org/10.1038/nature01159, arXiv:astro-ph/0211126ADSCrossRefGoogle Scholar
  85. Cottam J, Paerels F, Méndez M, Boirin L, Lewin WHG, Kuulkers E, Miller JM (2008) The Burst Spectra of EXO 0748-676 during a Long 2003 XMM-Newton Observation. Astrophys J 672:504–509. https://doi.org/10.1086/524186, arXiv:0709.4062ADSCrossRefGoogle Scholar
  86. Cumming A (2005) Superbursts: a new probe of the rp-process. Nucl Phys A 758:439–446. https://doi.org/10.1016/j.nuclphysa.2005.05.081 ADSCrossRefGoogle Scholar
  87. Cumming A, Bildsten L (2001) Carbon flashes in the heavy-element ocean on accreting neutron stars. Astrophys J 559:L127–L130. https://doi.org/10.1086/323937, arXiv:astro-ph/0107213ADSCrossRefGoogle Scholar
  88. D’Antona F, Mazzitelli I (1989) The fastest evolving white dwarfs. Astrophys J 347:934–949. https://doi.org/10.1086/168185 ADSCrossRefGoogle Scholar
  89. Damen E, Magnier E, Lewin WHG, Tan J, Penninx W, van Paradijs J (1990) X-ray bursts with photospheric radius expansion and the gravitational redshift of neutron stars. Astron Astrophys 237:103–109ADSGoogle Scholar
  90. Darnley MJ, Henze M, Steele IA, Bode MF, Ribeiro VARM, Rodríguez-Gil P, Shafter AW, Williams SC, Baer D, Hachisu I, Hernanz M, Hornoch K, Hounsell R, Kato M, Kiyota S, Kučáková H, Maehara H, Ness JU, Piascik AS, Sala G, Skillen I, Smith RJ, Wolf M (2015) A remarkable recurrent nova in M31: discovery and optical/UV observations of the predicted 2014 eruption. Astron Astrophys 580:A45. https://doi.org/10.1051/0004-6361/201526027, arXiv:1506.04202ADSCrossRefGoogle Scholar
  91. Darnley MJ, Henze M, Bode MF, Hachisu I, Hernanz M, Hornoch K, Hounsell R, Kato M, Ness JU, Osborne JP, Page KL, Ribeiro VARM, Rodríguez-Gil P, Shafter AW, Shara MM, Steele IA, Williams SC, Arai A, Arcavi I, Barsukova EA, Boumis P, Chen T, Fabrika S, Figueira J, Gao X, Gehrels N, Godon P, Goranskij VP, Harman DJ, Hartmann DH, Hosseinzadeh G, Horst JC, Itagaki K, José J, Kabashima F, Kaur A, Kawai N, Kennea JA, Kiyota S, Kučáková H, Lau KM, Maehara H, Naito H, Nakajima K, Nishiyama K, O’Brien TJ, Quimby R, Sala G, Sano Y, Sion EM, Valeev AF, Watanabe F, Watanabe M, Williams BF, Xu Z (2016a) M31N 2008-12a – the remarkable recurrent nova in M31: panchromatic observations of the 2015 eruption. Astrophys J 833:149. https://doi.org/10.3847/1538-4357/833/2/149, arXiv:1607.08082ADSCrossRefGoogle Scholar
  92. Darnley MJ, Henze M, Steele IA, Bode MF, Ribeiro VARM, Rodríguez-Gil P, Shafter AW, Williams SC, Baer D, Hachisu I, Hernanz M, Hornoch K, Hounsell R, Kato M, Kiyota S, Kučáková H, Maehara H, Ness JU, Piascik AS, Sala G, Skillen I, Smith RJ, Wolf M (2016b) A remarkable recurrent nova in M31: discovery and optical/UV observations of the predicted 2014 eruption (Corrigendum). Astron Astrophys 593:C3. https://doi.org/10.1051/0004-6361/201526027e ADSCrossRefGoogle Scholar
  93. Darnley MJ, Hounsell R, Godon P, Perley DA, Henze M, Kuin NPM, Williams BF, Williams SC, Bode MF, Harman DJ, Hornoch K, Link M, Ness JU, Ribeiro VARM, Sion EM, Shafter AW, Shara MM (2017b) Inflows, outflows, and a giant donor in the remarkable recurrent nova M31N 2008-12a? – Hubble space telescope photometry of the 2015 eruption. Astrophys J 849:96. https://doi.org/10.3847/1538-4357/aa9062, arXiv:1709.10145ADSCrossRefGoogle Scholar
  94. Darnley MJ, Hounsell R, Godon P, Perley DA, Henze M, Kuin NPM, Williams BF, Williams SC, Bode MF, Harman DJ, Hornoch K, Link M, Ness JU, Ribeiro VARM, Sion EM, Shafter AW, Shara MM (2017a) No neon, but jets in the remarkable recurrent nova M31N 2008-12a? – Hubble space telescope spectroscopy of the 2015 eruption. Astrophys J 847:35. https://doi.org/10.3847/1538-4357/aa8867, arXiv:1708.06795ADSCrossRefGoogle Scholar
  95. De Angelis A, Tatischeff V, Grenier IA, McEnery J, Mallamaci M, Tavani M, Oberlack U, Hanlon L, Walter R, Argan A, et al (2017a) Science with e-ASTROGAM (A space mission for MeV-GeV gamma-ray astrophysics). arXiv:1711.01265Google Scholar
  96. De Angelis A, Tatischeff V, Tavani M, Oberlack U, Grenier I, Hanlon L, Walter R, Argan A, von Ballmoos P, Bulgarelli A, Donnarumma I, Hernanz M, Kuvvetli I, Pearce M, Zdziarski A, Aboudan A, Ajello M, Ambrosi G, Bernard D, Bernardini E, Bonvicini V, Brogna A, Branchesi M, Budtz-Jorgensen C, Bykov A, Campana R, Cardillo M, Coppi P, De Martino D, Diehl R, Doro M, Fioretti V, Funk S, Ghisellini G, Grove E, Hamadache C, Hartmann DH, Hayashida M, Isern J, Kanbach G, Kiener J, Knödlseder J, Labanti C, Laurent P, Limousin O, Longo F, Mannheim K, Marisaldi M, Martinez M, Mazziotta MN, McEnery J, Mereghetti S, Minervini G, Moiseev A, Morselli A, Nakazawa K, Orleanski P, Paredes JM, Patricelli B, Peyré J, Piano G, Pohl M, Ramarijaona H, Rando R, Reichardt I, Roncadelli M, Silva R, Tavecchio F, Thompson DJ, Turolla R, Ulyanov A, Vacchi A, Wu X, Zoglauer A (2017b) The e-ASTROGAM mission. Exploring the extreme Universe with gamma rays in the MeV–GeV range. Exp Astron 44:25–82. https://doi.org/10.1007/s10686-017-9533-6, arXiv:1611.02232ADSCrossRefGoogle Scholar
  97. de Plaa J, Werner N, Bleeker JAM, Vink J, Kaastra JS, Méndez M (2007) Constraining supernova models using the hot gas in clusters of galaxies. Astron Astrophys 465:345–355. https://doi.org/10.1051/0004-6361:20066382, arXiv:astro-ph/0701553ADSCrossRefGoogle Scholar
  98. Della Valle M (2002) Nova populations. In: Hernanz M, José J (eds) Classical nova explosions, American Institute of Physics conference series, vol 637, pp 443–456. https://doi.org/10.1063/1.1518244
  99. Della Valle M, Livio M (1994) On the nova rate in the Galaxy. Astron Astrophys 286:786–788ADSGoogle Scholar
  100. Della Valle M, Livio M (1995) The calibration of novae as distance indicators. Astrophys J 452:704–+. https://doi.org/10.1086/176342 ADSCrossRefGoogle Scholar
  101. Della Valle M, Livio M (1998) The spectroscopic differences between disk and thick-disk/bulge novae. Astrophys J 506:818–823. https://doi.org/10.1086/306275 ADSCrossRefGoogle Scholar
  102. Della Valle M, Bianchini A, Livio M, Orio M (1992) On the possible existence of two classes of progenitors for classical novae. Astron Astrophys 266:232–236ADSGoogle Scholar
  103. Della Valle M, Pasquini L, Daou D, Williams RE (2002) The evolution of Nova V382 Velorum 1999. Astron Astrophys 390:155–166. https://doi.org/10.1051/0004-6361:20020611, arXiv:astro-ph/0205135ADSCrossRefGoogle Scholar
  104. Diehl R, Dupraz C, Bennett K, Bloemen H, Hermsen W, Knoedlseder J, Lichti G, Morris D, Ryan J, Schoenfelder V, Steinle H, Strong A, Swanenburg B, Varendorff M, Winkler C (1995) COMPTEL observations of Galactic 26Al emission. Astron Astrophys 298:445–+Google Scholar
  105. Diehl R, Siegert T, Hillebrandt W, Grebenev SA, Greiner J, Krause M, Kromer M, Maeda K, Röpke F, Taubenberger S (2014) Early 56Ni decay gamma rays from SN2014J suggest an unusual explosion. Science 345:1162–1165.  https://doi.org/10.1126/science.1254738, arXiv:1407.3061ADSCrossRefGoogle Scholar
  106. Dominguez I, Tornambe A, Isern J (1993) On the formation of O-Ne white dwarfs in metal-rich close binary systems. Astrophys J 419:268–+. https://doi.org/10.1086/173480 ADSCrossRefGoogle Scholar
  107. Domínguez I, Höflich P, Straniero O (2001) Constraints on the progenitors of Type Ia supernovae and implications for the cosmological equation of state. Astrophys J 557:279–291. https://doi.org/10.1086/321661, arXiv:astro-ph/0104257ADSCrossRefGoogle Scholar
  108. Domínguez I, Piersanti L, Bravo E, Tornambé A, Straniero O, Gagliardi S (2006) Rotating Type Ia SN progenitors: explosion and light curves. Astrophys J 644:21–29. https://doi.org/10.1086/503534 ADSCrossRefGoogle Scholar
  109. Elias JH, Matthews K, Neugebauer G, Persson SE (1985) Type I supernovae in the infrared and their use as distance indicators. Astrophys J 296:379–389. https://doi.org/10.1086/163456 ADSCrossRefGoogle Scholar
  110. Elomaa V, Vorobjev GK, Kankainen A, Batist L, Eliseev S, Eronen T, Hakala J, Jokinen A, Moore ID, Novikov YN, Penttilä H, Popov A, Rahaman S, Rissanen J, Saastamoinen A, Schatz H, Seliverstov DM, Weber C, Äystö J (2009) Quenching of the SnSbTe cycle in the rp process. Phys Rev Lett 102(25):252501/1–252501/4.  https://doi.org/10.1103/PhysRevLett.102.252501 ADSCrossRefGoogle Scholar
  111. Falanga M, Chenevez J, Cumming A, Kuulkers E, Trap G, Goldwurm A (2008) Intermediate long X-ray bursts from the ultra-compact binary candidate SLX 1737-282. Astron Astrophys 484:43–50. https://doi.org/10.1051/0004-6361:20078982, arXiv:0711.0328ADSCrossRefGoogle Scholar
  112. Fan YZ, Yu YW, Xu D, Jin ZP, Wu XF, Wei DM, Zhang B (2013) A supramassive magnetar central engine for GRB 130603B. Astrophys J 779:L25. https://doi.org/10.1088/2041-8205/779/2/L25, arXiv:1311.7185ADSCrossRefGoogle Scholar
  113. Fernández R, Metzger BD (2016) Electromagnetic signatures of neutron star mergers in the advanced LIGO era. Ann Rev Nucl Part Sci 66:23–45.  https://doi.org/10.1146/annurev-nucl-102115-044819, arXiv:1512.05435ADSCrossRefGoogle Scholar
  114. Filippenko AV, Richmond MW, Branch D, Gaskell M, Herbst W, Ford CH, Treffers RR, Matheson T, Ho LC, Dey A, Sargent WLW, Small TA, van Breugel WJM (1992) The subluminous, spectroscopically peculiar Type IA supernova 1991bg in the elliptical galaxy NGC 4374. Astron J 104:1543–1556. https://doi.org/10.1086/116339 ADSCrossRefGoogle Scholar
  115. Fink M, Hillebrandt W, Röpke FK (2007) Double-detonation supernovae of sub-Chandrasekhar mass white dwarfs. Astron Astrophys 476:1133–1143. https://doi.org/10.1051/0004-6361:20078438, arXiv:0710.5486ADSCrossRefGoogle Scholar
  116. Fishman GJ, Wilson RB, Meegan CA, Brock MN, Horack JM, Paciesas WS, Pendleton GN, Harmon BA, Leising M (1991) Detectability of early low-energy gamma rays from nearby novae by BATSE/GRO. In: Durouchoux P, Prantzos N (eds) Gamma-ray line astrophysics. American Institute of Physics conference series, vol 232, pp 190–192. https://doi.org/10.1063/1.40956
  117. Fisker JL, Görres J, Wiescher M, Davids B (2006) The importance of 15O(α,γ)19Ne to X-Ray bursts and superbursts. Astrophys J 650:332–337. https://doi.org/10.1086/507083, arXiv:astro-ph/0410561ADSCrossRefGoogle Scholar
  118. Fisker JL, Schatz H, Thielemann F (2008) Explosive hydrogen burning during Type I X-ray bursts. Astrophys J Suppl Ser 174:261–276. https://doi.org/10.1086/521104 ADSCrossRefGoogle Scholar
  119. Fossey SJ, Cooke B, Pollack G, Wilde M, Wright T (2014) Supernova 2014J in M82 = Psn J09554214+6940260. Central Bureau Electronic Telegrams 3792Google Scholar
  120. Fryxell BA, Woosley SE (1982a) A two-dimensional model for gamma-ray bursts. Astrophys J 258:733–739. https://doi.org/10.1086/160121 ADSCrossRefGoogle Scholar
  121. Fryxell BA, Woosley SE (1982b) Finite propagation time in multidimensional thermonuclear runaways. Astrophys J 261:332–336. https://doi.org/10.1086/160344 ADSCrossRefGoogle Scholar
  122. Fujimoto MY, Hanawa T, Miyaji S (1981) Shell flashes on accreting neutron stars and X-ray bursts. Astrophys J 247:267–278. https://doi.org/10.1086/159034 ADSCrossRefGoogle Scholar
  123. Fuller GM, Fowler WA, Newman MJ (1985) Stellar weak interaction rates for intermediate-mass nuclei. IV – interpolation procedures for rapidly varying lepton capture rates using effective log (ft)-values. Astrophys J 293:1–16. https://doi.org/10.1086/163208 ADSCrossRefGoogle Scholar
  124. Fushiki I, Lamb DQ (1987) New insights from a global view of X-ray bursts. Astrophys J 323:L55–L60. https://doi.org/10.1086/185056 ADSCrossRefGoogle Scholar
  125. Gallino R, Raiteri CM, Busso M (1993) Carbon stars and isotopic BA anomalies in meteoritic SiC grains. Astrophys J 410:400–411. https://doi.org/10.1086/172757 ADSCrossRefGoogle Scholar
  126. Galloway DK, Muno MP, Hartman JM, Psaltis D, Chakrabarty D (2008) Thermonuclear (Type I) X-ray bursts observed by the Rossi X-ray timing explorer. Astrophys J Suppl Ser 179:360–422. https://doi.org/10.1086/592044, arXiv:astro-ph/0608259ADSCrossRefGoogle Scholar
  127. Gamezo VN, Khokhlov AM, Oran ES, Chtchelkanova AY, Rosenberg RO (2003) Thermonuclear supernovae: simulations of the deflagration stage and their implications. Science 299:77–81.  https://doi.org/10.1126/science.1078129, arXiv:astro-ph/0212054ADSCrossRefGoogle Scholar
  128. García-Senz D, Bravo E (2005) Type Ia Supernova models arising from different distributions of igniting points. Astron Astrophys 430:585–602. https://doi.org/10.1051/0004-6361:20041628, arXiv:astro-ph/0409480ADSCrossRefGoogle Scholar
  129. García-Senz D, Cabezón RM, Arcones A, Relaño A, Thielemann FK (2013) High-resolution simulations of the head-on collision of white dwarfs. Mon Not R Astron Soc 436:3413–3429.  https://doi.org/10.1093/mnras/stt1821, arXiv:1309.6884ADSCrossRefGoogle Scholar
  130. Gehrz RD (2002) Infrared and radio observations of classical novae: physical parameters and abundances in the ejecta. In: Hernanz M, José J (eds) Classical nova explosions. American Institute of Physics conference series, vol 637, pp 198–207. https://doi.org/10.1063/1.1518200
  131. Gehrz RD, Truran JW, Williams RE, Starrfield S (1998) Nucleosynthesis in classical novae and its contribution to the interstellar medium. Publ Astron Soc Pac 110:3–26. https://doi.org/10.1086/316107 ADSCrossRefGoogle Scholar
  132. Glasner SA, Livne E (1995) Convective hydrogen burning down a nova outburst. Astrophys J 445:L149–L151. https://doi.org/10.1086/187911 ADSCrossRefGoogle Scholar
  133. Glasner SA, Truran JW (2009) Carbon-nitrogen-oxygen “breakout” and nucleosynthesis in classical novae. Astrophys J 692:L58–L61. https://doi.org/10.1088/0004-637X/692/1/L58, arXiv:0812.3984ADSCrossRefGoogle Scholar
  134. Glasner SA, Livne E, Truran JW (1997) Reactive flow in nova outbursts. Astrophys J 475:754–762. https://doi.org/10.1086/303561 ADSCrossRefGoogle Scholar
  135. Glasner SA, Livne E, Truran JW (2005) The sensitivity of multidimensional nova calculations to the outer boundary condition. Astrophys J 625:347–350. https://doi.org/10.1086/429482, arXiv:astro-ph/0504054ADSCrossRefGoogle Scholar
  136. Goldstein DA, Kasen D (2018) Evidence for sub-Chandrasekhar mass Type Ia supernovae from an extensive survey of radiative transfer models. Astrophys J 852:L33. https://doi.org/10.3847/2041-8213/aaa409, arXiv:1801.00789ADSCrossRefGoogle Scholar
  137. Gómez-Gomar J, Hernanz M, Jose J, Isern J (1998a) Gamma-ray emission from individual classical novae. Mon Not R Astron Soc 296:913–920. https://doi.org/10.1046/j.1365-8711.1998.01421.x, arXiv:astro-ph/9711322ADSCrossRefGoogle Scholar
  138. Gómez-Gomar J, Isern J, Jean P (1998b) Prospects for Type IA supernova explosion mechanism identification with gamma rays. Mon Not R Astron Soc 295:1–+. https://doi.org/10.1046/j.1365-8711.1998.29511115.x, arXiv:astro-ph/9709048ADSCrossRefGoogle Scholar
  139. Grindlay J, Gursky H (1976) Scattering model for X-ray bursts – massive black holes in globular clusters. Astrophys J 205:L131–L133. https://doi.org/10.1086/182106 ADSCrossRefGoogle Scholar
  140. Grindlay JE, McClintock JE, Canizares CR, Cominsky L, Li FK, Lewin WHG, van Paradijs J (1978) Discovery of optical bursts from an X-ray burst source, MXB1735-44. Nature 274:567–+. https://doi.org/10.1038/274567a0 ADSCrossRefGoogle Scholar
  141. Guerrero J, García-Berro E, Isern J (2004) Smoothed particle hydrodynamics simulations of merging white dwarfs. Astron Astrophys 413:257–272. https://doi.org/10.1051/0004-6361:20031504 ADSCrossRefGoogle Scholar
  142. Gutierrez J, Garcia-Berro E, Iben I Jr, Isern J, Labay J, Canal R (1996) The final evolution of ONeMg electron-degenerate cores. Astrophys J 459:701–705. https://doi.org/10.1086/176934 ADSCrossRefGoogle Scholar
  143. Gyngard F, Nittler LR, Zinner E, Jose J, Cristallo S (2011) New reaction rates and implications for nova nucleosynthesis and presolar grains. In: Lunar and planetary science conference, vol 42, p 2675ADSGoogle Scholar
  144. Hachisu I, Kato M, Nomoto K (1999) A wide symbiotic channel to Type IA supernovae. Astrophys J 522:487–503. https://doi.org/10.1086/307608, arXiv:astro-ph/9902304ADSCrossRefGoogle Scholar
  145. Hachisu I, Saio H, Kato M (2016) Shortest recurrence periods of forced novae. Astrophys J 824:22. https://doi.org/10.3847/0004-637X/824/1/22, arXiv:1604.02965ADSCrossRefGoogle Scholar
  146. Hackwell JA, Grasdalen GL, Gehrz RD, Cominsky L, Lewin WHG, van Paradijs J (1979) The detection of an optical burst coincident with an X-ray burst from MXB 1837 + 05 /Ser X-1/. Astrophys J 233:L115–L119. https://doi.org/10.1086/183088 ADSCrossRefGoogle Scholar
  147. Haenecour P, Floss C, José J, Amari S, Lodders K, Jadhav M, Wang A, Gyngard F (2016) Coordinated analysis of two graphite grains from the CO3.0 LAP 031117 meteorite: first identification of a CO nova graphite and a presolar iron sulfide subgrain. Astrophys J 825:88. https://doi.org/10.3847/0004-637X/825/2/88, arXiv:1606.08310ADSCrossRefGoogle Scholar
  148. Hamuy M, Phillips MM, Maza J, Suntzeff NB, Schommer RA, Aviles R (1995) A Hubble diagram of distant Type IA supernovae. Astron J 109:1–13. https://doi.org/10.1086/117251 ADSCrossRefGoogle Scholar
  149. Hamuy M, Phillips MM, Suntzeff NB, Schommer RA, Maza J, Antezan AR, Wischnjewsky M, Valladares G, Muena C, Gonzales LE, Aviles R, Wells LA, Smith RC, Navarrete M, Covarrubias R, Williger GM, Walker AR, Layden AC, Elias JH, Baldwin JA, Hernandez M, Tirado H, Ugarte P, Elston R, Saavedra N, Barrientos F, Costa E, Lira P, Ruiz MT, Anguita C, Gomez X, Ortiz P, Della Valle M, Danziger J, Storm J, Kim Y, Bailyn C, Rubenstein EP, Tucker D, Cersosimo S, Mendez RA, Siciliano L, Sherry W, Chaboyer B, Koopmann RA, Geisler D, Sarajedini A, Dey A, Tyson N, Rich RM, Gal R, Lamontagne R, Caldwell N, Guhathakurta P, Phillips AC, Szkody P, Prosser C, Ho LC, McMahan R, Baggley G, Cheng K, Havlen R, Wakamatsu K, Janes K, Malkan M, Baganoff F, Seitzer P, Shara M, Sturch C, Hesser J, Hartig ANP, Hughes J, Welch D, Williams TB, Ferguson H, Francis PJ, French L, Bolte M, Roth J, Odewahn S, Howell S, Krzeminski W (1996) BVRI light curves for 29 Type IA supernovae. Astron J 112:2408–2437. https://doi.org/10.1086/118192, arXiv:astro-ph/9609064ADSCrossRefGoogle Scholar
  150. Hamuy M, Phillips MM, Suntzeff NB, Maza J, González LE, Roth M, Krisciunas K, Morrell N, Green EM, Persson SE, McCarthy PJ (2003) An asymptotic-giant-branch star in the progenitor system of a Type Ia supernova. Nature 424:651–654.  https://doi.org/10.1038/nature01854, arXiv:astro-ph/0306270ADSCrossRefGoogle Scholar
  151. Hanawa T, Sugimoto D, Hashimoto M (1983) Nucleosynthesis in explosive hydrogen burning and its implications in ten-minute interval of X-ray bursts. Publ Astron Soc Jpn 35:491–506ADSGoogle Scholar
  152. Hansen CJ, van Horn HM (1975) Steady-state nuclear fusion in accreting neutron-star envelopes. Astrophys J 195:735–741. https://doi.org/10.1086/153375 ADSCrossRefGoogle Scholar
  153. Harkness R (1991) Type Ia Supernovae. In: Danziger IJ, Kjaer K (eds) European southern observatory astrophysics symposia, vol 37, pp 447–456Google Scholar
  154. Harris MJ, Leising MD, Share GH (1991) A search for the 478 keV line from the decay of nucleosynthetic Be-7. Astrophys J 375:216–220. https://doi.org/10.1086/170183 ADSCrossRefGoogle Scholar
  155. Harris MJ, Naya JE, Teegarden BJ, Cline TL, Gehrels N, Palmer DM, Ramaty R, Seifert H (1999) Transient gamma ray spectrometer observations of gamma-ray lines from novae. I. Limits on the positron annihilation line in five individual novae. Astrophys J 522:424–432. https://doi.org/10.1086/307625, arXiv:astro-ph/0004164ADSCrossRefGoogle Scholar
  156. Harris MJ, Teegarden BJ, Weidenspointner G, Palmer DM, Cline TL, Gehrels N, Ramaty R (2001) Transient gamma-ray spectrometer observations of gamma-ray lines from novae. III. The 478 keV line from 7Be decay. Astrophys J 563:950–957. https://doi.org/10.1086/323951 ADSCrossRefGoogle Scholar
  157. Hatano K, Branch D, Fisher A, Starrfield S (1997) On the spatial distribution and occurrence rate of Galactic classical novae. Mon Not R Astron Soc 290:113–118ADSCrossRefGoogle Scholar
  158. Hayakawa S (1981) Galactic X-rays observed with X-ray astronomy satellite ‘Hakucho’. Space Sci Rev 29:221–290. https://doi.org/10.1007/BF00229297 ADSCrossRefGoogle Scholar
  159. Heger A, Cumming A, Galloway DK, Woosley SE (2007) Models of Type I X-ray bursts from GS 1826-24: a probe of rp-process hydrogen burning. Astrophys J 671:L141–L144. https://doi.org/10.1086/525522, arXiv:0711.1195ADSCrossRefGoogle Scholar
  160. Henyey L, L’Ecuyer J (1969) Studies in stellar evolution. VIII. The time scale for the diffusion of energy in the stellar interior. Astrophys J 156:549–558. https://doi.org/10.1086/149988 ADSCrossRefGoogle Scholar
  161. Henze M, Ness JU, Darnley MJ, Bode MF, Williams SC, Shafter AW, Sala G, Kato M, Hachisu I, Hernanz M (2015) A remarkable recurrent nova in M 31: the predicted 2014 outburst in X-rays with Swift. Astron Astrophys 580:A46. https://doi.org/10.1051/0004-6361/201526028, arXiv:1504.06237CrossRefGoogle Scholar
  162. Hernanz M (2002) Gamma-ray emission from classical novae. In: Hernanz M, José J (eds) Classical nova explosions. American Institute of Physics conference series, vol 637, pp 399–408. https://doi.org/10.1063/1.1518237
  163. Hernanz M (2012) Novae in γ-rays. Bull Astron Soc India 40:377. arXiv:1301.1660Google Scholar
  164. Hernanz M (2014) Gamma-ray emission from nova outbursts. In: Woudt PA, Ribeiro VARM (eds) Stellar novae: past and future decades. Astronomical Society of the Pacific conference series, vol 490, p 319. arXiv:1305.0769Google Scholar
  165. Hernanz M (2015) Astrophysics: a lithium-rich stellar explosion. Nature 518:307–308. https://doi.org/10.1038/518307a ADSCrossRefGoogle Scholar
  166. Hernanz M, José J (2004) γ-Rays from classical novae: expectations from present and future missions. New Astron Rev 48:35–39. https://doi.org/10.1016/j.newar.2003.11.005 ADSCrossRefGoogle Scholar
  167. Hernanz M, Isern J, Canal R, Labay J, Mochkovitch R (1988) The final stages of evolution of cold, mass-accreting white dwarfs. Astrophys J 324:331–344. https://doi.org/10.1086/165898 ADSCrossRefGoogle Scholar
  168. Hernanz M, Jose J, Coc A, Isern J (1996) On the synthesis of 7Li and 7Be in novae. Astrophys J 465:L27+. https://doi.org/10.1086/310122 ADSCrossRefGoogle Scholar
  169. Hernanz M, José J, Coc A, Gómez-Gomar J, Isern J (1999) Gamma-ray emission from novae related to positron annihilation: constraints on its observability posed by new experimental nuclear data. Astrophys J 526:L97–L100. https://doi.org/10.1086/312372, arXiv:astro-ph/9910111ADSCrossRefGoogle Scholar
  170. Hernanz M, Smith DM, Fishman J, Harmon A, Gómez-Gomar J, José J, Isern J, Jean P (2000) BATSE observations of classical novae. In: McConnell ML, Ryan JM (eds) American Institute of Physics conference series, vol 510, pp 82–86. https://doi.org/10.1063/1.1303179
  171. Hernanz M, Gómez-Gomar J, José J (2002) The prompt gamma-ray emission of novae. New Astron Rev 46:559–563. https://doi.org/10.1016/S1387-6473(02)00201-4, arXiv:astro-ph/0110203ADSCrossRefGoogle Scholar
  172. Higdon JC, Fowler WA (1987) Gamma-ray constraints on Na-22 yields in nova explosions. Astrophys J 317:710–716. https://doi.org/10.1086/165317 ADSCrossRefGoogle Scholar
  173. Hillebrandt W, Thielemann F (1982) Nucleosynthesis in novae – a source of Ne-E and Al-26. Astrophys J 255:617–623. https://doi.org/10.1086/159864 ADSCrossRefGoogle Scholar
  174. Hillman Y, Prialnik D, Kovetz A, Shara MM (2016) Growing white dwarfs to the Chandrasekhar limit: the parameter space of the single degenerate SNIa channel. Astrophys J 819:168. https://doi.org/10.3847/0004-637X/819/2/168, arXiv:1508.03141ADSCrossRefGoogle Scholar
  175. Hoeflich P, Khokhlov A (1996) Explosion models for Type IA supernovae: a comparison with observed light curves, distances, H 0, and Q 0. Astrophys J 457:500. https://doi.org/10.1086/176748, arXiv:astro-ph/9602025ADSCrossRefGoogle Scholar
  176. Hoffman JA, Marshall HL, Lewin WHG (1978) Dual character of the rapid burster and a classification of X-ray bursts. Nature 271:630–633. https://doi.org/10.1038/271630a0 ADSCrossRefGoogle Scholar
  177. Hoppe P, Ott U (1997) Mainstream silicon carbide grains from meteorites. In: Bernatowicz TJ, Zinner E (eds) American Institute of Physics conference series, vol 402, pp 27–58. https://doi.org/10.1063/1.53314
  178. Hoppe P, Annen P, Strebel R, Eberhardt P, Gallino R, Lugaro M, Amari S, Lewis RS (1997) Meteoritic silicon carbide grains with unusual Si isotopic compositions: evidence for an origin in low-mass, low-metallicity asymptotic giant branch stars. Astrophys J 487:L101–L104. https://doi.org/10.1086/310869 ADSCrossRefGoogle Scholar
  179. Hoppe P, Strebel R, Eberhardt P, Amari S, Lewis RS (2000) Isotopic properties of silicon carbide X grains from the Murchison meteorite in the size range 0.5–1.5 μm. Meteoritics and Planetary Science 35:1157–1176ADSCrossRefGoogle Scholar
  180. Hounsell R, Bode MF, Hick PP, Buffington A, Jackson BV, Clover JM, Shafter AW, Darnley MJ, Mawson NR, Steele IA, Evans A, Eyres SPS, O’Brien TJ (2010) Exquisite nova light curves from the Solar Mass Ejection Imager (SMEI). Astrophys J 724:480–486. https://doi.org/10.1088/0004-637X/724/1/480, arXiv:1009.1737ADSCrossRefGoogle Scholar
  181. Hounsell R, Darnley MJ, Bode MF, Harman DJ, Surina F, Starrfield S, Holdsworth DL, Bewsher D, Hick PP, Jackson BV, Buffington A, Clover JM, Shafter AW (2016) Nova light curves from the Solar Mass Ejection Imager (SMEI) – II. The extended catalog. Astrophys J 820:104. https://doi.org/10.3847/0004-637X/820/2/104, arXiv:1512.03321ADSCrossRefGoogle Scholar
  182. Howell DA, Sullivan M, Nugent PE, Ellis RS, Conley AJ, Le Borgne D, Carlberg RG, Guy J, Balam D, Basa S, Fouchez D, Hook IM, Hsiao EY, Neill JD, Pain R, Perrett KM, Pritchet CJ (2006) The Type Ia supernova SNLS-03D3bb from a super-Chandrasekhar-mass white dwarf star. Nature 443:308–311.  https://doi.org/10.1038/nature05103, arXiv:astro-ph/0609616ADSCrossRefGoogle Scholar
  183. Hoyle F, Fowler WA (1960) Nucleosynthesis in supernovae. Astrophys J 132:565–590. https://doi.org/10.1086/146963 ADSCrossRefGoogle Scholar
  184. Hutcheon ID, Huss GR, Fahey AJ, Wasserburg GJ (1994) Extreme Mg-26 and O-17 enrichments in an Orgueil corundum: identification of a presolar oxide grain. Astrophys J 425:L97–L100. https://doi.org/10.1086/187319 ADSCrossRefGoogle Scholar
  185. Iben I Jr, Tutukov AV (1985) On the evolution of close binaries with components of initial mass between 3 solar masses and 12 solar masses. Astrophys J Suppl Ser 58:661–710. https://doi.org/10.1086/191054 ADSCrossRefGoogle Scholar
  186. Iliadis C (2007) Nuclear physics of stars. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  187. Iliadis C, Endt PM, Prantzos N, Thompson WJ (1999) Explosive hydrogen burning of 27Si, 31S, 35Ar, and 39Ca in novae and X-ray bursts. Astrophys J 524:434–453. https://doi.org/10.1086/307778 ADSCrossRefGoogle Scholar
  188. Iliadis C, Downen LN, José J, Nittler LR, Starrfield S (2018) On presolar stardust grains from CO classical novae. Astrophys J, arXiv:1801.09568Google Scholar
  189. in’t Zand J (2017) Understanding superbursts. In: Serino M, Shidatsu M, Iwakiri W, Mihara T (eds) 7 years of MAXI: monitoring X-ray transients, p 121. arXiv:1702.04899Google Scholar
  190. in’t Zand JJM, Weinberg NN (2010) Evidence of heavy-element ashes in thermonuclear X-ray bursts with photospheric superexpansion. Astron Astrophys 520:A81. https://doi.org/10.1051/0004-6361/200913952, arXiv:1001.0900CrossRefGoogle Scholar
  191. in’t Zand JJM, Kuulkers E, Verbunt F, Heise J, Cornelisse R (2003) A superburst from 4U 1254-69. Astron Astrophys 411:L487–L491. https://doi.org/10.1051/0004-6361:20031586, arXiv:astro-ph/0310364ADSCrossRefGoogle Scholar
  192. in’t Zand JJM, Cumming A, van der Sluys MV, Verbunt F, Pols OR (2005) On the possibility of a helium white dwarf donor in the presumed ultracompact binary 2S 0918-549. Astron Astrophys 441:675–684. https://doi.org/10.1051/0004-6361:20053002, arXiv:astro-ph/0506666ADSCrossRefGoogle Scholar
  193. Isern J, Jean P, Bravo E, Knödlseder J, Lebrun F, Churazov E, Sunyaev R, Domingo A, Badenes C, Hartmann DH, Hoeflich P, Renaud M, Soldi S, Elias-Rosa N, Hernanz M, Domínguez I, García-Senz D, Lichti GG, Vedrenne G, Von Ballmoos P (2016) Gamma-ray emission from SN2014J near maximum optical light. Astron Astrophys 588:A67. https://doi.org/10.1051/0004-6361/201526941, arXiv:1602.02918ADSCrossRefGoogle Scholar
  194. Ivanova LN, Imshennik VS, Chechetkin VM (1974) Pulsation regime of the thermonuclear explosion of a star’s dense carbon core. Astrophys Space Sci 31:497–514. https://doi.org/10.1007/BF00644102 ADSCrossRefGoogle Scholar
  195. Iyudin AF, Bennett K, Bloemen H, Diehl R, Hermsen W, Lichti GG, Morris D, Ryan J, Schoenfelder V, Steinle H, Strong A, Varendorff M, Winkler C (1995) COMPTEL search for 22Na line emission from recent novae. Astron Astrophys 300:422–428ADSGoogle Scholar
  196. Izzo L, Della Valle M, Mason E, Matteucci F, Romano D, Pasquini L, Vanzi L, Jordan A, Fernandez JM, Bluhm P, Brahm R, Espinoza N, Williams R (2015) Early optical spectra of nova V1369 Cen show the presence of lithium. Astrophys J 808:L14. https://doi.org/10.1088/2041-8205/808/1/L14, arXiv:1506.08048ADSCrossRefGoogle Scholar
  197. Jean P, Hernanz M, Gómez-Gomar J, José J (2000) Galactic 1.275-MeV emission from ONe novae and its detectability by INTEGRAL/SPI. Mon Not R Astron Soc 319:350–364. https://doi.org/10.1046/j.1365-8711.2000.03587.x, arXiv:astro-ph/0004126ADSCrossRefGoogle Scholar
  198. Jiang JA, Doi M, Maeda K, Shigeyama T, Nomoto K, Yasuda N, Jha SW, Tanaka M, Morokuma T, Tominaga N, Ivezić Ž, Ruiz-Lapuente P, Stritzinger MD, Mazzali PA, Ashall C, Mould J, Baade D, Suzuki N, Connolly AJ, Patat F, Wang L, Yoachim P, Jones D, Furusawa H, Miyazaki S (2017) A hybrid Type Ia supernova with an early flash triggered by helium-shell detonation. Nature 550:80–83.  https://doi.org/10.1038/nature23908, arXiv:1710.01824ADSCrossRefGoogle Scholar
  199. Jose J (2016) Stellar explosions: hydrodynamics and nucleosynthesis. CRC Press/Taylor and Francis, Boca Raton. https://doi.org/10.1201/b19165
  200. José J, Hernanz M (1998) Nucleosynthesis in classical novae: CO versus ONe white dwarfs. Astrophys J 494:680–690. https://doi.org/10.1086/305244, arXiv:astro-ph/9709153ADSCrossRefGoogle Scholar
  201. José J, Hernanz M (2007a) The origin of presolar nova grains. Meteorit Planet Sci 42:1135–1143ADSCrossRefGoogle Scholar
  202. José J, Hernanz M (2007b) TOPICAL REVIEW: nucleosynthesis in classical nova explosions. J Phys G Nucl Phys 34:431–458. https://doi.org/10.1088/0954-3899/34/12/R01 ADSCrossRefGoogle Scholar
  203. José J, Hernanz M, Coc A (1997) New results on 26Al production in classical novae. Astrophys J 479:L55–L58. https://doi.org/10.1086/310575, arXiv:astro-ph/9701181ADSCrossRefGoogle Scholar
  204. José J, Coc A, Hernanz M (1999) Nuclear uncertainties in the NENA-MGAL cycles and production of 22Na and 26Al during nova outbursts. Astrophys J 520:347–360. https://doi.org/10.1086/307445, arXiv:astro-ph/9902357ADSCrossRefGoogle Scholar
  205. José J, Hernanz M, García-Berro E, Gil-Pons P (2003) The impact of the chemical stratification of white dwarfs on the classification of classical novae. Astrophys J 597:L41–L44. https://doi.org/10.1086/379782, arXiv:astro-ph/0309451ADSCrossRefGoogle Scholar
  206. José J, Hernanz M, Amari S, Lodders K, Zinner E (2004) The imprint of nova nucleosynthesis in presolar grains. Astrophys J 612:414–428. https://doi.org/10.1086/422569, arXiv:astro-ph/0405332ADSCrossRefGoogle Scholar
  207. José J, García-Berro E, Hernanz M, Gil-Pons P (2007) The first nova explosions. Astrophys J 662:L103–L106. https://doi.org/10.1086/519521 ADSCrossRefGoogle Scholar
  208. José J, Moreno F, Parikh A, Iliadis C (2010) Hydrodynamic models of Type I X-ray bursts: metallicity effects. Astrophys J Suppl Ser 189:204–239. https://doi.org/10.1088/0067-0049/189/1/204, arXiv:1005.4767ADSCrossRefGoogle Scholar
  209. Joss PC (1977) X-ray bursts and neutron-star thermonuclear flashes. Nature 270:310–314. https://doi.org/10.1038/270310a0 ADSCrossRefGoogle Scholar
  210. Joss PC (1978) Helium-burning flashes on an accreting neutron star – a model for X-ray burst sources. Astrophys J 225:L123–L127. https://doi.org/10.1086/182808 ADSCrossRefGoogle Scholar
  211. Kashi A, Soker N (2011) A circumbinary disc in the final stages of common envelope and the core-degenerate scenario for Type Ia supernovae. Mon Not R Astron Soc 417:1466–1479. https://doi.org/10.1111/j.1365-2966.2011.19361.x, arXiv:1105.5698ADSCrossRefGoogle Scholar
  212. Kasliwal MM, Cenko SB, Kulkarni SR, Ofek EO, Quimby R, Rau A (2011) Discovery of a new photometric sub-class of faint and fast classical novae. Astrophys J 735:94. https://doi.org/10.1088/0004-637X/735/2/94, arXiv:1003.1720ADSCrossRefGoogle Scholar
  213. Kato M, Hachisu I (1994) Optically thick winds in nova outbursts. Astrophys J 437:802–826. https://doi.org/10.1086/175041 ADSCrossRefGoogle Scholar
  214. Kato M, Saio H, Hachisu I, Nomoto K (2014) Shortest recurrence periods of novae. Astrophys J 793:136. https://doi.org/10.1088/0004-637X/793/2/136, arXiv:1404.0582ADSCrossRefGoogle Scholar
  215. Keek L, in’t Zand JJM (2008) On burning regimes and long duration X-ray bursts. In: Proceedings of the 7th INTEGRAL workshop, p 32. arXiv:0811.4574Google Scholar
  216. Keek L, Galloway DK, in’t Zand JJM, Heger A (2010) Multi-instrument X-ray observations of thermonuclear bursts with short recurrence times. Astrophys J 718:292–305. https://doi.org/10.1088/0004-637X/718/1/292, arXiv:1005.3302ADSCrossRefGoogle Scholar
  217. Keek L, Heger A, in’t Zand JJM (2012) Superburst models for neutron stars with hydrogen- and helium-rich atmospheres. Astrophys J 752:150. https://doi.org/10.1088/0004-637X/752/2/150, arXiv:1204.1343ADSCrossRefGoogle Scholar
  218. Kercek A, Hillebrandt W, Truran JW (1998) Two-dimensional simulations of the thermonuclear runaway in an accreted atmosphere of a C+O White Dwarf. Astron Astrophys 337:379–392. arXiv:astro-ph/9801054Google Scholar
  219. Kercek A, Hillebrandt W, Truran JW (1999) Three-dimensional simulations of classical novae. Astron Astrophys 345:831–840. arXiv:astro-ph/9811259Google Scholar
  220. Khokhlov AM (1991) Delayed detonation model for Type IA supernovae. Astron Astrophys 245:114–128ADSGoogle Scholar
  221. Khokhlov AM (1995) Propagation of turbulent flames in supernovae. Astrophys J 449:695–713. https://doi.org/10.1086/176091 ADSCrossRefGoogle Scholar
  222. Khokhlov A, Mueller E, Hoeflich P (1993) Light curves of Type IA supernova models with different explosion mechanisms. Astron Astrophys 270:223–248ADSGoogle Scholar
  223. Khokhlov AM, Oran ES, Wheeler JC (1997) Deflagration-to-detonation transition in thermonuclear supernovae. Astrophys J 478:678–688. https://doi.org/10.1086/303815, arXiv:astro-ph/9612226ADSCrossRefGoogle Scholar
  224. Knödlseder J (1999) Implications of 1.8 MEV gamma-ray observations for the origin of 26Al. Astrophys J 510:915–929. https://doi.org/10.1086/306601 ADSCrossRefGoogle Scholar
  225. Koike O, Hashimoto M, Kuromizu R, Fujimoto S (2004) Final products of the rp-process on accreting neutron stars. Astrophys J 603:242–251. https://doi.org/10.1086/381354 ADSCrossRefGoogle Scholar
  226. Kolb U, Politano M (1997) The contribution of O-Ne-Mg novae to the 26Al production in the Galaxy. Astron Astrophys 319:909–922ADSGoogle Scholar
  227. Kong AKH, Miller JM, Méndez M, Cottam J, Lewin WHG, Paerels F, Kuulkers E, Wijnands R, van der Klis M (2007) Nondetection of gravitationally redshifted absorption lines in the X-ray burst spectra of GS 1826-24. Astrophys J 670:L17–L20. https://doi.org/10.1086/524137, arXiv:0708.0413ADSCrossRefGoogle Scholar
  228. Kovetz A, Prialnik D (1985) CNO abundances resulting from diffusion in accreting nova progenitors. Astrophys J 291:812–821. https://doi.org/10.1086/163117 ADSCrossRefGoogle Scholar
  229. Kovetz A, Prialnik D (1997) The composition of nova ejecta from multicycle evolution models. Astrophys J 477:356–367. https://doi.org/10.1086/303675 ADSCrossRefGoogle Scholar
  230. Kraft RP (1964) Are all novae binary stars? Leaflet Astronom Soc Pac 9:137–144ADSGoogle Scholar
  231. Krautter J, Oegelman H, Starrfield S, Wichmann R, Pfeffermann E (1996) ROSAT X-ray observations of nova V1974 Cygni: the rise and fall of the brightest supersoft X-ray source. Astrophys J 456:788–+. https://doi.org/10.1086/176697 ADSCrossRefGoogle Scholar
  232. Kuchner MJ, Kirshner RP, Pinto PA, Leibundgut B (1994) Evidence for Ni-56 yields Co-56 yields Fe-56 decay in Type IA supernovae. Astrophys J 426:L89–L92. https://doi.org/10.1086/187347 ADSCrossRefGoogle Scholar
  233. Kulkarni PV, Ashok NM, Apparao KMV, Chitre SM (1979) Discovery of IR bursts from Liller I/MXB1730-333. Nature 280:819–820. https://doi.org/10.1038/280819a0 ADSCrossRefGoogle Scholar
  234. Kumagai S, Nomoto K (1997) Gamma-rays and X-rays from Type Ia supernovae. In: Ruiz-Lapuente P, Canal R, Isern J (eds) NATO ASIC Proc. 486: thermonuclear supernovae, pp 515–540CrossRefGoogle Scholar
  235. Kushnir D, Katz B, Dong S, Livne E, Fernández R (2013) Head-on collisions of white dwarfs in triple systems could explain Type Ia supernovae. Astrophys J 778:L37. https://doi.org/10.1088/2041-8205/778/2/L37, arXiv:1303.1180ADSCrossRefGoogle Scholar
  236. Kuulkers E (2004) The observers’ view of (very) long X-ray bursts: they are super! Nucl Phys B Proc Suppl 132:466–475. https://doi.org/10.1016/j.nuclphysbps.2004.04.081, arXiv:astro-ph/0310402ADSCrossRefGoogle Scholar
  237. Kuulkers E, in’t Zand JJM, van Kerkwijk MH, Cornelisse R, Smith DA, Heise J, Bazzano A, Cocchi M, Natalucci L, Ubertini P (2002) A half-a-day long thermonuclear X-ray burst from KS 1731-260. Astron Astrophys 382:503–512. https://doi.org/10.1051/0004-6361:20011654, arXiv:astro-ph/0111261ADSCrossRefGoogle Scholar
  238. Kuulkers E, den Hartog PR, in’t Zand JJM, Verbunt FWM, Harris WE, Cocchi M (2003) Photospheric radius expansion X-ray bursts as standard candles. Astron Astrophys 399:663–680. https://doi.org/10.1051/0004-6361:20021781, arXiv:astro-ph/0212028ADSCrossRefGoogle Scholar
  239. Landau LD, Lifshitz EM (1959) Fluid mechanics. Pergamon Press, OxfordGoogle Scholar
  240. Langanke K, Martínez-Pinedo G (2000) Shell-model calculations of stellar weak interaction rates: II. Weak rates for nuclei in the mass range /A=45-65 in supernovae environments. Nucl Phys A 673:481–508. https://doi.org/10.1016/S0375-9474(00)00131-7, arXiv:nucl-th/0001018ADSCrossRefGoogle Scholar
  241. Leising MD (1991) Gamma-ray lines from classical novae. In: Durouchoux P, Prantzos N (eds) Gamma-ray line astrophysics, American Institute of Physics conference series, vol 232, pp 173–182. https://doi.org/10.1063/1.40932
  242. Leising MD (1993) Hard emission from classical novae. Astron Astrophys Suppl Ser 97:299–301ADSGoogle Scholar
  243. Leising MD, Clayton DD (1987) Positron annihilation gamma rays from novae. Astrophys J 323:159–169. https://doi.org/10.1086/165816 ADSCrossRefGoogle Scholar
  244. Lewin WHG (1977) X-ray burst sources. In: Papagiannis MD (ed) Eighth Texas symposium on relativistic astrophysics. New York Academy Sciences annals, vol 302, pp 210–227. https://doi.org/10.1111/j.1749-6632.1977.tb37050.x ADSCrossRefGoogle Scholar
  245. Lewin WHG, Clark G, Doty J (1976) X-ray bursts. IAU Circ 2922:1ADSGoogle Scholar
  246. Lewin WHG, Cominsky LR, Walker AR, Robertson BSC (1980) Simultaneous IR and X-ray burst observation of SER X-1. Nature 287:27–28. https://doi.org/10.1038/287027a0 ADSCrossRefGoogle Scholar
  247. Lewin WHG, van Paradijs J, Taam RE (1993) X-ray bursts. Space Sci Rev 62:223–389. https://doi.org/10.1007/BF00196124 ADSCrossRefGoogle Scholar
  248. Lewin WHG, van Paradijs J, Taam RE (1995) X-ray bursts. In: Lewin WHG, van Paradijs J, van den Heuvel EPJ (eds) X-ray binaries. Cambridge University Press, Cambridge, pp 175–232Google Scholar
  249. Lewis RS, Ming T, Wacker JF, Anders E, Steel E (1987) Interstellar diamonds in meteorites. Nature 326:160–162. https://doi.org/10.1038/326160a0 ADSCrossRefGoogle Scholar
  250. Linares M, Watts AL, Wijnands R, Soleri P, Degenaar N, Curran PA, Starling RLC, van der Klis M (2009) The Swift capture of a long X-ray burst from XTE J1701-407. Mon Not R Astron Soc 392:L11–L15. https://doi.org/10.1111/j.1745-3933.2008.00572.x, arXiv:0808.3950ADSCrossRefGoogle Scholar
  251. Liu N, Nittler LR, O’D Alexander CM, Wang J, Pignatari M, José J, Nguyen A (2016) Stellar origins of extremely 13C- and 15N-enriched Presolar SiC grains: novae or supernovae? Astrophys J 820:140. https://doi.org/10.3847/0004-637X/820/2/140, arXiv:1602.05252ADSCrossRefGoogle Scholar
  252. Liu N, Nittler LR, Pignatari M, O’D Alexander CM, Wang J (2017) Stellar Origin of 15N-rich presolar SiC grains of Type AB: supernovae with explosive hydrogen burning. Astrophys J 842:L1. https://doi.org/10.3847/2041-8213/aa74e5, arXiv:1705.08222ADSCrossRefGoogle Scholar
  253. Liu N, Nittler LR, Alexander COD, Wang J (2018) Late formation of silicon carbide in Type II supernovae. Astrophys J. arXiv:1801.06463Google Scholar
  254. Livio M (1992) Classical novae and the extragalactic distance scale. Astrophys J 393:516–522. https://doi.org/10.1086/171524 ADSCrossRefGoogle Scholar
  255. Livio M (1994) Topics in the theory of cataclysmic variables and X-ray binaries. In: Shore SN, Livio M, van den Heuvel EPJ (eds) Saas-Fee Advanced Course 22: interacting binaries, pp 135–262Google Scholar
  256. Lodders K (2005) Presolar grains from meteorites: remnants from the early times of the solar system. Chem Erde-Geochem 65:93–166. https://doi.org/10.1016/j.chemer.2005.01.001, arXiv:astro-ph/0501430ADSCrossRefGoogle Scholar
  257. Lorén-Aguilar P, Isern J, García-Berro E (2010) Smoothed particle hydrodynamics simulations of white dwarf collisions and close encounters. Mon Not R Astron Soc 406:2749–2763. https://doi.org/10.1111/j.1365-2966.2010.16878.x, arXiv:1004.4783ADSCrossRefGoogle Scholar
  258. Lugaro M, Davis AM, Gallino R, Pellin MJ, Straniero O, Käppeler F (2003) Isotopic compositions of strontium, zirconium, molybdenum, and barium in single presolar SiC grains and asymptotic giant branch stars. Astrophys J 593:486–508. https://doi.org/10.1086/376442 ADSCrossRefGoogle Scholar
  259. MacAlpine GM, Ecklund TC, Lester WR, Vanderveer SJ, Strolger L (2007) A spectroscopic study of nuclear processing and the production of anomalously strong lines in the crab nebula. Astron J 133:81–88. https://doi.org/10.1086/509504, arXiv:astro-ph/0609803ADSCrossRefGoogle Scholar
  260. Mahoney WA, Ling JC, Jacobson AS, Lingenfelter RE (1982) Diffuse galactic gamma-ray line emission from nucleosynthetic Fe-60, Al-26, and Na-22 – preliminary limits from HEAO 3. Astrophys J 262:742–748. https://doi.org/10.1086/160469 ADSCrossRefGoogle Scholar
  261. Malone CM, Nonaka A, Almgren AS, Bell JB, Zingale M (2011) Multidimensional modeling of Type I X-ray bursts. I. Two-dimensional convection prior to the outburst of a pure 4He accretor. Astrophys J 728:118. https://doi.org/10.1088/0004-637X/728/2/118, arXiv:1012.0609ADSCrossRefGoogle Scholar
  262. Malone CM, Zingale M, Nonaka A, Almgren AS, Bell JB (2014) Multidimensional modeling of Type I X-ray bursts. II. Two-dimensional convection in a mixed H/He accretor. Astrophys J 788:115. https://doi.org/10.1088/0004-637X/788/2/115, arXiv:1404.6286ADSCrossRefGoogle Scholar
  263. Maraschi L, Cavaliere A (1977) X-ray bursts of nuclear origin? In: X-ray binaries and compact objects, pp 127–128CrossRefGoogle Scholar
  264. Matteucci F, Raiteri CM, Busson M, Gallino R, Gratton R (1993) Constraints on the nucleosynthesis of CU and Zn from models of chemical evolution of the Galaxy. Astron Astrophys 272:421–429ADSGoogle Scholar
  265. Mazurek TJ, Wheeler JC (1980) Thermonuclear explosions in stars. Fundam Cosm Phys 5:193–286ADSGoogle Scholar
  266. McClintock JE, Canizares CR, Cominsky L, Li FK, Lewin WHG, van Paradijs J, Grindlay JE (1979) A 3-s delay in an optical burst from X-ray burst source MXB1735-44. Nature 279:47–49. https://doi.org/10.1038/279047a0 ADSCrossRefGoogle Scholar
  267. McCully C, Jha SW, Foley RJ, Bildsten L, Fong WF, Kirshner RP, Marion GH, Riess AG, Stritzinger MD (2014) A luminous, blue progenitor system for the Type Iax supernova 2012Z. Nature 512:54–56.  https://doi.org/10.1038/nature13615, arXiv:1408.1089ADSCrossRefGoogle Scholar
  268. Messenger S, Keller LP, Stadermann FJ, Walker RM, Zinner E (2003) Samples of stars beyond the solar system: silicate grains in interplanetary dust. Science 300:105–108.  https://doi.org/10.1126/science.1080576 ADSCrossRefGoogle Scholar
  269. Metzger BD (2017) Kilonovae. Living reviews in relativity 20:3. https://doi.org/10.1007/s41114-017-0006-z, arXiv:1610.09381
  270. Metzger BD, Piro AL, Quataert E (2009) Nickel-rich outflows from accretion discs formed by the accretion-induced collapse of white dwarfs. Mon Not R Astron Soc 396:1659–1664. https://doi.org/10.1111/j.1365-2966.2009.14909.x, arXiv:0812.3656ADSCrossRefGoogle Scholar
  271. Meyer BS, Zinner E (2006) Nucleosynthesis. The University of Arizona space science series, Tucson, pp 69–108Google Scholar
  272. Milne PA, The L, Leising MD (2001) Late light curves of Type Ia supernovae. Astrophys J 559:1019–1031. https://doi.org/10.1086/322352, arXiv:astro-ph/0104185ADSCrossRefGoogle Scholar
  273. Minkowski R (1941) Spectra of supernovae. Publ Astron Soc Pac 53:224–225. https://doi.org/10.1086/125315 ADSCrossRefGoogle Scholar
  274. Mochkovitch R (1994) An introduction to the physics of Type II supernova explosions. In: Latal H, Schweiger W (eds) Matter under extreme conditions. Lecture notes in physics, vol 440. Springer, Berlin, p 49Google Scholar
  275. Mochkovitch R, Hernanz M, Isern J, Martin X (1993) Gamma-ray bursts as collimated jets from neutron star/black hole mergers. Nature 361:236–238. https://doi.org/10.1038/361236a0 ADSCrossRefGoogle Scholar
  276. Molaro P, Izzo L, Mason E, Bonifacio P, Della Valle M (2016) Highly enriched 7Be in the ejecta of Nova Sagittarii 2015 No. 2 (V5668 Sgr) and the Galactic 7Li origin. Mon Not R Astron Soc 463:L117–L121.  https://doi.org/10.1093/mnrasl/slw169, arXiv:1609.07297ADSCrossRefGoogle Scholar
  277. Moll R, Woosley SE (2013) Multi-dimensional models for double detonation in sub-Chandrasekhar mass white dwarfs. Astrophys J 774:137. https://doi.org/10.1088/0004-637X/774/2/137, arXiv:1303.0324ADSCrossRefGoogle Scholar
  278. Mostefaoui S, Hoppe P (2004) Discovery of abundant in situ silicate and spinel grains from red giant stars in a primitive meteorite. Astrophys J 613:L149–L152. https://doi.org/10.1086/424842 ADSCrossRefGoogle Scholar
  279. Mukai K, Nelson T, Sokoloski J, Chomiuk L, Finzell T, Linford J, Weston J, Rupen M, Mioduszewski A (2017) NuSTAR observations of Fermi-detected novae, V339 Delphini and V5668 Sagitarii. In: Ness JU, Migliari S (eds) The X-ray Universe 2017, p 152Google Scholar
  280. Narayan R, Paczynski B, Piran T (1992) Gamma-ray bursts as the death throes of massive binary stars. Astrophys J 395:L83–L86. https://doi.org/10.1086/186493, arXiv:astro-ph/9204001ADSCrossRefGoogle Scholar
  281. Ness JU (2012) High-resolution spectroscopy and high-density monitoring in X-rays of novae. Bull Astron Soc India 40:353. arXiv:1209.2153Google Scholar
  282. Ness JU, Schwarz GJ, Retter A, Starrfield S, Schmitt JHMM, Gehrels N, Burrows D, Osborne JP (2007) Swift X-ray observations of classical novae. Astrophys J 663:505–515. https://doi.org/10.1086/518084, arXiv:astro-ph/0703286ADSCrossRefGoogle Scholar
  283. Nguyen AN, Zinner E (2004) Discovery of ancient silicate stardust in a meteorite. Science 303:1496–1499.  https://doi.org/10.1126/science.1094389 ADSCrossRefGoogle Scholar
  284. Niemeyer JC, Woosley SE (1997) The thermonuclear explosion of Chandrasekhar mass white dwarfs. Astrophys J 475:740–753. https://doi.org/10.1086/303544, arXiv:astro-ph/9607032ADSCrossRefGoogle Scholar
  285. Nittler LR (1997) Presolar oxide grains in meteorites. In: Bernatowicz TJ, Zinner v (eds) American Institute of Physics conference series, vol 402, pp 59–82. https://doi.org/10.1063/1.53320
  286. Nittler LR, Ciesla F (2016) Astrophysics with extraterrestrial materials. Annu Rev Astron Astrophys 54:53–93.  https://doi.org/10.1146/annurev-astro-082214-122505 ADSCrossRefGoogle Scholar
  287. Nittler LR, Hoppe P (2005) Are presolar silicon carbide grains from novae actually from supernovae? Astrophys J 631:L89–L92. https://doi.org/10.1086/497029 ADSCrossRefGoogle Scholar
  288. Nittler LR, O’D Alexander CM, Gao X, Walker RM, Zinner EK (1994) Interstellar oxide grains from the Tieschitz ordinary chondrite. Nature 370:443–446. https://doi.org/10.1038/370443a0 ADSCrossRefGoogle Scholar
  289. Nittler LR, Hoppe P, Alexander CMO, Amari S, Eberhardt P, Gao X, Lewis RS, Strebel R, Walker RM, Zinner E (1995) Silicon nitride from supernovae. Astrophys J 453:L25–L28. https://doi.org/10.1086/309743 ADSCrossRefGoogle Scholar
  290. Nittler LR, Alexander CMO, Gao X, Walker RM, Zinner E (1997) Stellar sapphires: the properties and origins of presolar AL 2O 3 in meteorites. Astrophys J 483:475–495. https://doi.org/10.1086/304234 ADSCrossRefGoogle Scholar
  291. Nittler LR, Alexander CMO, Nguyen AN (2006) Extreme 13C and 15N enrichments in a Murchison presolar SiC grain. Meteorit Planet Sci Suppl 41:5316ADSGoogle Scholar
  292. Nofar I, Shaviv G, Starrfield S (1991) The formation of Al-26 in nova explosions. Astrophys J 369:440–450. https://doi.org/10.1086/169772 ADSCrossRefGoogle Scholar
  293. Nomoto K (1982) Accreting white dwarf models for Type 1 supernovae. II – Off-center detonation supernovae. Astrophys J 257:780–792. https://doi.org/10.1086/160031 ADSCrossRefGoogle Scholar
  294. Nomoto K, Kondo Y (1991) Conditions for accretion-induced collapse of white dwarfs. Astrophys J 367:L19–L22. https://doi.org/10.1086/185922 ADSCrossRefGoogle Scholar
  295. Nomoto K, Sugimoto D, Neo S (1976) Carbon deflagration supernova, an alternative to carbon detonation. Astrophys Space Sci 39:L37–L42. https://doi.org/10.1007/BF00648354 ADSCrossRefGoogle Scholar
  296. Nomoto K, Thielemann F, Yokoi K (1984) Accreting white dwarf models of Type I supernovae. III – carbon deflagration supernovae. Astrophys J 286:644–658. https://doi.org/10.1086/162639 ADSCrossRefGoogle Scholar
  297. Ore A, Powell JL (1949) Three-photon annihilation of an electron-positron pair. Phys Rev 75:1696–1699.  https://doi.org/10.1103/PhysRev.75.1696 ADSCrossRefzbMATHGoogle Scholar
  298. Orio M, Covington J, Ögelman H (2001) X-ray emission from classical and recurrent novae observed with ROSAT. Astron Astrophys 373:542–554. https://doi.org/10.1051/0004-6361:20010537, arXiv:astro-ph/0104219ADSCrossRefGoogle Scholar
  299. Orio M, Rana V, Page KL, Sokoloski J, Harrison F (2015) A NuSTAR observation of the fast symbiotic nova V745 Sco in outburst. Mon Not R Astron Soc 448:L35–L39.  https://doi.org/10.1093/mnrasl/slu195, arXiv:1412.2088ADSCrossRefGoogle Scholar
  300. Osborne JP (2015) Getting to know classical novae with Swift. J High Energy Astrophys 7:117–125. https://doi.org/10.1016, arXiv:1507.02153
  301. Ott U, Begemann F (1990) Discovery of s-process barium in the Murchison meteorite. Astrophys J 353:L57–L60. https://doi.org/10.1086/185707 ADSCrossRefGoogle Scholar
  302. Page D, Cumming A (2005) Superbursts from strange stars. Astrophys J 635:L157–L160. https://doi.org/10.1086/499520, arXiv:astro-ph/0508444ADSCrossRefGoogle Scholar
  303. Papish O, Perets HB (2016) Supernovae from direct collisions of white dwarfs and the role of helium shell ignition. Astrophys J 822:19. https://doi.org/10.3847/0004-637X/822/1/19, arXiv:1502.03453ADSCrossRefGoogle Scholar
  304. Parikh A, José J, Moreno F, Iliadis C (2008) The effects of variations in nuclear processes on Type I X-ray burst nucleosynthesis. Astrophys J Suppl Ser 178:110–136. https://doi.org/10.1086/589879, arXiv:0802.2819ADSCrossRefGoogle Scholar
  305. Payne Gaposchkin CH (1957) The galactic novae. Interscience Publishers, AmsterdamGoogle Scholar
  306. Perlmutter S, Gabi S, Goldhaber G, Goobar A, Groom DE, Hook IM, Kim AG, Kim MY, Lee JC, Pain R, Pennypacker CR, Small IA, Ellis RS, McMahon RG, Boyle BJ, Bunclark PS, Carter D, Irwin MJ, Glazebrook K, Newberg HJM, Filippenko AV, Matheson T, Dopita M, Couch WJ, The Supernova Cosmology Project (1997) Measurements of the cosmological parameters omega and lambda from the first seven supernovae at Z ≥ 0.35. Astrophys J 483:565–581. https://doi.org/10.1086/304265, arXiv:astro-ph/9608192ADSCrossRefGoogle Scholar
  307. Phillips MM (1993) The absolute magnitudes of Type IA supernovae. Astrophys J 413:L105–L108. https://doi.org/10.1086/186970 ADSCrossRefGoogle Scholar
  308. Phillips MM, Wells LA, Suntzeff NB, Hamuy M, Leibundgut B, Kirshner RP, Foltz CB (1992) SN 1991T – further evidence of the heterogeneous nature of Type IA supernovae. Astron J 103:1632–1637. https://doi.org/10.1086/116177 ADSCrossRefGoogle Scholar
  309. Piersanti L, Gagliardi S, Iben I Jr, Tornambé A (2003a) Carbon-oxygen white dwarf accreting CO-rich matter. II. Self-regulating accretion process up to the explosive stage. Astrophys J 598:1229–1238. https://doi.org/10.1086/378952 ADSCrossRefGoogle Scholar
  310. Piersanti L, Gagliardi S, Iben I Jr, Tornambé A (2003b) Carbon-oxygen white dwarfs accreting CO-rich matter. I. A comparison between rotating and nonrotating models. Astrophys J 583:885–901. https://doi.org/10.1086/345444, arXiv:astro-ph/0210624
  311. Pietsch W, Haberl F (2005) XMM-Newton detection of Type I X-ray bursts in M 31. Astron Astrophys 430:L45–L48. https://doi.org/10.1051/0004-6361:200400128, arXiv:astro-ph/0412373ADSCrossRefGoogle Scholar
  312. Pignatari M, Wiescher M, Timmes FX, de Boer RJ, Thielemann FK, Fryer C, Heger A, Herwig F, Hirschi R (2013) Production of carbon-rich presolar grains from massive stars. Astrophys J 767:L22. yhttps://doi.org/10.1088/2041-8205/767/2/L22, arXiv:1303.3374ADSCrossRefGoogle Scholar
  313. Pinto PA, Eastman RG, Rogers T (2001) A test for the nature of the Type IA supernova explosion mechanism. Astrophys J 551:231–243. https://doi.org/10.1086/320059, arXiv:astro-ph/0008330ADSCrossRefGoogle Scholar
  314. Politano M, Starrfield S, Truran JW, Weiss A, Sparks WM (1995) Hydrodynamic studies of accretion onto massive white dwarfs: ONeMg-enriched nova outbursts. I. Dependence on white dwarf mass. Astrophys J 448:807–821. https://doi.org/10.1086/176009 ADSCrossRefGoogle Scholar
  315. Pope SB (2000) Turbulent flows. Cambridge University press, CambridgeCrossRefzbMATHGoogle Scholar
  316. Pozdnyakov LA, Sobol IM, Syunyaev RA (1983) Comptonization and the shaping of X-ray source spectra – Monte Carlo calculations. Astrophys Space Phys Rev 2:189–331ADSGoogle Scholar
  317. Prantzos N, Diehl R (1996) Radioactive 26Al in the galaxy: observations versus theory. Phys Rep 267:1–69. https://doi.org/10.1016/0370-1573(95)00055-0 ADSCrossRefGoogle Scholar
  318. Prialnik D, Kovetz A (1984) The effect of diffusion on prenova evolution – CNO-enriched envelopes. Astrophys J 281:367–374. https://doi.org/10.1086/162107 ADSCrossRefGoogle Scholar
  319. Prialnik D, Kovetz A (1995) An extended grid of multicycle nova evolution models. Astrophys J 445:789–810. https://doi.org/10.1086/175741 ADSCrossRefGoogle Scholar
  320. Prialnik D, Shara MM, Shaviv G (1978) The evolution of a slow nova model with a Z = 0.03 envelope from pre-explosion to extinction. Astron Astrophys 62:339–348ADSGoogle Scholar
  321. Prialnik D, Shara MM, Shaviv G (1979) The evolution of a fast nova model with a Z = 0.03 envelope from pre-explosion to decline. Astron Astrophys 72:192–203ADSGoogle Scholar
  322. Pskovskii IP (1977) Light curves, color curves, and expansion velocity of Type I supernovae as functions of the rate of brightness decline. Sov Astron 21:675–682ADSGoogle Scholar
  323. Rakowski CE, Badenes C, Gaensler BM, Gelfand JD, Hughes JP, Slane PO (2006) Can ejecta-dominated supernova remnants be typed from their X-ray spectra? The case of G337.2-0.7. Astrophys J 646:982–1000. https://doi.org/10.1086/505018, arXiv:astro-ph/0604246ADSCrossRefGoogle Scholar
  324. Raskin C, Timmes FX, Scannapieco E, Diehl S, Fryer C (2009) On Type Ia supernovae from the collisions of two white dwarfs. Mon Not R Astron Soc 399:L156–L159. https://doi.org/10.1111/j.1745-3933.2009.00743.x, arXiv:0907.3915ADSCrossRefGoogle Scholar
  325. Rauch T, Suleimanov V, Werner K (2008) Absorption features in the spectra of X-ray bursting neutron stars. Astron Astrophys 490:1127–1134. https://doi.org/10.1051/0004-6361:200810129, arXiv:0809.2170ADSCrossRefGoogle Scholar
  326. Riess AG, Press WH, Kirshner RP (1996) A precise distance indicator: Type IA supernova multicolor light-curve shapes. Astrophys J 473:88–109. https://doi.org/10.1086/178129, arXiv:astro-ph/9604143ADSCrossRefGoogle Scholar
  327. Riess AG, Filippenko AV, Li W, Treffers RR, Schmidt BP, Qiu Y, Hu J, Armstrong M, Faranda C, Thouvenot E, Buil C (1999) The rise time of nearby Type IA supernovae. Astron J 118:2675–2688. https://doi.org/10.1086/301143, arXiv:astro-ph/9907037ADSCrossRefGoogle Scholar
  328. Ritossa C, Garcia-Berro E, Iben I Jr (1996) On the evolution of stars that form electron-degenerate cores processed by carbon burning. II. Isotope abundances and thermal pulses in a 10 Msun model with an ONe core and applications to long-period variables, classical novae, and accretion-induced collapse. Astrophys J 460:489–505. https://doi.org/10.1086/176987 ADSCrossRefGoogle Scholar
  329. Romano D, Matteucci F, Molaro P, Bonifacio P (1999) The galactic lithium evolution revisited. Astron Astrophys 352:117–128. arXiv:astro-ph/9910151Google Scholar
  330. Röpke FK, Hillebrandt W, Niemeyer JC, Woosley SE (2006) Multi-spot ignition in Type Ia supernova models. Astron Astrophys 448:1–14. https://doi.org/10.1051/0004-6361:20053926, arXiv:astro-ph/0510474ADSCrossRefGoogle Scholar
  331. Rosswog S, Kasen D, Guillochon J, Ramirez-Ruiz E (2009a) Collisions of white dwarfs as a new progenitor channel for Type Ia supernovae. Astrophys J 705:L128–L132. https://doi.org/10.1088/0004-637X/705/2/L128, arXiv:0907.3196ADSCrossRefGoogle Scholar
  332. Rosswog S, Ramirez-Ruiz E, Hix WR (2009b) Tidal disruption and ignition of white dwarfs by moderately massive black holes. Astrophys J 695:404–419. https://doi.org/10.1088/0004-637X/695/1/404, arXiv:0808.2143ADSCrossRefGoogle Scholar
  333. Ruiz-Lapuente P, Cappellaro E, Turatto M, Gouiffes C, Danziger IJ, Della Valle M, Lucy LB (1992) Modeling the iron-dominated spectra of the Type IA supernova SN 1991T at premaximum. Astrophys J 387:L33–L36. https://doi.org/10.1086/186299 ADSCrossRefGoogle Scholar
  334. Salaris M, Dominguez I, Garcia-Berro E, Hernanz M, Isern J, Mochkovitch R (1997) The cooling of CO white dwarfs: influence of the internal chemical distribution. Astrophys J 486:413–419. https://doi.org/10.1086/304483, arXiv:astro-ph/9704038ADSCrossRefGoogle Scholar
  335. Schatz H, Aprahamian A, Goerres J, Wiescher M, Rauscher T, Rembges JF, Thielemann F, Pfeiffer B, Moeller P, Kratz K, Herndl H, Brown BA, Rebel H (1998) rp-Process nucleosynthesis at extreme temperature and density conditions. Phys Rep 294:167–264. https://doi.org/10.1016/S0370-1573(97)00048-3 ADSCrossRefGoogle Scholar
  336. Schatz H, Bildsten L, Cumming A, Wiescher M (1999) The rapid proton process ashes from stable nuclear burning on an accreting neutron star. Astrophys J 524:1014–1029. https://doi.org/10.1086/307837, arXiv:astro-ph/9905274ADSCrossRefGoogle Scholar
  337. Schatz H, Aprahamian A, Barnard V, Bildsten L, Cumming A, Ouellette M, Rauscher T, Thielemann F, Wiescher M (2001) End point of the rp process on accreting neutron stars. Phys Rev Lett 86:3471–3474.  https://doi.org/10.1103/PhysRevLett.86.3471, arXiv:astro-ph/0102418ADSCrossRefGoogle Scholar
  338. Schmidt W, Niemeyer JC (2006) Thermonuclear supernova simulations with stochastic ignition. Astron Astrophys 446:627–633. https://doi.org/10.1051/0004-6361:20054145, arXiv:astro-ph/0510427ADSCrossRefGoogle Scholar
  339. Schmidt W, Niemeyer JC, Hillebrandt W, Röpke FK (2006) A localised subgrid scale model for fluid dynamical simulations in astrophysics. II. Application to Type Ia supernovae. Astron Astrophys 450:283–294. https://doi.org/10.1051/0004-6361:20053618, arXiv:astro-ph/0601500ADSCrossRefGoogle Scholar
  340. Schwarz GJ, Ness JU, Osborne JP, Page KL, Evans PA, Beardmore AP, Walter FM, Helton LA, Woodward CE, Bode M, Starrfield S, Drake JJ (2011) Swift X-ray observations of classical novae. II. The super soft source sample. Astrophys J Suppl Ser 197:31. https://doi.org/10.1088/0067-0049/197/2/31, arXiv:1110.6224ADSCrossRefGoogle Scholar
  341. Shafter AW (1997) On the nova rate in the galaxy. Astrophys J 487:226–236. https://doi.org/10.1086/304609 ADSCrossRefGoogle Scholar
  342. Shafter AW (2002) The galactic nova rate. In: Hernanz M, José J (eds) Classical nova explosions. American Institute of Physics conference series, vol 637, pp 462–471. https://doi.org/10.1063/1.1518246
  343. Shafter AW, Ciardullo R, Pritchet CJ (2000) Novae in external galaxies: M51, M87, and M101. Astrophys J 530:193–206. https://doi.org/10.1086/308349 ADSCrossRefGoogle Scholar
  344. Shara MM (1982) Localized thermonuclear runaways and volcanoes on degenerate dwarf stars. Astrophys J 261:649–660. https://doi.org/10.1086/160376 ADSCrossRefGoogle Scholar
  345. Shara MM, Doyle T, Lauer TR, Zurek D, Baltz EA, Kovetz A, Madrid JP, Mikołajewska J, Neill JD, Prialnik D, Welch DL, Yaron O (2017) A Hubble space telescope survey for novae in M87. II. Snuffing out the maximum magnitude-rate of decline relation for novae as a non-standard candle, and a prediction of the existence of ultrafast novae. Astrophys J 839:109. https://doi.org/10.3847/1538-4357/aa65cd, arXiv:1702.05788ADSCrossRefGoogle Scholar
  346. Shen KJ, Moore K (2014) The initiation and propagation of helium detonations in white dwarf envelopes. Astrophys J 797:46. https://doi.org/10.1088/0004-637X/797/1/46, arXiv:1409.3568ADSCrossRefGoogle Scholar
  347. Shen KJ, Kasen D, Weinberg NN, Bildsten L, Scannapieco E (2010) Thermonuclear .Ia supernovae from helium shell detonations: explosion models and observables. Astrophys J 715:767–774. https://doi.org/10.1088/0004-637X/715/2/767, arXiv:1002.2258ADSCrossRefGoogle Scholar
  348. Shore SN (2007) Astrophysical hydrodynamics: an introduction. Wiley, HobokenCrossRefGoogle Scholar
  349. Shore SN, Schwarz G, Bond HE, Downes RA, Starrfield S, Evans A, Gehrz RD, Hauschildt PH, Krautter J, Woodward CE (2003) The early ultraviolet evolution of the ONeMg Nova V382 Velorum 1999. Astron J 125:1507–1518. https://doi.org/10.1086/367803, arXiv:astro-ph/0301415ADSCrossRefGoogle Scholar
  350. Silverman JM, Foley RJ, Filippenko AV, Ganeshalingam M, Barth AJ, Chornock R, Griffith CV, Kong JJ, Lee N, Leonard DC, Matheson T, Miller EG, Steele TN, Barris BJ, Bloom JS, Cobb BE, Coil AL, Desroches LB, Gates EL, Ho LC, Jha SW, Kandrashoff MT, Li W, Mandel KS, Modjaz M, Moore MR, Mostardi RE, Papenkova MS, Park S, Perley DA, Poznanski D, Reuter CA, Scala J, Serduke FJD, Shields JC, Swift BJ, Tonry JL, Van Dyk SD, Wang X, Wong DS (2012) Berkeley Supernova Ia Program – I. Observations, data reduction and spectroscopic sample of 582 low-redshift Type Ia supernovae. Mon Not R Astron Soc 425:1789–1818. https://doi.org/10.1111/j.1365-2966.2012.21270.x, arXiv:1202.2128ADSCrossRefGoogle Scholar
  351. Sim SA, Sauer DN, Röpke FK, Hillebrandt W (2007) Light curves for off-centre ignition models of Type Ia supernovae. Mon Not R Astron Soc 378:2–12. https://doi.org/10.1111/j.1365-2966.2007.11795.x, arXiv:astro-ph/0703764ADSCrossRefGoogle Scholar
  352. Sim SA, Röpke FK, Hillebrandt W, Kromer M, Pakmor R, Fink M, Ruiter AJ, Seitenzahl IR (2010) Detonations in sub-Chandrasekhar-mass C+O white dwarfs. Astrophys J 714:L52–L57. https://doi.org/10.1088/2041-8205/714/1/L52, arXiv:1003.2917ADSCrossRefGoogle Scholar
  353. Sim SA, Fink M, Kromer M, Röpke FK, Ruiter AJ, Hillebrandt W (2012) 2D simulations of the double-detonation model for thermonuclear transients from low-mass carbon-oxygen white dwarfs. Mon Not R Astron Soc 420:3003–3016. https://doi.org/10.1111/j.1365-2966.2011.20162.x, arXiv:1111.2117ADSCrossRefGoogle Scholar
  354. Simonenko VA, Gryaznykh DA, Litvinenko IA, Lykov VA, Shushlebin AN (2012a) Mechanism of thermonuclear burning propagation in a helium layer on a neutron star surface: a refined model with heat conduction and subgrid turbulence. Astron Lett 38:305–320. https://doi.org/10.1134/S1063773712050088 ADSCrossRefGoogle Scholar
  355. Simonenko VA, Gryaznykh DA, Litvinenko IA, Lykov VA, Shushlebin AN (2012b) Mechanism of thermonuclear burning propagation in a helium layer on a neutron star surface: a simplified adiabatic model. Astron Lett 38:231–237. https://doi.org/10.1134/S1063773712040056 ADSCrossRefGoogle Scholar
  356. Smale AP (2001) A second intense burst with photospheric radius expansion from X2127+119 in M15. Astrophys J 562:957–962. https://doi.org/10.1086/323517, arXiv:astro-ph/0107593ADSCrossRefGoogle Scholar
  357. Starrfield S (1989) Thermonuclear processes and the classical nova outburst. In: Classical novae. Wiley, Chichester, pp 39–60Google Scholar
  358. Starrfield S, Truran JW, Sparks WM (1978a) CNO abundances and hydrodynamic studies of the Nova outburst. V – 1.00-solar-mass models with small mass envelopes. Astrophys J 226:186–202. https://doi.org/10.1086/156598 ADSCrossRefGoogle Scholar
  359. Starrfield S, Truran JW, Sparks WM, Arnould M (1978b) On Li-7 production in nova explosions. Astrophys J 222:600–603. https://doi.org/10.1086/156175 ADSCrossRefGoogle Scholar
  360. Starrfield S, Shore SN, Sparks WM, Sonneborn G, Truran JW, Politano M (1992) A prediction of the gamma-ray flux from Nova Herculis 1991. Astrophys J 391:L71–L74. https://doi.org/10.1086/186401 ADSCrossRefGoogle Scholar
  361. Starrfield S, Truran JW, Politano M, Sparks WM, Nofar I, Shaviv G (1993) 22Na and 26Al production in nova outbursts. Phys Rep 227:223–234. https://doi.org/10.1016/0370-1573(93)90067-N ADSCrossRefGoogle Scholar
  362. Starrfield S, Truran JW, Wiescher MC, Sparks WM (1998) Evolutionary sequences for Nova V1974 Cygni using new nuclear reaction rates and opacities. Mon Not R Astron Soc 296:502–522. https://doi.org/10.1046/j.1365-8711.1998.01312.x ADSCrossRefGoogle Scholar
  363. Starrfield S, Iliadis C, Hix WR, Timmes FX, Sparks WM (2009) The effects of the pep nuclear reaction and other improvements in the nuclear reaction rate library on simulations of the classical nova outburst. Astrophys J 692:1532–1542. https://doi.org/10.1088/0004-637X/692/2/1532, arXiv:0811.0197ADSCrossRefGoogle Scholar
  364. Starrfield S, Iliadis C, Hix WR (2016) The thermonuclear runaway and the classical nova outburst. Publ Astron Soc Pac 128(5):051001. https://doi.org/10.1088/1538-3873/128/963/051001, arXiv:1605.04294ADSCrossRefGoogle Scholar
  365. Stritzinger M, Leibundgut B, Walch S, Contardo G (2006) Constraints on the progenitor systems of Type Ia supernovae. Astron Astrophys 450:241–251. https://doi.org/10.1051/0004-6361:20053652, arXiv:astro-ph/0506415ADSCrossRefGoogle Scholar
  366. Strohmayer T, Bildsten L (2006) New views of thermonuclear bursts. Cambridge University Press, Cambridge, pp 113–156Google Scholar
  367. Strohmayer TE, Brown EF (2002) A remarkable 3 hour thermonuclear burst from 4U 1820-30. Astrophys J 566:1045–1059. https://doi.org/10.1086/338337, arXiv:astro-ph/0108420
  368. Strohmayer TE, Zhang W, Swank JH, Smale A, Titarchuk L, Day C, Lee U (1996) Millisecond X-ray variability from an accreting neutron star system. Astrophys J 469:L9–L12. https://doi.org/10.1086/310261 ADSCrossRefGoogle Scholar
  369. Strope RJ, Schaefer BE, Henden AA (2010) Catalog of 93 nova light curves: classification and properties. Astron J 140:34–62. https://doi.org/10.1088/0004-6256/140/1/34, arXiv:1004.3698ADSCrossRefGoogle Scholar
  370. Swank JH, Becker RH, Boldt EA, Holt SS, Pravdo SH, Serlemitsos PJ (1977) Spectral evolution of a long X-ray burst. Astrophys J 212:L73–L76. https://doi.org/10.1086/182378 ADSCrossRefGoogle Scholar
  371. Taam RE (1980) X-ray bursts from thermonuclear runaways on accreting neutron stars. Astrophys J 241:358–366. https://doi.org/10.1086/158348 ADSCrossRefGoogle Scholar
  372. Taam RE, Picklum RE (1978) Nuclear fusion and carbon flashes on neutron stars. Astrophys J 224:210–216. https://doi.org/10.1086/156367 ADSCrossRefGoogle Scholar
  373. Tajitsu A, Sadakane K, Naito H, Arai A, Aoki W (2015) Explosive lithium production in the classical nova V339 Del (Nova Delphini 2013). Nature 518:381–384.  https://doi.org/10.1038/nature14161, arXiv:1502.05598ADSCrossRefGoogle Scholar
  374. Tajitsu A, Sadakane K, Naito H, Arai A, Kawakita H, Aoki W (2016) The 7Be II resonance lines in two classical novae V5668 Sgr and V2944 Oph. Astrophys J 818:191. https://doi.org/10.3847/0004-637X/818/2/191, arXiv:1601.05168
  375. Takei D, Tsujimoto M, Kitamoto S, Ness JU, Drake JJ, Takahashi H, Mukai K (2009) Suzaku detection of superhard X-ray emission from the classical nova V2491 Cygni. Astrophys J 697:L54–L57. https://doi.org/10.1088/0004-637X/697/1/L54, arXiv:0904.1693ADSCrossRefGoogle Scholar
  376. Tammann GA (1970) On the frequency of supernovae as a function of the integral properties of inter mediate and late type spiral galaxies. Astron Astrophys 8:458–475ADSGoogle Scholar
  377. Tan WP, Fisker JL, Görres J, Couder M, Wiescher M (2007) O15(α,γ)Ne19 breakout reaction and impact on X-ray bursts. Phys Rev Lett 98(24):242503/1–242503/4.  https://doi.org/10.1103/PhysRevLett.98.242503, arXiv:0706.2349
  378. Tang M, Anders E (1988) Interstellar silicon carbide – how much older than the solar system? Astrophys J 335:L31–L34. https://doi.org/10.1086/185333 ADSCrossRefGoogle Scholar
  379. Tanvir NR, Levan AJ, Fruchter AS, Hjorth J, Hounsell RA, Wiersema K, Tunnicliffe RL (2013) A ‘kilonova’ associated with the short-duration γ-ray burst GRB 130603B. Nature 500:547–549.  https://doi.org/10.1038/nature12505, arXiv:1306.4971ADSCrossRefGoogle Scholar
  380. Tatischeff V, Hernanz M (2007) Evidence for nonlinear diffusive shock acceleration of cosmic rays in the 2006 outburst of the recurrent nova RS Ophiuchi. Astrophys J 663:L101–L104. https://doi.org/10.1086/520049, arXiv:0705.4422ADSCrossRefGoogle Scholar
  381. Tatischeff V, Tavani M, von Ballmoos P, Hanlon L, Oberlack U, Aboudan A, Argan A, Bernard D, Brogna A, Bulgarelli A, Bykov A, Campana R, Caraveo P, Cardillo M, Coppi P, De Angelis A, Diehl R, Donnarumma I, Fioretti V, Giuliani A, Grenier I, Grove JE, Hamadache C, Hartmann D, Hernanz M, Isern J, Kanbach G, Kiener J, Knödlseder J, Labanti C, Laurent P, Limousin O, Longo F, Marisaldi M, McBreen S, McEnery JE, Mereghetti S, Mirabel F, Morselli A, Nakazawa K, Peyré J, Piano G, Pittori C, Sabatini S, Stawarz L, Thompson DJ, Ulyanov A, Walter R, Wu X, Zdziarski A, Zoglauer A (2016) The e-ASTROGAM gamma-ray space mission. In: Space telescopes and instrumentation 2016: ultraviolet to gamma ray, Proc SPIE, vol 9905, p 99052N. https://doi.org/10.1117/12.2231601, arXiv:1608.03739
  382. Taubenberger S (2017) The extremes of thermonuclear supernovae. arXiv:1703.00528Google Scholar
  383. Thielemann F, Brachwitz F, Freiburghaus C, Kolbe E, Martinez-Pinedo G, Rauscher T, Rembges F, Hix WR, Liebendörfer M, Mezzacappa A, Kratz K, Pfeiffer B, Langanke K, Nomoto K, Rosswog S, Schatz H, Wiescher W (2001) Element synthesis in stars. Prog Part Nucl Phys 46:5–22. https://doi.org/10.1016/S0146-6410(01)00103-X, arXiv:astro-ph/0101476ADSCrossRefGoogle Scholar
  384. Thielemann F, Brachwitz F, Höflich P, Martinez-Pinedo G, Nomoto K (2004) The physics of Type Ia supernovae. New Astron Rev 48:605–610. https://doi.org/10.1016/j.newar.2003.12.038 ADSCrossRefGoogle Scholar
  385. Timmes FX, Woosley SE (1992) The conductive propagation of nuclear flames. I – degenerate C + O and O + NE + MG white dwarfs. Astrophys J 396:649–667. https://doi.org/10.1086/171746 ADSCrossRefGoogle Scholar
  386. Truran JW, Arnett WD, Cameron AGW (1967) Nucleosynthesis in supernova shock waves. Can J Phys 45:2315–2332ADSCrossRefGoogle Scholar
  387. van den Bergh S, Tammann GA (1991) Galactic and extragalactic supernova rates. Annu Rev Astron Astrophys 29:363–407.  https://doi.org/10.1146/annurev.aa.29.090191.002051 ADSCrossRefGoogle Scholar
  388. van Horn HM, Hansen CJ (1974) A model for the transient X-ray sources. Astrophys J 191:479–482. https://doi.org/10.1086/152987 ADSCrossRefGoogle Scholar
  389. van Paradijs J, McClintock JE (1995) Optical and ultraviolet observations of X-ray binaries. In: Lewin WHG, van Paradijs J, van den Heuvel EPJ (eds) X-ray binaries. Cambridge University Press, Cambridge, pp 58–125Google Scholar
  390. Villarreal AR, Strohmayer TE (2004) Discovery of the neutron star spin frequency in EXO 0748-676. Astrophys J 614:L121–L124. https://doi.org/10.1086/425737, arXiv:astro-ph/0409384ADSCrossRefGoogle Scholar
  391. Vurm I, Metzger BD (2018) High-energy emission from nonrelativistic radiative shocks: application to Gamma-ray novae. Astrophys J 852:62. https://doi.org/10.3847/1538-4357/aa9c4a ADSCrossRefGoogle Scholar
  392. Waki I, Inoue H, Koyama K, Matsuoka M, Murakami T, Ogawara Y, Ohashi T, Tanaka Y, Hayakawa S, Tawara Y, Miyamoto S, Tsunemi H, Kondo I (1984) Discovery of absorption lines in X-ray burst spectra from X1636-536. Publ Astron Soc Jpn 36:819–830ADSGoogle Scholar
  393. Walker MF (1954) Nova DQ Herculis (1934): an eclipsing binary with very short period. Publ Astron Soc Pac 66:230. https://doi.org/10.1086/126703 ADSCrossRefGoogle Scholar
  394. Ward RA, Fowler WA (1980) Thermalization of long-lived nuclear isomeric states under stellar conditions. Astrophys J 238:266–286. https://doi.org/10.1086/157983 ADSCrossRefGoogle Scholar
  395. Warner B (1995) Cataclysmic variable stars. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  396. Webbink RF (1984) Double white dwarfs as progenitors of R Coronae Borealis stars and Type I supernovae. Astrophys J 277:355–360. https://doi.org/10.1086/161701 ADSCrossRefGoogle Scholar
  397. Weinberg NN, Bildsten L (2007) Carbon detonation and shock-triggered helium burning in neutron star superbursts. Astrophys J 670:1291–1300. https://doi.org/10.1086/522111, arXiv:0706.3062ADSCrossRefGoogle Scholar
  398. Weinberg NN, Bildsten L, Schatz H (2006) Exposing the nuclear burning ashes of radius expansion Type I X-ray bursts. Astrophys J 639:1018–1032. https://doi.org/10.1086/499426, arXiv:astro-ph/0511247ADSCrossRefGoogle Scholar
  399. Weiss A, Truran JW (1990) Na-22 and Al-26 production and nucleosynthesis in novae explosions. Astron Astrophys 238:178–186ADSGoogle Scholar
  400. Wheeler JC, Harkness RP (1990) Type I supernovae. Rep Prog Phys 53:1467–1557. https://doi.org/10.1088/0034-4885/53/12/001 ADSCrossRefGoogle Scholar
  401. Whelan J, Iben I Jr (1973) Binaries and supernovae of Type I. Astrophys J 186:1007–1014. https://doi.org/10.1086/152565 ADSCrossRefGoogle Scholar
  402. White NE, Nagase F, Parmar AN (1995) The properties of X-ray binaries. In: Lewin WHG, van Paradijs J, van den Heuvel EPJ (eds) X-ray binaries. Cambridge University Press, Cambridge, pp 1–57Google Scholar
  403. Wiescher M, Gorres J, Thielemann F, Ritter H (1986) Explosive hydrogen burning in novae. Astron Astrophys 160:56–72ADSGoogle Scholar
  404. Wijnands R (2001) Recurrent very long Type I X-ray bursts in the low-mass X-Ray binary 4U 1636-53. Astrophys J 554:L59–L62. https://doi.org/10.1086/320922, arXiv:astro-ph/0103125ADSCrossRefGoogle Scholar
  405. Williams RE (1992) The formation of novae spectra. Astron J 104:725–733. https://doi.org/10.1086/116268 ADSCrossRefGoogle Scholar
  406. Woosley SE (1986) Nucleosynthesis and stellar evolution. In: Audouze J, Chiosi C, Woosley SE (eds) Saas-fee advanced course 16: nucleosynthesis and chemical evolution. Geneva Observatory, Geneva, p 1Google Scholar
  407. Woosley SE, Taam RE (1976) Gamma-ray bursts from thermonuclear explosions on neutron stars. Nature 263:101–103. https://doi.org/10.1038/263101a0 ADSCrossRefGoogle Scholar
  408. Woosley SE, Weaver TA (1986) The physics of supernova explosions. Annu Rev Astron Astrophys 24:205–253.  https://doi.org/10.1146/annurev.aa.24.090186.001225 ADSCrossRefGoogle Scholar
  409. Woosley SE, Heger A, Cumming A, Hoffman RD, Pruet J, Rauscher T, Fisker JL, Schatz H, Brown BA, Wiescher M (2004) Models for Type I X-ray bursts with improved nuclear physics. Astrophys J Suppl Ser 151:75–102. https://doi.org/10.1086/381533, arXiv:astro-ph/0307425ADSCrossRefGoogle Scholar
  410. Yaron O, Prialnik D, Shara MM, Kovetz A (2005) An extended grid of nova models. II. The parameter space of nova outbursts. Astrophys J 623:398–410. https://doi.org/10.1086/428435, arXiv:astro-ph/0503143ADSCrossRefGoogle Scholar
  411. Yoon S, Langer N (2005) On the evolution of rapidly rotating massive white dwarfs towards supernovae or collapses. Astron Astrophys 435:967–985. https://doi.org/10.1051/0004-6361:20042542, arXiv:astro-ph/0502133ADSCrossRefGoogle Scholar
  412. Zheng W, Shivvers I, Filippenko AV, Itagaki K, Clubb KI, Fox OD, Graham ML, Kelly PL, Mauerhan JC (2014) Estimating the first-light time of the Type Ia supernova 2014J in M82. Astrophys J 783:L24. https://doi.org/10.1088/2041-8205/783/1/L24, arXiv:1401.7968ADSCrossRefGoogle Scholar
  413. Zingale M, Dursi LJ (2007) Propagation of the first flames in Type Ia supernovae. Astrophys J 656:333–346. https://doi.org/10.1086/510306, arXiv:astro-ph/0610297ADSCrossRefGoogle Scholar
  414. Zingale M, Timmes FX, Fryxell B, Lamb DQ, Olson K, Calder AC, Dursi LJ, Ricker P, Rosner R, MacNeice P, Tufo HM (2001) Helium detonations on neutron stars. Astrophys J Suppl Ser 133:195–220. https://doi.org/10.1086/319182 ADSCrossRefGoogle Scholar
  415. Zingale M, Malone CM, Nonaka A, Almgren AS, Bell JB (2015) Comparisons of two- and three-dimensional convection in Type I X-ray bursts. Astrophys J 807:60. https://doi.org/10.1088/0004-637X/807/1/60, arXiv:1410.5796ADSCrossRefGoogle Scholar
  416. Zinner EK (2005) Presolar grains. Elsevier, Oxford, pp 17–39Google Scholar
  417. Zwicky F (1938) On collapsed neutron stars. Astrophys J 88:522–525. https://doi.org/10.1086/144003 ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Jordi Isern
    • 1
    • 2
  • Margarita Hernanz
    • 1
    • 2
  • Jordi José
    • 3
    • 4
  1. 1.Institute of Space Sciences (ICE, CSIC)BarcelonaSpain
  2. 2.Institut d’Estudis Espacials de Catalunya (IEEC)BarcelonaSpain
  3. 3.Universitat Politècnica de Catalunya (UPC)BarcelonaSpain
  4. 4.Institut d’Estudis Espacials de Catalunya (IEEC)BarcelonaSpain

Personalised recommendations