Advertisement

Massive Stars and Their Supernovae

  • Friedrich-Karl Thielemann
  • Roland Diehl
  • Alexander Heger
  • Raphael Hirschi
  • Matthias Liebendörfer
Chapter
Part of the Astrophysics and Space Science Library book series (ASSL, volume 453)

Abstract

Stars more massive than about 8–10 solar masses evolve differently from their lower-mass counterparts: nuclear energy liberation is possible at higher temperatures and densities, due to gravitational contraction caused by such high masses, until forming an iron core that ends this stellar evolution. The star collapses thereafter, as insufficient pressure support exists when energy release stops due to Fe/Ni possessing the highest nuclear binding per nucleon, and this implosion turns into either a supernova explosion or a compact black hole remnant object. Neutron stars are the likely compact-star remnants after supernova explosions for a certain stellar mass range. In this chapter, we discuss this late-phase evolution of massive stars and their core collapse, including the nuclear reactions and nucleosynthesis products. We also include in this discussion more exotic outcomes, such as magnetic jet supernovae, hypernovae, gamma-ray bursts and neutron star mergers. In all cases we emphasize the viewpoint with respect to the role of radioactivities.

References

  1. Abbott BP, Abbott R, Abbott TD, Acernese F, Ackley K, Adams C, Adams T, Addesso P, Adhikari RX, Adya VB et al (2017) Multi-messenger observations of a binary neutron star merger. Astrophys J 848:L12. https://doi.org/10.3847/2041-8213/aa91c9. arXiv:1710.05833ADSCrossRefGoogle Scholar
  2. Adelberger EG, García A, Robertson RGH, Snover KA, Balantekin AB, Heeger K, Ramsey-Musolf MJ, Bemmerer D, Junghans A, Bertulani CA, Chen JW, Costantini H, Prati P, Couder M, Uberseder E, Wiescher M, Cyburt R, Davids B, Freedman SJ, Gai M, Gazit D, Gialanella L, Imbriani G, Greife U, Hass M, Haxton WC, Itahashi T, Kubodera K, Langanke K, Leitner D, Leitner M, Vetter P, Winslow L, Marcucci LE, Motobayashi T, Mukhamedzhanov A, Tribble RE, Nollett KM, Nunes FM, Park TS, Parker PD, Schiavilla R, Simpson EC, Spitaleri C, Strieder F, Trautvetter HP, Suemmerer K, Typel S (2011) Solar fusion cross sections. II. The pp chain and CNO cycles. Rev Mod Phys 83:195–246.  https://doi.org/10.1103/RevModPhys.83.195. arXiv:1004.2318ADSCrossRefGoogle Scholar
  3. Ahmad I, Bonino G, Castagnoli GC, Fischer SM, Kutschera W, Paul M (1998) Three-laboratory measurement of the 44Ti half-life. Phys Rev Lett 80:2550–2553.  https://doi.org/10.1103/PhysRevLett.80.2550 ADSCrossRefGoogle Scholar
  4. Ahmad I, Greene JP, Moore EF, Ghelberg S, Ofan A, Paul M, Kutschera W (2006) Improved measurement of the Ti44 half-life from a 14-year long study. Phys Rev C 74(6):065803.  https://doi.org/10.1103/PhysRevC.74.065803 ADSCrossRefGoogle Scholar
  5. Arcones A, Thielemann FK (2013) Neutrino-driven wind simulations and nucleosynthesis of heavy elements. J Phys G Nucl Phys 40(1):013201. https://doi.org/10.1088/0954-3899/40/1/013201. arXiv:1207.2527ADSCrossRefGoogle Scholar
  6. Arlandini C, Käppeler F, Wisshak K, Gallino R, Lugaro M, Busso M, Straniero O (1999) Neutron capture in low-mass asymptotic giant branch stars: cross sections and abundance signatures. Astrophys J 525:886–900. https://doi.org/10.1086/307938. arXiv:astro-ph/9906266ADSCrossRefGoogle Scholar
  7. Arnett D (1996) 2D simulations of supernovae. In: IAU Colloquium. Supernovae and supernova remnants, vol 145, pp 91–+Google Scholar
  8. Arnett D, Meakin C, Young PA (2009) Turbulent convection in stellar interiors. II. The velocity field. Astrophys J 690:1715–1729. https://doi.org/10.1088/0004-637X/690/2/1715. arXiv:0809.1625ADSCrossRefGoogle Scholar
  9. Arnould M, Goriely S (2003) The p-process of stellar nucleosynthesis: astrophysics and nuclear physics status. Phys Rep 384:1–84. https://doi.org/10.1016/S0370-1573(03)00242-4 ADSCrossRefGoogle Scholar
  10. Aschenbach B (1998) Discovery of a young nearby supernova remnant. Nature 396:141–142. https://doi.org/10.1038/24103 ADSCrossRefGoogle Scholar
  11. Aschenbach B, Iyudin AF, Schönfelder V (1999) Constraints of age, distance and progenitor of the supernova remnant RX J0852.0-4622/GRO J0852-4642. Astron Astrophys 350:997–1006. arXiv:astro-ph/9909415Google Scholar
  12. Aufderheide MB, Fushiki I, Woosley SE, Hartmann DH (1994) Search for important weak interaction nuclei in presupernova evolution. Astrophys J Suppl 91:389–417. https://doi.org/10.1086/191942 ADSCrossRefGoogle Scholar
  13. Balasi KG, Langanke K, Martínez-Pinedo G (2015) Neutrino-nucleus reactions and their role for supernova dynamics and nucleosynthesis. Prog Part Nucl Phys 85:33–81. https://doi.org/10.1016/j.ppnp.2015.08.001. arXiv:1503.08095ADSCrossRefGoogle Scholar
  14. Bao ZY, Beer H, Käppeler F, Voss F, Wisshak K, Rauscher T (2000) Neutron cross sections for nucleosynthesis studies. At Data Nucl Data Tables 76:70–154.  https://doi.org/10.1006/adnd.2000.0838 ADSCrossRefGoogle Scholar
  15. Barnes J, Kasen D, Wu MR, Martínez-Pinedo G (2016) Radioactivity and thermalization in the ejecta of compact object mergers and their impact on kilonova light curves. Astrophys J 829:110. https://doi.org/10.3847/0004-637X/829/2/110. arXiv:1605.07218ADSCrossRefGoogle Scholar
  16. Bauswein A, Goriely S, Janka HT (2013) Systematics of dynamical mass ejection, nucleosynthesis, and radioactively powered electromagnetic signals from neutron-star mergers. Astrophys J 773:78. https://doi.org/10.1088/0004-637X/773/1/78. arXiv:1302.6530ADSCrossRefGoogle Scholar
  17. Benz W, Thielemann F (1990) Convective instabilities in SN 1987A. Astrophys J 348:L17–L20. https://doi.org/10.1086/185620 ADSCrossRefGoogle Scholar
  18. Bernardini MG (2015) Gamma-ray bursts and magnetars: observational signatures and predictions. J High Energy Astrophys 7:64–72. https://doi.org/10.1016/j.jheap.2015.05.003 ADSCrossRefGoogle Scholar
  19. Bethe HA (1990) Supernova mechanisms. Rev Mod Phys 62:801–866.  https://doi.org/10.1103/RevModPhys.62.801 ADSCrossRefGoogle Scholar
  20. Bethe HA, Brown GE, Applegate J, Lattimer JM (1979) Equation of state in the gravitational collapse of stars. Nucl Phys A 324:487–533. https://doi.org/10.1016/0375-9474(79)90596-7 ADSCrossRefGoogle Scholar
  21. Blondin JM, Mezzacappa A, DeMarino C (2003) Stability of standing accretion shocks, with an eye toward core-collapse supernovae. Astrophys J 584:971–980. https://doi.org/10.1086/345812. arXiv:astro-ph/0210634ADSCrossRefGoogle Scholar
  22. Boggs SE, Harrison FA, Miyasaka H, Grefenstette BW, Zoglauer A, Fryer CL, Reynolds SP, Alexander DM, An H, Barret D, Christensen FE, Craig WW, Forster K, Giommi P, Hailey CJ, Hornstrup A, Kitaguchi T, Koglin JE, Madsen KK, Mao PH, Mori K, Perri M, Pivovaroff MJ, Puccetti S, Rana V, Stern D, Westergaard NJ, Zhang WW (2015) 44Ti gamma-ray emission lines from SN1987A reveal an asymmetric explosion. Science 348:670–671.  https://doi.org/10.1126/science.aaa2259 ADSCrossRefGoogle Scholar
  23. Borkowski KJ, Reynolds SP, Green DA, Hwang U, Petre R, Krishnamurthy K, Willett R (2010) Radioactive scandium in the youngest galactic supernova remnant G1.9+0.3. Astrophys J 724:L161–L165. https://doi.org/10.1088/2041-8205/724/2/L161. arXiv:1006.3552ADSCrossRefGoogle Scholar
  24. Borkowski KJ, Reynolds SP, Hwang U, Green DA, Petre R, Krishnamurthy K, Willett R (2013) Supernova ejecta in the youngest galactic supernova remnant G1.9+0.3. Astrophys J 771:L9. https://doi.org/10.1088/2041-8205/771/1/L9. arXiv:1305.7399ADSCrossRefGoogle Scholar
  25. Branch D, Wheeler JC (2017) Supernova explosions. https://doi.org/10.1007/978-3-662-55054-0 CrossRefGoogle Scholar
  26. Branch D, Benetti S, Kasen D, Baron E, Jeffery DJ, Hatano K, Stathakis RA, Filippenko AV, Matheson T, Pastorello A, Altavilla G, Cappellaro E, Rizzi L, Turatto M, Li W, Leonard DC, Shields JC (2002) Direct analysis of spectra of type Ib supernovae. Astrophys J 566:1005–1017. https://doi.org/10.1086/338127. arXiv:astro-ph/0106367ADSCrossRefGoogle Scholar
  27. Bruenn SW, Haxton WC (1991) Neutrino-nucleus interactions in core-collapse supernovae. Astrophys J 376:678–700. https://doi.org/10.1086/170316 ADSCrossRefGoogle Scholar
  28. Bruenn SW, Lentz EJ, Hix WR, Mezzacappa A, Harris JA, Messer OEB, Endeve E, Blondin JM, Chertkow MA, Lingerfelt EJ, Marronetti P, Yakunin KN (2016) The development of explosions in axisymmetric ab initio core-collapse supernova simulations of 12–25 M stars. Astrophys J 818:123. https://doi.org/10.3847/0004-637X/818/2/123. arXiv:1409.5779ADSCrossRefGoogle Scholar
  29. Buchmann LR, Barnes CA (2006) Nuclear reactions in stellar helium burning and later hydrostatic burning stages. Nucl Phys A 777:254–290. https://doi.org/10.1016/j.nuclphysa.2005.01.005 ADSCrossRefGoogle Scholar
  30. Buras R, Rampp M, Janka H, Kifonidis K (2003) Improved models of stellar core collapse and still no explosions: what is missing? Phys Rev Lett 90(24):241, 101–+.  https://doi.org/10.1103/PhysRevLett.90.241101. arXiv:astro-ph/0303171
  31. Burbidge EM, Burbidge GR, Fowler WA, Hoyle F (1957) Synthesis of the elements in stars. Rev Mod Phys 29:547–650.  https://doi.org/10.1103/RevModPhys.29.547 ADSCrossRefGoogle Scholar
  32. Burrows A (2013) Colloquium: perspectives on core-collapse supernova theory. Rev Mod Phys 85:245–261.  https://doi.org/10.1103/RevModPhys.85.245. arXiv:1210.4921ADSCrossRefGoogle Scholar
  33. Burrows A, Livne E, Dessart L, Ott CD, Murphy J (2006a) A new mechanism for core-collapse supernova explosions. Astrophys J 640:878–890. https://doi.org/10.1086/500174. arXiv:astro-ph/0510687ADSCrossRefGoogle Scholar
  34. Burrows A, Reddy S, Thompson TA (2006b) Neutrino opacities in nuclear matter. Nucl Phys A 777:356–394. https://doi.org/10.1016/j.nuclphysa.2004.06.012. arXiv:astro-ph/0404432ADSCrossRefGoogle Scholar
  35. Burrows A, Vartanyan D, Dolence JC, Skinner MA, Radice D (2018) Crucial physical dependencies of the core-collapse supernova mechanism. Space Sci Rev 214:33. https://doi.org/10.1007/s11214-017-0450-9 ADSCrossRefGoogle Scholar
  36. Cameron AGW (2003) Some nucleosynthesis effects associated with r-process jets. Astrophys J 587:327–340. https://doi.org/10.1086/368110 ADSCrossRefGoogle Scholar
  37. Cayrel R, Hill V, Beers TC, Barbuy B, Spite M, Spite F, Plez B, Andersen J, Bonifacio P, François P, Molaro P, Nordström B, Primas F (2001) Measurement of stellar age from uranium decay. Nature 409:691–692. https://doi.org/10.1038/35055507. arXiv:astro-ph/0104357ADSCrossRefGoogle Scholar
  38. Chandrasekhar S (1957) An introduction to the study of stellar structureGoogle Scholar
  39. Chiappini C, Hirschi R, Meynet G, Ekström S, Maeder A, Matteucci F (2006) A strong case for fast stellar rotation at very low metallicities. Astron Astrophys 449:L27–L30. https://doi.org/10.1051/0004-6361:20064866. arXiv:astro-ph/0602459ADSCrossRefGoogle Scholar
  40. Chieffi A, Limongi M (2004) Explosive yields of massive stars from Z = 0 to Z = Zsolar. Astrophys J 608:405–410. https://doi.org/10.1086/392523. arXiv:astro-ph/0402625ADSCrossRefGoogle Scholar
  41. Chieffi A, Limongi M (2013) Pre-supernova evolution of rotating solar metallicity stars in the mass range 13-120 M Ł and their explosive yields. Astrophys J 764:21. https://doi.org/10.1088/0004-637X/764/1/21 ADSCrossRefGoogle Scholar
  42. Chieffi A, Limongi M (2017) The synthesis of 44Ti and 56Ni in massive stars. Astrophys J 836:79. https://doi.org/10.3847/1538-4357/836/1/79. arXiv:1701.02914ADSCrossRefGoogle Scholar
  43. Clayton DD (1968) Principles of stellar evolution and nucleosynthesis. McGraw-Hill, New York, 1968Google Scholar
  44. Clayton DD, Nittler LR (2004) Astrophysics with presolar stardust. Annu Rev Astron Astrophys 42:39–78.  https://doi.org/10.1146/annurev.astro.42.053102.134022 ADSCrossRefGoogle Scholar
  45. Costantini H, Formicola A, Imbriani G, Junker M, Rolfs C, Strieder F (2009) LUNA: a laboratory for underground nuclear astrophysics. Rep Prog Phys 72(8):086,301–+. https://doi.org/10.1088/0034-4885/72/8/086301. arXiv:0906.1097ADSCrossRefGoogle Scholar
  46. Cowan JJ, Thielemann F, Truran JW (1991) The R-process and nucleochronology. Phys Rep 208:267–394. https://doi.org/10.1016/0370-1573(91)90070-3 ADSCrossRefGoogle Scholar
  47. Cowan JJ, Pfeiffer B, Kratz K, Thielemann F, Sneden C, Burles S, Tytler D, Beers TC (1999) R-process abundances and chronometers in metal-poor stars. Astrophys J 521:194–205. https://doi.org/10.1086/307512. arXiv:astro-ph/9808272ADSCrossRefGoogle Scholar
  48. Cristini A, Hirschi R, Georgy C, Meakin C, Arnett D, Viallet M (2015) Linking 1D stellar evolution to 3D hydrodynamic simulations. In: Meynet G, Georgy C, Groh J, Stee P (eds) New windows on massive stars. IAU symposium, vol 307, pp 98–99. https://doi.org/10.1017/S1743921314006371. arXiv:1410.7672CrossRefGoogle Scholar
  49. Curtis S, Ebinger K, Fröhlich C, Hempel M, Perego A, Liebendörfer M, Thielemann F-K (2018) PUSHing core-collapse supernovae to explosions in spherical symmetry III: nucleosynthesis yields. arXiv:1805.00498Google Scholar
  50. Cyburt RH, Amthor AM, Ferguson R, Meisel Z, Smith K, Warren S, Heger A, Hoffman RD, Rauscher T, Sakharuk A, Schatz H, Thielemann FK, Wiescher M (2010) The JINA REACLIB database: its recent updates and impact on type-I X-ray bursts. Astrophys J Suppl 189:240–252. https://doi.org/10.1088/0067-0049/189/1/240 ADSCrossRefGoogle Scholar
  51. De Marco O, Izzard RG (2017) Dawes review 6: the impact of companions on stellar evolution. Publ Astron Soc Aust 34:e001.  https://doi.org/10.1017/pasa.2016.52. arXiv:1611.03542
  52. deBoer RJ, Görres J, Wiescher M, Azuma RE, Best A, Brune CR, Fields CE, Jones S, Pignatari M, Sayre D, Smith K, Timmes FX, Uberseder E (2017) The 12C(α,γ )16O reaction and its implications for stellar helium burning. Rev Mod Phys 89(3):035007.  https://doi.org/10.1103/RevModPhys.89.035007. arXiv:1709.03144
  53. Dessart L, Hillier DJ, Woosley S, Livne E, Waldman R, Yoon SC, Langer N (2015) Radiative-transfer models for supernovae IIb/Ib/Ic from binary-star progenitors. Mon Not R Astron Soc 453:2189–2213.  https://doi.org/10.1093/mnras/stv1747. arXiv:1507.07783ADSCrossRefGoogle Scholar
  54. Dessart L, John Hillier D, Yoon SC, Waldman R, Livne E (2017) Radiative-transfer models for explosions from rotating and non-rotating single WC stars. Implications for SN 1998bw and LGRB/SNe. Astron Astrophys 603:A51. https://doi.org/10.1051/0004-6361/201730873. arXiv:1703.08932ADSCrossRefGoogle Scholar
  55. Diehl R, Bennett K, Bloemen H, Dupraz C, Hermsen W, Knoedlseder J, Lichti G, Morris D, Oberlack U, Ryan J, Schoenfelder V, Steinle H, Varendorff M, Winkler C (1995) 1.809 MeV gamma-rays from the VELA region. Astron Astrophys 298:L25+Google Scholar
  56. Diehl R, Wessolowski U, Oberlack U, Bloemen H, Georgii R, Iyudin A, Knodlseder J, Lichti G, Hermsen W, Morris D, Ryan J, Schonfelder V, Strong A, von Ballmoos P, Winkler C (1997) 26Al and the COMPTEL 60Fe data. In: Dermer CD, Strickman MS, Kurfess JD (eds) Proceedings of the fourth compton symposium. American institute of physics conference series, vol 410, pp 1109–+. https://doi.org/10.1063/1.54176
  57. Diehl R, Halloin H, Kretschmer K, Lichti GG, Schönfelder V, Strong AW, von Kienlin A, Wang W, Jean P, Knödlseder J, Roques JP, Weidenspointner G, Schanne S, Hartmann DH, Winkler C, Wunderer C (2006a) Radioactive 26Al from massive stars in the galaxy. Nature 439:45–47.  https://doi.org/10.1038/nature04364. arXiv:astro-ph/0601015ADSCrossRefGoogle Scholar
  58. Diehl R, Prantzos N, von Ballmoos P (2006b) Astrophysical constraints from gamma-ray spectroscopy. Nucl Phys A 777:70–97. https://doi.org/10.1016/j.nuclphysa.2005.02.155. arXiv:astro-ph/0502324ADSCrossRefGoogle Scholar
  59. Dillmann I, Heil M, Käppeler F, Plag R, Rauscher T, Thielemann FK (2006) KADoNiS- the Karlsruhe astrophysical database of nucleosynthesis in stars. In: Woehr A, Aprahamian A (eds) Capture gamma-ray spectroscopy and related topics. American institute of physics conference series, vol 819, pp 123–127. https://doi.org/10.1063/1.2187846
  60. Dillmann I, Rauscher T, Heil M, Käppeler F, Rapp W, Thielemann F (2008) p-Process simulations with a modified reaction library. J Phys G Nucl Phys 35(1):014,029–+. https://doi.org/10.1088/0954-3899/35/1/014029. arXiv:0805.4756ADSCrossRefGoogle Scholar
  61. Dillmann I, Szücs T, Plag R, Fülöp Z, Käppeler F, Mengoni A, Rauscher T (2014) The Karlsruhe astrophysical database of nucleosynthesis in stars project - status and prospects. Nucl Data Sheets 120:171–174. https://doi.org/10.1016/j.nds.2014.07.038. arXiv:1408.3688ADSCrossRefGoogle Scholar
  62. Duan H, Fuller GM, Qian Y (2006) Collective neutrino flavor transformation in supernovae. Phys Rev D 74(12):123,004–+.  https://doi.org/10.1103/PhysRevD.74.123004. arXiv:astro-ph/0511275
  63. Duan H, Fuller GM, Carlson J, Qian Y (2007) Neutrino mass hierarchy and stepwise spectral swapping of supernova neutrino flavors. Phys Rev Lett 99(24):241,802–+.  https://doi.org/10.1103/PhysRevLett.99.241802. arXiv:0707.0290
  64. Duflo J, Zuker AP (1995) Microscopic mass formulas. Phys Rev C 52:R23–R27.  https://doi.org/10.1103/PhysRevC.52.R23. arXiv:nucl-th/9505011ADSCrossRefGoogle Scholar
  65. Dufour F, Kaspi VM (2013) Limits on the number of galactic young supernova remnants emitting in the decay lines of 44Ti. Astrophys J 775:52. https://doi.org/10.1088/0004-637X/775/1/52. arXiv:1308.4859ADSCrossRefGoogle Scholar
  66. Dupraz C, Bloemen H, Bennett K, Diehl R, Hermsen W, Iyudin AF, Ryan J, Schoenfelder V (1997) COMPTEL three-year search for galactic sources of ˆ44ˆTi gamma-ray line emission at 1.157MeV. Astron Astrophys 324:683–689ADSGoogle Scholar
  67. Ebinger K, Sinha S, Fröhlich C, Perego A, Hempel M, Eichler M, Casanova J, Liebendörfer M, Thielemann FK (2017) Explosion dynamics of parametrized spherically symmetric core-collapse supernova simulations. In: Kubono S, Kajino T, Nishimura S, Isobe T, Nagataki S, Shima T, Takeda Y (eds) 14th international symposium on nuclei in the cosmos (NIC2016), p 020611.  https://doi.org/10.7566/JPSCP.14.020611. arXiv:1610.05629
  68. Ebinger K, Curtis S, Fröhlich C, Hempel M, Perego A, Liebendörfer M, Thielemann F-K (2018) PUSHing core-collapse supernovae to explosions in spherical symmetry II: explodability and global properties. arXiv:1804.03182Google Scholar
  69. Edelmann PVF, Röpke FK, Hirschi R, Georgy C, Jones S (2017) Testing a one-dimensional prescription of dynamical shear mixing with a two-dimensional hydrodynamic simulation. Astron Astrophys 604:A25. https://doi.org/10.1051/0004-6361/201629873. arXiv:1704.06261ADSCrossRefGoogle Scholar
  70. Eggenberger P, Meynet G, Maeder A, Hirschi R, Charbonnel C, Talon S, Ekström S (2008) The Geneva stellar evolution code. Astrophys Space Sci 316:43–54. https://doi.org/10.1007/s10509-007-9511-y ADSCrossRefGoogle Scholar
  71. Eichler D, Livio M, Piran T, Schramm DN (1989) Nucleosynthesis, neutrino bursts and gamma-rays from coalescing neutron stars. Nature 340:126–128. https://doi.org/10.1038/340126a0 ADSCrossRefGoogle Scholar
  72. Eichler M, Arcones A, Kelic A, Korobkin O, Langanke K, Marketin T, Martinez-Pinedo G, Panov I, Rauscher T, Rosswog S, Winteler C, Zinner NT, Thielemann FK (2015) The role of fission in neutron star mergers and its impact on the r-process peaks. Astrophys J 808:30. https://doi.org/10.1088/0004-637X/808/1/30. arXiv:1411.0974ADSCrossRefGoogle Scholar
  73. Eichler M, Nakamura K, Takiwaki T, Kuroda T, Kotake K, Hempel M, Cabezón R, Liebendörfer M, Thielemann F (2018) Nucleosynthesis in 2D core-collapse supernovae of 11.2 and 17.0 M_⊙ progenitors: implications for Mo and Ru production. J Phys G Nucl Phys 48(1):014001. https://doi.org/10.1088/1361-6471/aa8891. arXiv:1708.08393ADSCrossRefGoogle Scholar
  74. Ekström S, Meynet G, Chiappini C, Hirschi R, Maeder A (2008) Effects of rotation on the evolution of primordial stars. Astron Astrophys 489:685–698. https://doi.org/10.1051/0004-6361:200809633. arXiv:0807.0573ADSCrossRefGoogle Scholar
  75. Ekström S, Georgy C, Eggenberger P, Meynet G, Mowlavi N, Wyttenbach A, Granada A, Decressin T, Hirschi R, Frischknecht U, Charbonnel C, Maeder A (2012) Grids of stellar models with rotation. I. Models from 0.8 to 120 M_⊙ at solar metallicity (Z = 0.014). Astron Astrophys 537:A146. https://doi.org/10.1051/0004-6361/201117751. arXiv:1110.5049ADSCrossRefGoogle Scholar
  76. El Eid MF, The L, Meyer BS (2009) Massive stars: input physics and stellar models. Space Sci Rev 147:1–29. https://doi.org/10.1007/s11214-009-9517-6 ADSCrossRefGoogle Scholar
  77. Eldridge JJ, Izzard RG, Tout CA (2008) The effect of massive binaries on stellar populations and supernova progenitors. Mon Not R Astron Soc 384:1109–1118. https://doi.org/10.1111/j.1365-2966.2007.12738.x. arXiv:0711.3079ADSCrossRefGoogle Scholar
  78. Ertl T, Janka HT, Woosley SE, Sukhbold T, Ugliano M (2016) A Two-parameter criterion for classifying the explodability of massive stars by the neutrino-driven mechanism. Astrophys J 818:124. https://doi.org/10.3847/0004-637X/818/2/124. arXiv:1503.07522ADSCrossRefGoogle Scholar
  79. Fabbian D, Nissen PE, Asplund M, Pettini M, Akerman C (2009) The C/O ratio at low metallicity: constraints on early chemical evolution from observations of galactic halo stars. Astron Astrophys 500:1143–1155. https://doi.org/10.1051/0004-6361/200810095. arXiv:0810.0281ADSCrossRefGoogle Scholar
  80. Farouqi K, Kratz KL, Pfeiffer B, Rauscher T, Thielemann FK, Truran JW (2010) Charged-particle and neutron-capture processes in the high-entropy wind of core-collapse supernovae. Astrophys J 712:1359–1377. https://doi.org/10.1088/0004-637X/712/2/1359. arXiv:1002.2346ADSCrossRefGoogle Scholar
  81. Fischer T, Whitehouse SC, Mezzacappa A, Thielemann F, Liebendörfer M (2009) The neutrino signal from protoneutron star accretion and black hole formation. Astron Astrophys 499:1–15. https://doi.org/10.1051/0004-6361/200811055. arXiv:0809.5129ADSCrossRefGoogle Scholar
  82. Fischer T, Whitehouse SC, Mezzacappa A, Thielemann FK, Liebendörfer M (2010) Protoneutron star evolution and the neutrino-driven wind in general relativistic neutrino radiation hydrodynamics simulations. Astron Astrophys 517:A80. https://doi.org/10.1051/0004-6361/200913106. arXiv:0908.1871CrossRefGoogle Scholar
  83. Fischer T, Sagert I, Pagliara G, Hempel M, Schaffner-Bielich J, Rauscher T, Thielemann FK, Käppeli R, Martínez-Pinedo G, Liebendörfer M (2011) Core-collapse supernova explosions triggered by a Quark-Hadron phase transition during the early post-bounce phase. Astrophys J Suppl 194:39. https://doi.org/10.1088/0067-0049/194/2/39. arXiv:1011.3409ADSCrossRefGoogle Scholar
  84. Fischer T, Huther L, Lohs A, Martínez-Pinedo G (2016) Early protoneutron star deleptonization - consistent modeling of weak processes and equation of state. J Phys Conf Ser 665:012069. https://doi.org/10.1088/1742-6596/665/1/012069 CrossRefGoogle Scholar
  85. Fisker JL, Schatz H, Thielemann F (2008) Explosive hydrogen burning during type I X-ray bursts. Astrophys J Suppl 174:261–276. https://doi.org/10.1086/521104 ADSCrossRefGoogle Scholar
  86. Fogli G, Lisi E, Marrone A, Mirizzi A (2007) Collective neutrino flavor transitions in supernovae and the role of trajectory averaging. J Cosmol Astropart Phys 12:10–+. https://doi.org/10.1088/1475-7516/2007/12/010. arXiv:0707.1998CrossRefGoogle Scholar
  87. Foglizzo T (2009) A simple toy model of the advective-acoustic instability. I. Perturbative approach. Astrophys J 694:820–832. https://doi.org/10.1088/0004-637X/694/2/820. arXiv:0809.2302ADSCrossRefGoogle Scholar
  88. Fransson C, Kozma C (1993) The freeze-out phase of SN 1987A - implications for the light curve. Astrophys J 408:L25–L28. https://doi.org/10.1086/186822 ADSCrossRefGoogle Scholar
  89. Freiburghaus C, Rembges J, Rauscher T, Kolbe E, Thielemann F, Kratz K, Pfeiffer B, Cowan JJ (1999a) The astrophysical r-process: a comparison of calculations following adiabatic expansion with classical calculations based on neutron densities and temperatures. Astrophys J 516:381–398. https://doi.org/10.1086/307072 ADSCrossRefGoogle Scholar
  90. Freiburghaus C, Rosswog S, Thielemann FK (1999b) R-process in neutron star mergers. Astrophys J 525:L121–L124. https://doi.org/10.1086/312343 ADSCrossRefGoogle Scholar
  91. Frischknecht U, Hirschi R, Pignatari M, Maeder A, Meynet G, Chiappini C, Thielemann FK, Rauscher T, Georgy C, Ekström S (2016) s-Process production in rotating massive stars at solar and low metallicities. Mon Not R Astron Soc 456:1803–1825.  https://doi.org/10.1093/mnras/stv2723. arXiv:1511.05730ADSCrossRefGoogle Scholar
  92. Fröhlich C, Hauser P, Liebendörfer M, Martínez-Pinedo G, Thielemann F, Bravo E, Zinner NT, Hix WR, Langanke K, Mezzacappa A, Nomoto K (2006a) Composition of the innermost core-collapse supernova ejecta. Astrophys J 637:415–426. https://doi.org/10.1086/498224. arXiv:astro-ph/0410208ADSCrossRefGoogle Scholar
  93. Fröhlich C, Martínez-Pinedo G, Liebendörfer M, Thielemann F, Bravo E, Hix WR, Langanke K, Zinner NT (2006b) Neutrino-induced nucleosynthesis of a greater 64 nuclei: the νp process. Phys Rev Lett 96(14):142502.  https://doi.org/10.1103/PhysRevLett.96.142502. arXiv:astro-ph/0511376
  94. Fryxell B, Olson K, Ricker P, Timmes FX, Zingale M, Lamb DQ, MacNeice P, Rosner R, Truran JW, Tufo H (2000) FLASH: an adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes. Astrophys J Suppl 131:273–334. https://doi.org/10.1086/317361 ADSCrossRefGoogle Scholar
  95. Fujimoto Si, Hashimoto Ma, Kotake K, Yamada S (2007) Heavy-element nucleosynthesis in a collapsar. Astrophys J 656:382–392. https://doi.org/10.1086/509908. arXiv:astro-ph/0602460ADSCrossRefGoogle Scholar
  96. Fujimoto Si, Nishimura N, Hashimoto Ma (2008) Nucleosynthesis in magnetically driven jets from collapsars. Astrophys J 680:1350–1358. https://doi.org/10.1086/529416. arXiv:0804.0969ADSCrossRefGoogle Scholar
  97. Fukuda I (1982) A statistical study of rotational velocities of the stars. Publ Astron Soc Pac 94:271–284. https://doi.org/10.1086/130977 ADSCrossRefGoogle Scholar
  98. Fuller GM, Fowler WA, Newman MJ (1980) Stellar weak-interaction rates for sd-shell nuclei. I - nuclear matrix element systematics with application to Al-26 and selected nuclei of importance to the supernova problem. Astrophys J Suppl 42:447–473. https://doi.org/10.1086/190657 ADSCrossRefGoogle Scholar
  99. Fuller GM, Fowler WA, Newman MJ (1982) Stellar weak interaction rates for intermediate-mass nuclei. II - A = 21 to A = 60. Astrophys J 252:715–740. https://doi.org/10.1086/159597 ADSCrossRefGoogle Scholar
  100. Fuller GM, Fowler WA, Newman MJ (1985) Stellar weak interaction rates for intermediate-mass nuclei. IV - interpolation procedures for rapidly varying lepton capture rates using effective log (ft)-values. Astrophys J 293:1–16. https://doi.org/10.1086/163208 ADSCrossRefGoogle Scholar
  101. Georgy C, Meynet G, Walder R, Folini D, Maeder A (2009) The different progenitors of type Ib, Ic SNe, and of GRB. Astron Astrophys 502:611–622. https://doi.org/10.1051/0004-6361/200811339. arXiv:0906.2284ADSCrossRefGoogle Scholar
  102. Georgy C, Ekström S, Meynet G, Massey P, Levesque EM, Hirschi R, Eggenberger P, Maeder A (2012) Grids of stellar models with rotation. II. WR populations and supernovae/GRB progenitors at Z = 0.014. Astron Astrophys 542:A29. https://doi.org/10.1051/0004-6361/201118340. arXiv:1203.5243ADSCrossRefGoogle Scholar
  103. Georgy C, Ekström S, Eggenberger P, Meynet G, Haemmerlé L, Maeder A, Granada A, Groh JH, Hirschi R, Mowlavi N, Yusof N, Charbonnel C, Decressin T, Barblan F (2013) Grids of stellar models with rotation. III. Models from 0.8 to 120 M at a metallicity Z = 0.002. Astron Astrophys 558:A103. https://doi.org/10.1051/0004-6361/201322178. arXiv:1308.2914ADSCrossRefGoogle Scholar
  104. Georgy C, Meynet G, Ekström S, Wade GA, Petit V, Keszthelyi Z, Hirschi R (2017) Possible pair-instability supernovae at solar metallicity from magnetic stellar progenitors. Astron Astrophys 599:L5. https://doi.org/10.1051/0004-6361/201730401. arXiv:1702.02340ADSCrossRefGoogle Scholar
  105. Giron S, Hammache F, de Séréville N, Beaumel D, Burgunder J, Caceres L, Clement E, Duchene G, Flavigny F, de France G, Franchoo S, Fernandez B, Galaviz-Redondo D, Gasques L, Gibelin J, Gillibert A, Grevy S, Guillot J, Heil M, Kiener J, Lapoux V, Maréchal F, Matta A, Matea Y, Moukaddam M, Nalpas L, Obertelli A, Perrot L, Raabe R, Scarpaci JA, Sorlin O, Stefan I, Stoedel C, Takechi M, Thomas JC, Togano Y (2010) Study of 60Fe(n,γ)61Fe reaction of astrophysical interest via d(60Fe,pγ) indirect reaction. In: Spitaleri C, Rolfs C, Pizzone RG (ed) American institute of physics conference series, vol 1213, pp 201–204. https://doi.org/10.1063/1.3362577
  106. Goldreich P, Weber SV (1980) Homologously collapsing stellar cores. Astrophys J 238:991–997. https://doi.org/10.1086/158065 ADSCrossRefGoogle Scholar
  107. Goriely S (2015) Towards more accurate and reliable predictions for nuclear applications. Eur Phys J A 51:172.  https://doi.org/10.1140/epja/i2015-15172-2 ADSCrossRefGoogle Scholar
  108. Goriely S, Bauswein A, Janka HT (2011) r-process nucleosynthesis in dynamically ejected matter of neutron star mergers. Astrophys J 738:L32. https://doi.org/10.1088/2041-8205/738/2/L32. arXiv:1107.0899ADSCrossRefGoogle Scholar
  109. Goriely S, Bauswein A, Just O, Pllumbi E, Janka HT (2015) Impact of weak interactions of free nucleons on the r-process in dynamical ejecta from neutron star mergers. Mon Not R Astron Soc 452:3894–3904.  https://doi.org/10.1093/mnras/stv1526. arXiv:1504.04377ADSCrossRefGoogle Scholar
  110. Grebenev SA, Lutovinov AA, Tsygankov S, Winkler C (2012) Hard-X-ray emission lines from the decay of 44ti in the remnant of supernova 1987A. Nature 490:373–375.  https://doi.org/10.1038/nature11473. arXiv:1211.2656ADSCrossRefGoogle Scholar
  111. Grefenstette BW, Harrison FA, Boggs SE, Reynolds SP, Fryer CL, Madsen KK, Wik DR, Zoglauer A, Ellinger CI, Alexander DM, An H, Barret D, Christensen FE, Craig WW, Forster K, Giommi P, Hailey CJ, Hornstrup A, Kaspi VM, Kitaguchi T, Koglin JE, Mao PH, Miyasaka H, Mori K, Perri M, Pivovaroff MJ, Puccetti S, Rana V, Stern D, Westergaard NJ, Zhang WW (2014) Asymmetries in core-collapse supernovae from maps of radioactive 44Ti in CassiopeiaA. Nature 506:339–342.  https://doi.org/10.1038/nature12997. arXiv:1403.4978ADSCrossRefGoogle Scholar
  112. Grefenstette BW, Fryer CL, Harrison FA, Boggs SE, DeLaney T, Laming JM, Reynolds SP, Alexander DM, Barret D, Christensen FE, Craig WW, Forster K, Giommi P, Hailey CJ, Hornstrup A, Kitaguchi T, Koglin JE, Lopez L, Mao PH, Madsen KK, Miyasaka H, Mori K, Perri M, Pivovaroff MJ, Puccetti S, Rana V, Stern D, Westergaard NJ, Wik DR, Zhang WW, Zoglauer A (2017) The distribution of radioactive 44Ti in Cassiopeia A. Astrophys J 834:19. https://doi.org/10.3847/1538-4357/834/1/19. arXiv:1612.02774ADSCrossRefGoogle Scholar
  113. Greiner J, Mazzali PA, Kann DA, Krühler T, Pian E, Prentice S, Olivares E F, Rossi A, Klose S, Taubenberger S, Knust F, Afonso PMJ, Ashall C, Bolmer J, Delvaux C, Diehl R, Elliott J, Filgas R, Fynbo JPU, Graham JF, Guelbenzu AN, Kobayashi S, Leloudas G, Savaglio S, Schady P, Schmidl S, Schweyer T, Sudilovsky V, Tanga M, Updike AC, van Eerten H, Varela K (2015) A very luminous magnetar-powered supernova associated with an ultra-long γ-ray burst. Nature 523:189–192.  https://doi.org/10.1038/nature14579. arXiv:1509.03279ADSCrossRefGoogle Scholar
  114. Gyürky G, Kiss GG, Elekes Z, Fülöp Z, Somorjai E, Palumbo A, Görres J, Lee HY, Rapp W, Wiescher M, Özkan N, Güray RT, Efe G, Rauscher T (2006) α-induced cross sections of Cd106 for the astrophysical p process. Phys Rev C 74(2):025,805–+.  https://doi.org/10.1103/PhysRevC.74.025805. arXiv:nucl-ex/0605034
  115. Halevi G, Mösta P (2018) r-Process nucleosynthesis from three-dimensional jet-driven core-collapse supernovae with magnetic misalignments. Mon Not R Astron Soc 477:2366–2375.  https://doi.org/10.1093/mnras/sty797. arXiv:1801.08943ADSCrossRefGoogle Scholar
  116. Hamuy M (2003) Observed and physical properties of core-collapse supernovae. Astrophys J 582:905–914. https://doi.org/10.1086/344689. arXiv:astro-ph/0209174ADSCrossRefGoogle Scholar
  117. Harris JA, Hix WR, Chertkow MA, Lee CT, Lentz EJ, Messer OEB (2017) Implications for post-processing nucleosynthesis of core-collapse supernova models with lagrangian particles. Astrophys J 843:2. https://doi.org/10.3847/1538-4357/aa76de. arXiv:1701.08876ADSCrossRefGoogle Scholar
  118. Haxton WC, Parker PD, Rolfs CE (2006) Solar hydrogen burning and neutrinos. Nucl Phys A 777:226–253. https://doi.org/10.1016/j.nuclphysa.2005.02.088. arXiv:nucl-th/0501020ADSCrossRefGoogle Scholar
  119. Heger A (2018) Private communicationGoogle Scholar
  120. Heger A, Langer N (2000) Presupernova evolution of rotating massive stars. II. Evolution of the surface properties. Astrophys J 544:1016–1035. https://doi.org/10.1086/317239. arXiv:astro-ph/0005110ADSCrossRefGoogle Scholar
  121. Heger A, Woosley SE (2002) The nucleosynthetic signature of population III. Astrophys J 567:532–543. https://doi.org/10.1086/338487. arXiv:astro-ph/0107037ADSCrossRefGoogle Scholar
  122. Heger A, Woosley SE (2010) Nucleosynthesis and evolution of massive metal-free stars. Astrophys J 724:341–373. https://doi.org/10.1088/0004-637X/724/1/341. arXiv:0803.3161ADSCrossRefGoogle Scholar
  123. Heger A, Langer N, Woosley SE (2000) Presupernova evolution of rotating massive stars. I. Numerical method and evolution of the internal stellar structure. Astrophys J 528:368–396. https://doi.org/10.1086/308158. arXiv:astro-ph/9904132ADSCrossRefGoogle Scholar
  124. Heger A, Langanke K, Martínez-Pinedo G, Woosley SE (2001a) Presupernova collapse models with improved weak-interaction rates. Phys Rev Lett 86:1678–1681.  https://doi.org/10.1103/PhysRevLett.86.1678. arXiv:astro-ph/0007412ADSCrossRefGoogle Scholar
  125. Heger A, Woosley SE, Martínez-Pinedo G, Langanke K (2001b) Presupernova evolution with improved rates for weak interactions. Astrophys J 560:307–325. https://doi.org/10.1086/324092. arXiv:astro-ph/0011507ADSCrossRefGoogle Scholar
  126. Heger A, Fryer CL, Woosley SE, Langer N, Hartmann DH (2003) How massive single stars end their life. Astrophys J 591:288–300. https://doi.org/10.1086/375341. arXiv:astro-ph/0212469ADSCrossRefGoogle Scholar
  127. Heger A, Woosley SE, Spruit HC (2005) Presupernova evolution of differentially rotating massive stars including magnetic fields. Astrophys J 626:350–363. https://doi.org/10.1086/429868. arXiv:astro-ph/0409422ADSCrossRefGoogle Scholar
  128. Hempel M, Schaffner-Bielich J (2010) A statistical model for a complete supernova equation of state. Nucl Phys A 837:210–254. https://doi.org/10.1016/j.nuclphysa.2010.02.010. arXiv:0911.4073ADSCrossRefGoogle Scholar
  129. Hempel M, Heinimann O, Yudin A, Iosilevskiy I, Liebendörfer M, Thielemann FK (2016) Hot third family of compact stars and the possibility of core-collapse supernova explosions. Phys Rev D 94(10):103001.  https://doi.org/10.1103/PhysRevD.94.103001. arXiv:1511.06551
  130. Herant M, Benz W, Hix WR, Fryer CL, Colgate SA (1994) Inside the supernova: a powerful convective engine. Astrophys J 435:339–361. https://doi.org/10.1086/174817. arXiv:astro-ph/9404024ADSCrossRefGoogle Scholar
  131. Hirschi R (2007) Very low-metallicity massive stars: pre-SN evolution models and primary nitrogen production. Astron Astrophys 461:571–583. https://doi.org/10.1051/0004-6361:20065356. arXiv:astro-ph/0608170ADSCrossRefGoogle Scholar
  132. Hirschi R, Meynet G, Maeder A (2004) Stellar evolution with rotation. XII. Pre-supernova models. Astron Astrophys 425:649–670. https://doi.org/10.1051/0004-6361:20041095. arXiv:astro-ph/0406552ADSCrossRefGoogle Scholar
  133. Hirschi R, Meynet G, Maeder A (2005) Stellar evolution with rotation. XIII. Predicted GRB rates at various Z. Astron Astrophys 443:581–591. https://doi.org/10.1051/0004-6361:20053329. arXiv:astro-ph/0507343ADSCrossRefGoogle Scholar
  134. Hirschi R, Frischknecht U, Thielemann F, Pignatari M, Chiappini C, Ekström S, Meynet G, Maeder A (2008) Stellar evolution in the early universe. In: Hunt LK, Madden S, Schneider R (ed) IAU symposium, vol 255, pp 297–304. https://doi.org/10.1017/S1743921308024976 ADSCrossRefGoogle Scholar
  135. Hix WR, Meyer BS (2006) Thermonuclear kinetics in astrophysics. Nucl Phys A 777:188–207. https://doi.org/10.1016/j.nuclphysa.2004.10.009. arXiv:astro-ph/0509698ADSCrossRefGoogle Scholar
  136. Hix WR, Thielemann F (1996) Silicon burning. I. Neutronization and the physics of quasi-equilibrium. Astrophys J 460:869–+. https://doi.org/10.1086/177016. arXiv:astro-ph/9511088ADSCrossRefGoogle Scholar
  137. Hix WR, Thielemann F (1999a) Computational methods for nucleosynthesis and nuclear energy generation. J Comput Appl Math 109:321–351. arXiv:astro-ph/9906478ADSCrossRefGoogle Scholar
  138. Hix WR, Thielemann F (1999b) Silicon burning. II. Quasi-equilibrium and explosive burning. Astrophys J 511:862–875. https://doi.org/10.1086/306692. arXiv:astro-ph/9808203ADSCrossRefGoogle Scholar
  139. Hix WR, Messer OE, Mezzacappa A, Liebendörfer M, Sampaio J, Langanke K, Dean DJ, Martínez-Pinedo G (2003) Consequences of nuclear electron capture in core collapse supernovae. Phys Rev Lett 91(20):201,102–+.  https://doi.org/10.1103/PhysRevLett.91.201102. arXiv:astro-ph/0310883
  140. Hix WR, Parete-Koon ST, Freiburghaus C, Thielemann F (2007) The QSE-reduced nuclear reaction network for silicon burning. Astrophys J 667:476–488. https://doi.org/10.1086/520672 ADSCrossRefGoogle Scholar
  141. Hix WR, Lentz EJ, Bruenn SW, Mezzacappa A, Messer OEB, Endeve E, Blondin JM, Harris JA, Marronetti P, Yakunin KN (2016) The multi-dimensional character of core-collapse supernovae. Acta Phys Pol B 47:645.  https://doi.org/10.5506/APhysPolB.47.645. arXiv:1602.05553ADSCrossRefGoogle Scholar
  142. Hoffman RD, Woosley SE, Qian Y (1997) Nucleosynthesis in neutrino-driven winds. II. Implications for heavy element synthesis. Astrophys J 482:951–+. https://doi.org/10.1086/304181. arXiv:astro-ph/9611097ADSCrossRefGoogle Scholar
  143. Hoffman RD, Woosley SE, Weaver TA, Rauscher T, Thielemann FK (1999) The reaction rate sensitivity of nucleosynthesis in type II supernovae. Astrophys J 521:735–752. https://doi.org/10.1086/307568. arXiv:astro-ph/9809240ADSCrossRefGoogle Scholar
  144. Honda S, Aoki W, Ishimaru Y, Wanajo S, Ryan SG (2006) Neutron-capture elements in the very metal poor star HD 122563. Astrophys J 643:1180–1189. https://doi.org/10.1086/503195. arXiv:astro-ph/0602107ADSCrossRefGoogle Scholar
  145. Hüdepohl L, Müller B, Janka H, Marek A, Raffelt GG (2010) Neutrino signal of electron-capture supernovae from core collapse to cooling. Phys Rev Lett 104(25):251,101–+.  https://doi.org/10.1103/PhysRevLett.104.251101. arXiv:0912.0260
  146. Iliadis C (2007) Nuclear physics of stars. Wiley-VCH Verlag, Weinheim. ISBN 978-3-527-40602-9CrossRefGoogle Scholar
  147. Iwakami W, Kotake K, Ohnishi N, Yamada S, Sawada K (2008) Three-dimensional simulations of standing accretion shock instability in core-collapse supernovae. Astrophys J 678:1207–1222. https://doi.org/10.1086/533582. arXiv:0710.2191ADSCrossRefGoogle Scholar
  148. Iyudin AF, Diehl R, Bloemen H, Hermsen W, Lichti GG, Morris D, Ryan J, Schoenfelder V, Steinle H, Varendorff M, de Vries C, Winkler C (1994) COMPTEL observations of Ti-44 gamma-ray line emission from CAS A. Astron Astrophys 284:L1–L4ADSGoogle Scholar
  149. Iyudin AF, Schönfelder V, Bennett K, Bloemen H, Diehl R, Hermsen W, Knödlseder J, Lichti GG, Oberlack U, Ryan J, Strong AW, Winkler C (1999) COMPTEL all-sky survey in 44Ti line emission. Astrophys Lett Commun 38:383–+Google Scholar
  150. Janiuk A (2014) Nucleosynthesis of elements in gamma-ray burst engines. Astron Astrophys 568:A105. https://doi.org/10.1051/0004-6361/201423822. arXiv:1406.4440ADSCrossRefGoogle Scholar
  151. Janka HT (2012) Explosion mechanisms of core-collapse supernovae. Annu Rev Nucl Part Sci 62:407–451.  https://doi.org/10.1146/annurev-nucl-102711-094901. arXiv:1206.2503ADSCrossRefGoogle Scholar
  152. Janka HT, Müller B, Kitaura FS, Buras R (2008) Dynamics of shock propagation and nucleosynthesis conditions in O-Ne-Mg core supernovae. Astron Astrophys 485:199–208. https://doi.org/10.1051/0004-6361:20079334. arXiv:0712.4237ADSCrossRefGoogle Scholar
  153. Janka HT, Melson T, Summa A (2016) Physics of core-collapse supernovae in three dimensions: a sneak preview. Annu Rev Nucl Part Sci 66:341–375.  https://doi.org/10.1146/annurev-nucl-102115-044747. arXiv:1602.05576ADSCrossRefGoogle Scholar
  154. Jones S, Hirschi R, Nomoto K, Fischer T, Timmes FX, Herwig F, Paxton B, Toki H, Suzuki T, Martínez-Pinedo G, Lam YH, Bertolli MG (2013) Advanced burning stages and fate of 8-10 M stars. Astrophys J 772:150. https://doi.org/10.1088/0004-637X/772/2/150. arXiv:1306.2030ADSCrossRefGoogle Scholar
  155. Jones S, Hirschi R, Pignatari M, Heger A, Georgy C, Nishimura N, Fryer C, Herwig F (2015) Code dependencies of pre-supernova evolution and nucleosynthesis in massive stars: evolution to the end of core helium burning. Mon Not R Astron Soc 447:3115–3129.  https://doi.org/10.1093/mnras/stu2657. arXiv:1412.6518ADSCrossRefGoogle Scholar
  156. Jones S, Ritter C, Herwig F, Fryer C, Pignatari M, Bertolli MG, Paxton B (2016) H ingestion into He-burning convection zones in super-AGB stellar models as a potential site for intermediate neutron-density nucleosynthesis. Mon Not R Astron Soc 455:3848–3863.  https://doi.org/10.1093/mnras/stv2488. arXiv:1510.07417ADSCrossRefGoogle Scholar
  157. Jose J (2016) Stellar explosions: hydrodynamics and nucleosynthesis. CRC Press, Boca Raton. https://doi.org/10.1201/b19165
  158. Juodagalvis A, Langanke K, Hix WR, Martínez-Pinedo G, Sampaio JM (2010) Improved estimate of electron capture rates on nuclei during stellar core collapse. Nucl Phys A 848:454–478. https://doi.org/10.1016/j.nuclphysa.2010.09.012. arXiv:0909.0179ADSCrossRefGoogle Scholar
  159. Just O, Bauswein A, Pulpillo RA, Goriely S, Janka HT (2015) Comprehensive nucleosynthesis analysis for ejecta of compact binary mergers. Mon Not R Astron Soc 448:541–567.  https://doi.org/10.1093/mnras/stv009. arXiv:1406.2687ADSCrossRefGoogle Scholar
  160. Käppeler F, Gallino R, Bisterzo S, Aoki W (2011) The s process: Nuclear physics, stellar models, and observations. Rev Mod Phys 83:157–194.  https://doi.org/10.1103/RevModPhys.83.157. arXiv:1012.5218ADSCrossRefGoogle Scholar
  161. Karakas AI, Lattanzio JC (2014) The Dawes review 2: nucleosynthesis and stellar yields of low- and intermediate-mass single stars. Publ Astron Soc Aust 31:e030.  https://doi.org/10.1017/pasa.2014.21. arXiv:1405.0062
  162. Karlsson T, Bromm V, Bland-Hawthorn J (2013) Pregalactic metal enrichment: the chemical signatures of the first stars. Rev Mod Phys 85:809–848.  https://doi.org/10.1103/RevModPhys.85.809. arXiv:1101.4024ADSCrossRefGoogle Scholar
  163. Kasen D, Thomas RC, Röpke F, Woosley SE (2008) Multidimensional radiative transfer calculations of the light curves and spectra of type Ia supernovae. J Phys Conf Ser 125:012007. https://doi.org/10.1088/1742-6596/125/1/012007 CrossRefGoogle Scholar
  164. Kasen D, Woosley SE, Heger A (2011) Pair instability supernovae: light curves, spectra, and shock breakout. Astrophys J 734:102. https://doi.org/10.1088/0004-637X/734/2/102. arXiv:1101.3336ADSCrossRefGoogle Scholar
  165. Kasen D, Fernández R, Metzger BD (2015) Kilonova light curves from the disc wind outflows of compact object mergers. Mon Not R Astron Soc 450:1777–1786.  https://doi.org/10.1093/mnras/stv721. arXiv:1411.3726ADSCrossRefGoogle Scholar
  166. Katsuda S, Tsunemi H, Mori K (2009) Is Vela Jr. a young supernova remnant? Adv Space Res 43:895–899. https://doi.org/10.1016/j.asr.2009.01.004 ADSCrossRefGoogle Scholar
  167. Kelic A, Ricciardi MV, Schmidt KH (2008) New insight into the fission process from experiments with relativistic heavy-ion beams. In: Kliman J, Itkis MG, Gmuca Š (eds) Dynamical aspects of nuclear fission, pp 203–215. https://doi.org/10.1142/9789812837530_0016
  168. Kerzendorf WE, Sim SA (2014) A spectral synthesis code for rapid modelling of supernovae. Mon Not R Astron Soc 440:387–404.  https://doi.org/10.1093/mnras/stu055. arXiv:1401.5469ADSCrossRefGoogle Scholar
  169. Kippenhahn R, Weigert A (1994) Stellar structure and evolution. Springer, BerlinGoogle Scholar
  170. Kiss GG, Gyürky G, Elekes Z, Fülöp Z, Somorjai E, Rauscher T, Wiescher M (2007) Ge70(p,γ)As71 and Ge76(p,n)As76 cross sections for the astrophysical p process: sensitivity of the optical proton potential at low energies. Phys Rev C 76(5):055,807–+.  https://doi.org/10.1103/PhysRevC.76.055807. arXiv:0711.1079
  171. Kiss GG, Rauscher T, Gyürky G, Simon A, Fülöp Z, Somorjai E (2008) Coulomb suppression of the stellar enhancement factor. Phys Rev Lett 101(19):191,101–+.  https://doi.org/10.1103/PhysRevLett.101.191101. arXiv:0809.2676
  172. Kitaura FS, Janka H, Hillebrandt W (2006) Explosions of O-Ne-Mg cores, the crab supernova, and subluminous type II-P supernovae. Astron Astrophys 450:345–350. https://doi.org/10.1051/0004-6361:20054703. arXiv:astro-ph/0512065ADSCrossRefGoogle Scholar
  173. Knie K, Korschinek G, Faestermann T, Dorfi EA, Rugel G, Wallner A (2004) 60Fe anomaly in a deep-sea manganese crust and implications for a nearby supernova source. Phys Rev Lett 93(17):171,103–+.  https://doi.org/10.1103/PhysRevLett.93.171103
  174. Kobayashi C, Nakasato N (2011) Chemodynamical simulations of the milky way galaxy. Astrophys J 729:16. https://doi.org/10.1088/0004-637X/729/1/16. arXiv:1012.5144ADSCrossRefGoogle Scholar
  175. Kobayashi C, Umeda H, Nomoto K, Tominaga N, Ohkubo T (2006) Galactic chemical evolution: carbon through zinc. Astrophys J 653:1145–1171. https://doi.org/10.1086/508914. arXiv:astro-ph/0608688ADSCrossRefGoogle Scholar
  176. Kolbe E, Langanke K, Martínez-Pinedo G, Vogel P (2003) Neutrino nucleus reactions and nuclear structure. J Phys G Nucl Phys 29:2569–2596. https://doi.org/10.1088/0954-3899/29/11/010. arXiv:nucl-th/0311022ADSCrossRefGoogle Scholar
  177. Korobkin O, Rosswog S, Arcones A, Winteler C (2012) On the astrophysical robustness of the neutron star merger r-process. Mon Not R Astron Soc 426:1940–1949. https://doi.org/10.1111/j.1365-2966.2012.21859.x. arXiv:1206.2379ADSCrossRefGoogle Scholar
  178. Kotake K, Sato K, Takahashi K (2006) Explosion mechanism, neutrino burst and gravitational wave in core-collapse supernovae. Rep Prog Phys 69:971–1143. https://doi.org/10.1088/0034-4885/69/4/R03. arXiv:astro-ph/0509456ADSCrossRefGoogle Scholar
  179. Kratz K, Bitouzet J, Thielemann F, Moeller P, Pfeiffer B (1993) Isotopic r-process abundances and nuclear structure far from stability - implications for the r-process mechanism. Astrophys J 403:216–238. https://doi.org/10.1086/172196 ADSCrossRefGoogle Scholar
  180. Kratz K, Farouqi K, Pfeiffer B, Truran JW, Sneden C, Cowan JJ (2007) Explorations of the r-processes: comparisons between calculations and observations of low-metallicity stars. Astrophys J 662:39–52. https://doi.org/10.1086/517495. arXiv:astro-ph/0703091ADSCrossRefGoogle Scholar
  181. Kratz KL, Farouqi K, Möller P (2014) A high-entropy-wind r-process study based on nuclear-structure quantities from the new finite-range droplet model FRDM(2012). Astrophys J 792:6. https://doi.org/10.1088/0004-637X/792/1/6. arXiv:1406.2529ADSCrossRefGoogle Scholar
  182. Kurfess JD, Johnson WN, Kinzer RL, Kroeger RA, Strickman MS, Grove JE, Leising MD, Clayton DD, Grabelsky DA, Purcell WR, Ulmer MP, Cameron RA, Jung GV (1992) Oriented scintillation spectrometer experiment observations of Co-57 in SN 1987A. Astrophys J 399:L137–L140. https://doi.org/10.1086/186626 ADSCrossRefGoogle Scholar
  183. Kuroda T, Kotake K, Takiwaki T, Thielemann FK (2018) A full general relativistic neutrino radiation-hydrodynamics simulation of a collapsing very massive star and the formation of a black hole. ArXiv e-prints 1801.01293 Google Scholar
  184. Langanke K, Martínez-Pinedo G (2000) Shell-model calculations of stellar weak interaction rates: II. Weak rates for nuclei in the mass range/A=45-65 in supernovae environments. Nucl Phys A 673:481–508. https://doi.org/10.1016/S0375-9474(00)00131-7. arXiv:nucl-th/0001018ADSCrossRefGoogle Scholar
  185. Langanke K, Martínez-Pinedo G (2001) Rate tables for the weak processes of pf-SHELL nuclei in stellar environments. At Data Nucl Data Tables 79:1–46.  https://doi.org/10.1006/adnd.2001.0865 ADSCrossRefGoogle Scholar
  186. Langanke K, Martínez-Pinedo G (2003) Nuclear weak-interaction processes in stars. Rev Mod Phys 75:819–862.  https://doi.org/10.1103/RevModPhys.75.819. arXiv:nucl-th/0203071ADSCrossRefGoogle Scholar
  187. Langanke K, Martínez-Pinedo G, Sampaio JM, Dean DJ, Hix WR, Messer OE, Mezzacappa A, Liebendörfer M, Janka H, Rampp M (2003) Electron capture rates on nuclei and implications for stellar core collapse. Phys Rev Lett 90(24):241,102–+.  https://doi.org/10.1103/PhysRevLett.90.241102. arXiv:astro-ph/0302459
  188. Langanke K, Martínez-Pinedo G, Müller B, Janka H, Marek A, Hix WR, Juodagalvis A, Sampaio JM (2008) Effects of inelastic neutrino-nucleus scattering on supernova dynamics and radiated neutrino spectra. Phys Rev Lett 100(1):011,101–+.  https://doi.org/10.1103/PhysRevLett.100.011101. arXiv:0706.1687
  189. Langer N (2012) Presupernova evolution of massive single and binary stars. Annu Rev Astron Astrophys 50:107–164.  https://doi.org/10.1146/annurev-astro-081811-125534. arXiv:1206.5443ADSCrossRefGoogle Scholar
  190. Langer N, Braun H, Fliegner J (1995) The production of circumstellar 26Al by massive stars. Astrophys Space Sci 224:275–278. https://doi.org/10.1007/BF00667858 ADSCrossRefGoogle Scholar
  191. Lattimer JM, Douglas Swesty F (1991) A generalized equation of state for hot, dense matter. Nucl Phys A 535:331–376. https://doi.org/10.1016/0375-9474(91)90452-C ADSCrossRefGoogle Scholar
  192. Lattimer JM, Schramm DN (1974) Black-hole-neutron-star collisions. Astrophys J 192:L145–L147. https://doi.org/10.1086/181612 ADSCrossRefGoogle Scholar
  193. Lattimer JM, Schramm DN (1976) The tidal disruption of neutron stars by black holes in close binaries. Astrophys J 210:549–567. https://doi.org/10.1086/154860 ADSCrossRefGoogle Scholar
  194. Leibundgut B, Suntzeff NB (2003) Optical light curves of supernovae. In: Weiler K (ed) Supernovae and gamma-ray bursters. Lecture notes in physics, vol 598. Springer, Berlin, pp 77–90CrossRefGoogle Scholar
  195. Leising MD, Share GH (1990) The gamma-ray light curves of SN 1987A. Astrophys J 357:638–648. https://doi.org/10.1086/168952 ADSCrossRefGoogle Scholar
  196. Lentz EJ, Bruenn SW, Hix WR, Mezzacappa A, Messer OEB, Endeve E, Blondin JM, Harris JA, Marronetti P, Yakunin KN (2015) Three-dimensional core-collapse supernova simulated using a 15 M Progenitor. Astrophys J 807:L31. https://doi.org/10.1088/2041-8205/807/2/L31. arXiv:1505.05110ADSCrossRefGoogle Scholar
  197. Liebendörfer M (2005) A simple parameterization of the consequences of deleptonization for simulations of stellar core collapse. Astrophys J 633:1042–1051. https://doi.org/10.1086/466517. arXiv:astro-ph/0504072ADSCrossRefGoogle Scholar
  198. Liebendörfer M, Mezzacappa A, Thielemann FK (2001) Conservative general relativistic radiation hydrodynamics in spherical symmetry and comoving coordinates. Phys Rev D 63(10):104,003–+.  https://doi.org/10.1103/PhysRevD.63.104003. arXiv:astro-ph/0012201
  199. Liebendörfer M, Mezzacappa A, Messer OEB, Martinez-Pinedo G, Hix WR, Thielemann F (2003) The neutrino signal in stellar core collapse and postbounce evolution. Nucl Phys A 719:144–+. https://doi.org/10.1016/S0375-9474(03)00984-9. arXiv:astro-ph/0211329ADSCrossRefGoogle Scholar
  200. Liebendörfer M, Messer OEB, Mezzacappa A, Bruenn SW, Cardall CY, Thielemann F (2004) A finite difference representation of neutrino radiation hydrodynamics in spherically symmetric general relativistic spacetime. Astrophys J Suppl 150:263–316. https://doi.org/10.1086/380191. arXiv:astro-ph/0207036ADSCrossRefGoogle Scholar
  201. Liebendörfer M, Rampp M, Janka H, Mezzacappa A (2005) Supernova simulations with Boltzmann neutrino transport: a comparison of methods. Astrophys J 620:840–860. https://doi.org/10.1086/427203. arXiv:astro-ph/0310662ADSCrossRefGoogle Scholar
  202. Liebendörfer M, Fischer T, Fröhlich C, Thielemann F, Whitehouse S (2008) Nuclear physics with spherically symmetric supernova models. J Phys G Nucl Phys 35(1):014,056–+. https://doi.org/10.1088/0954-3899/35/1/014056. arXiv:0708.4296ADSCrossRefGoogle Scholar
  203. Liebendörfer M, Whitehouse SC, Fischer T (2009) The isotropic diffusion source approximation for supernova neutrino transport. Astrophys J 698:1174–1190. https://doi.org/10.1088/0004-637X/698/2/1174. arXiv:0711.2929ADSCrossRefGoogle Scholar
  204. Liebendörfer M, Fischer T, Hempel M, Käppeli R, Pagliara G, Perego A, Sagert I, Schaffner-Bielich J, Scheidegger S, Thielemann F, Whitehouse SC (2010) Neutrino radiation-hydrodynamics: general relativistic versus multidimensional supernova simulations. Prog Theor Phys Suppl 186:87–92.  https://doi.org/10.1143/PTPS.186.87 ADSCrossRefGoogle Scholar
  205. Limongi M, Chieffi A (2003) Evolution, explosion, and nucleosynthesis of core-collapse supernovae. Astrophys J 592:404–433. https://doi.org/10.1086/375703. arXiv:astro-ph/0304185ADSCrossRefGoogle Scholar
  206. Limongi M, Chieffi A (2006a) Nucleosynthesis of 60Fe in massive stars. New Astron Rev 50:474–476. https://doi.org/10.1016/j.newar.2006.06.005. arXiv:astro-ph/0512598ADSCrossRefGoogle Scholar
  207. Limongi M, Chieffi A (2006b) The nucleosynthesis of 26Al and 60Fe in solar metallicity stars extending in mass from 11 to 120 M: the hydrostatic and explosive contributions. Astrophys J 647:483–500. https://doi.org/10.1086/505164. arXiv:astro-ph/0604297ADSCrossRefGoogle Scholar
  208. Limongi M, Chieffi A (2009) Presupernova evolution and explosion of massive stars: the role of mass loss during the Wolf-Rayet stage. Mem Soc Astron Ital 80:151ADSGoogle Scholar
  209. Limongi M, Chieffi A (2012) Presupernova evolution and explosive nucleosynthesis of zero metal massive stars. Astrophys J Suppl 199:38. https://doi.org/10.1088/0067-0049/199/2/38. arXiv:1202.4581ADSCrossRefGoogle Scholar
  210. Limongi M, Straniero O, Chieffi A (2000) Massive stars in the range 13-25 Msolar: evolution and nucleosynthesis. II. The solar metallicity models. Astrophys J Suppl 129:625–664. https://doi.org/10.1086/313424. arXiv:astro-ph/0003401ADSCrossRefGoogle Scholar
  211. Lippuner J, Roberts LF (2017) SkyNet: A modular nuclear reaction network library. Astrophys J Suppl 233:18. https://doi.org/10.3847/1538-4365/aa94cb. arXiv:1706.06198ADSCrossRefGoogle Scholar
  212. Liu N, Nittler LR, Pignatari M, O’D Alexander CM, Wang J (2017) Stellar origin of 15N-rich presolar SiC grains of type AB: supernovae with explosive hydrogen burning. Astrophys J 842:L1. https://doi.org/10.3847/2041-8213/aa74e5. arXiv:1705.08222ADSCrossRefGoogle Scholar
  213. Lodders K, Palme H (2009) Solar system elemental abundances in 2009. Meteor Planet Sci Suppl 72:5154ADSGoogle Scholar
  214. Lundqvist P, Kozma C, Sollerman J, Fransson C (2001) ISO/SWS observations of SN 1987A. II. A refined upper limit on the mass of 44Ti in the ejecta of SN 1987A. Astron Astrophys 374:629–637. https://doi.org/10.1051/0004-6361:20010725. arXiv:astro-ph/0105402ADSCrossRefGoogle Scholar
  215. MacFadyen AI, Woosley SE (1999) Collapsars: gamma-ray bursts and explosions in “Failed supernovae”. Astrophys J 524:262–289. https://doi.org/10.1086/307790. arXiv:astro-ph/9810274ADSCrossRefGoogle Scholar
  216. MacFadyen AI, Woosley SE, Heger A (2001) Supernovae, jets, and collapsars. Astrophys J 550:410–425. https://doi.org/10.1086/319698. arXiv:astro-ph/9910034ADSCrossRefGoogle Scholar
  217. Maeder A (2009) Physics, formation and evolution of rotating stars. Springer, Berlin. https://doi.org/10.1007/978-3-540-76949-1
  218. Maeder A, Meynet G (2012) Rotating massive stars: from first stars to gamma ray bursts. Rev Mod Phys 84:25–63.  https://doi.org/10.1103/RevModPhys.84.25 ADSCrossRefGoogle Scholar
  219. Maeder A, Grebel EK, Mermilliod J (1999) Differences in the fractions of Be stars in galaxies. Astron Astrophys 346:459–464. arXiv:astro-ph/9904008Google Scholar
  220. Maeder A, Przybilla N, Nieva MF, Georgy C, Meynet G, Ekström S, Eggenberger P (2014) Evolution of surface CNO abundances in massive stars. Astron Astrophys 565:A39. https://doi.org/10.1051/0004-6361/201220602. arXiv:1404.1020CrossRefGoogle Scholar
  221. Magkotsios G, Timmes FX, Hungerford AL, Fryer CL, Young PA, Wiescher M (2010) Trends in 44Ti and 56Ni from core-collapse supernovae. Astrophys J Suppl 191:66–95. https://doi.org/10.1088/0067-0049/191/1/66. arXiv:1009.3175ADSCrossRefGoogle Scholar
  222. Marek A, Janka H (2009) Delayed neutrino-driven supernova explosions aided by the standing accretion-shock instability. Astrophys J 694:664–696. https://doi.org/10.1088/0004-637X/694/1/664. arXiv:0708.3372ADSCrossRefGoogle Scholar
  223. Marek A, Janka H, Buras R, Liebendörfer M, Rampp M (2005) On ion-ion correlation effects during stellar core collapse. Astron Astrophys 443:201–210. https://doi.org/10.1051/0004-6361:20053236. arXiv:astro-ph/0504291ADSCrossRefGoogle Scholar
  224. Marketin T, Huther L, Martínez-Pinedo G (2016) Large-scale evaluation of β -decay rates of r -process nuclei with the inclusion of first-forbidden transitions. Phys Rev C 93(2):025805.  https://doi.org/10.1103/PhysRevC.93.025805. arXiv:1507.07442
  225. Martayan C, Frémat Y, Hubert A, Floquet M, Zorec J, Neiner C (2007) Effects of metallicity, star-formation conditions, and evolution in B and Be stars. II. Small magellanic cloud, field of NGC330. Astron Astrophys 462:683–694. https://doi.org/10.1051/0004-6361:20065076. arXiv:astro-ph/0609677ADSCrossRefGoogle Scholar
  226. Martin D, Perego A, Arcones A, Thielemann FK, Korobkin O, Rosswog S (2015) Neutrino-driven winds in the aftermath of a neutron star merger: nucleosynthesis and electromagnetic transients. Astrophys J 813:2. https://doi.org/10.1088/0004-637X/813/1/2. arXiv:1506.05048ADSCrossRefGoogle Scholar
  227. Martin D, Perego A, Kastaun W, Arcones A (2017) The role of weak interactions in dynamic ejecta from binary neutron star mergers. ArXiv e-prints 1710.04900 Google Scholar
  228. Martínez-Pinedo G, Liebendörfer M, Frekers D (2006) Nuclear input for core-collapse models. Nucl Phys A 777:395–423. https://doi.org/10.1016/j.nuclphysa.2006.02.014. arXiv:astro-ph/0412091ADSCrossRefGoogle Scholar
  229. Martínez-Pinedo G, Fischer T, Lohs A, Huther L (2012) Charged-Current weak interaction processes in hot and dense matter and its impact on the spectra of neutrinos emitted from protoneutron star cooling. Phys Rev Lett 109(25):251104.  https://doi.org/10.1103/PhysRevLett.109.251104. arXiv:1205.2793
  230. Martins F, Palacios A (2013) A comparison of evolutionary tracks for single galactic massive stars. Astron Astrophys 560:A16. https://doi.org/10.1051/0004-6361/201322480. arXiv:1310.7218ADSCrossRefGoogle Scholar
  231. Mashonkina L, Christlieb N, Eriksson K (2014) The hamburg/ESO R-process enhanced star survey (HERES). X. HE 2252-4225, one more r-process enhanced and actinide-boost halo star. Astron Astrophys 569:A43. https://doi.org/10.1051/0004-6361/201424017. arXiv:1407.5379ADSCrossRefGoogle Scholar
  232. Massi F, de Luca M, Elia D, Giannini T, Lorenzetti D, Nisini B (2007) Star formation in the Vela molecular ridge. Large scale mapping of cloud D in the mm continuum. Astron Astrophys 466:1013–1023. https://doi.org/10.1051/0004-6361:20066438. arXiv:astro-ph/0702687ADSCrossRefGoogle Scholar
  233. Matheson T, Filippenko AV, Li W, Leonard DC, Shields JC (2001) Optical spectroscopy of type IB/C supernovae. Astron J 121:1648–1675. https://doi.org/10.1086/319390. arXiv:astro-ph/0101119ADSCrossRefGoogle Scholar
  234. Matz SM, Share GH, Leising MD, Chupp EL, Vestrand WT (1988) Gamma-ray line emission from SN1987A. Nature 331:416–418. https://doi.org/10.1038/331416a0 ADSCrossRefGoogle Scholar
  235. McCray R, Fransson C (2016) The remnant of supernova 1987A. Annu Rev Astron Astrophys 54:19–52.  https://doi.org/10.1146/annurev-astro-082615-105405 ADSCrossRefGoogle Scholar
  236. McKinney JC, Tchekhovskoy A, Blandford RD (2013) Alignment of magnetized accretion disks and relativistic jets with spinning black holes. Science 339:49.  https://doi.org/10.1126/science.1230811. arXiv:1211.3651ADSCrossRefGoogle Scholar
  237. Meakin CA, Arnett D (2007) Turbulent convection in stellar interiors. I. Hydrodynamic simulation. Astrophys J 667:448–475. https://doi.org/10.1086/520318. arXiv:astro-ph/0611315ADSCrossRefGoogle Scholar
  238. Melson T, Janka HT, Bollig R, Hanke F, Marek A, Müller B (2015) Neutrino-driven explosion of a 20 solar-mass star in three dimensions enabled by strange-quark contributions to neutrino-nucleon scattering. Astrophys J 808:L42. https://doi.org/10.1088/2041-8205/808/2/L42. arXiv:1504.07631ADSCrossRefGoogle Scholar
  239. Mendoza-Temis JdJ, Wu MR, Langanke K, Martínez-Pinedo G, Bauswein A, Janka HT (2015) Nuclear robustness of the r process in neutron-star mergers. Phys Rev C 92(5):055805.  https://doi.org/10.1103/PhysRevC.92.055805 ADSCrossRefGoogle Scholar
  240. Metzger BD (2017a) Kilonovae. Living Rev Relat 20:3. https://doi.org/10.1007/s41114-017-0006-z. arXiv:1610.09381
  241. Metzger BD (2017b) Welcome to the multi-messenger era! lessons from a neutron star merger and the landscape ahead. arXiv:1710.05931Google Scholar
  242. Metzger BD, Martínez-Pinedo G, Darbha S, Quataert E, Arcones A, Kasen D, Thomas R, Nugent P, Panov IV, Zinner NT (2010) Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r-process nuclei. Mon Not R Astron Soc 406:2650–2662. https://doi.org/10.1111/j.1365-2966.2010.16864.x. arXiv:1001.5029ADSCrossRefGoogle Scholar
  243. Meyer BS, Mathews GJ, Howard WM, Woosley SE, Hoffman RD (1992) R-process nucleosynthesis in the high-entropy supernova bubble. Astrophys J 399:656–664. https://doi.org/10.1086/171957 ADSCrossRefGoogle Scholar
  244. Meynet G, Maeder A (2000) Stellar evolution with rotation. V. Changes in all the outputs of massive star models. Astron Astrophys 361:101–120. arXiv:astro-ph/0006404Google Scholar
  245. Meynet G, Maeder A (2005) Stellar evolution with rotation. XI. Wolf-Rayet star populations at different metallicities. Astron Astrophys 429:581–598. https://doi.org/10.1051/0004-6361:20047106. arXiv:astro-ph/0408319ADSCrossRefGoogle Scholar
  246. Meynet G, Maeder A (2017) Supernovae from rotating stars. ArXiv e-prints 1711.07740 Google Scholar
  247. Meynet G, Arnould M, Prantzos N, Paulus G (1997) Contribution of Wolf-Rayet stars to the synthesis of 26Al. I. The γ-ray connection. Astron Astrophys 320:460–468ADSGoogle Scholar
  248. Meynet G, Ekström S, Maeder A (2006) The early star generations: the dominant effect of rotation on the CNO yields. Astron Astrophys 447:623–639. https://doi.org/10.1051/0004-6361:20053070. arXiv:astro-ph/0510560ADSCrossRefGoogle Scholar
  249. Meynet G, Ekström S, Georgy C, Maeder A, Hirschi R (2008) Massive star evolution: from the early to the present day universe. In: Deng L, Chan KL (ed) IAU symposium, vol 252, pp 317–327. https://doi.org/10.1017/S1743921308023119 ADSCrossRefGoogle Scholar
  250. Meynet G, Maeder A, Eggenberger P, Ekstrom S, Georgy C, Chiappini C, Privitera G, Choplin A (2016) Impact of rotation on stellar models. Astron Nachr 337:827.  https://doi.org/10.1002/asna.201612380. arXiv:1512.00767ADSCrossRefGoogle Scholar
  251. Mikheyev SP, Smirnov AY (1985) Resonance enhancement of oscillations in matter and solar neutrino spectroscopy. Yad Fiz Sov J Nucl Phys 42:1441–1448, 913Google Scholar
  252. Mirizzi A, Mangano G, Saviano N (2015) Self-induced flavor instabilities of a dense neutrino stream in a two-dimensional model. Phys Rev D 92(2):021702.  https://doi.org/10.1103/PhysRevD.92.021702. arXiv:1503.03485
  253. Mirizzi A, Tamborra I, Janka HT, Saviano N, Scholberg K, Bollig R, Hüdepohl L, Chakraborty S (2016) Supernova neutrinos: production, oscillations and detection. Nuovo Cimento Rivista Serie 39:1–112.  https://doi.org/10.1393/ncr/i2016-10120-8. arXiv:1508.00785
  254. Mishenina T, Pignatari M, Côté B, Thielemann FK, Soubiran C, Basak N, Gorbaneva T, Korotin SA, Kovtyukh VV, Wehmeyer B, Bisterzo S, Travaglio C, Gibson BK, Jordan C, Paul A, Ritter C, Herwig F, NuGrid Collaboration (2017) Observing the metal-poor solar neighbourhood: a comparison of galactic chemical evolution predictions. Mon Not R Astron Soc 469:4378–4399.  https://doi.org/10.1093/mnras/stx1145. arXiv:1705.03642ADSCrossRefGoogle Scholar
  255. Mochizuki Y, Takahashi K, Janka HT, Hillebrandt W, Diehl R (1999) 44Ti: its effective decay rate in young supernova remnants, and its abundance in Cassiopeia A. Astron Astrophys 346:831–842. arXiv:astro-ph/9904378Google Scholar
  256. Moe M, Di Stefano R (2017) Mind your Ps and Qs: the interrelation between period (P) and mass-ratio (Q) distributions of binary stars. Astrophys J Suppl 230:15. https://doi.org/10.3847/1538-4365/aa6fb6. arXiv:1606.05347ADSCrossRefGoogle Scholar
  257. Möller P, Pfeiffer B, Kratz KL (2003) New calculations of gross β-decay properties for astrophysical applications: speeding-up the classical r process. Phys Rev C 67(5):055802.  https://doi.org/10.1103/PhysRevC.67.055802 ADSCrossRefGoogle Scholar
  258. Möller P, Myers WD, Sagawa H, Yoshida S (2012) New finite-range droplet mass model and equation-of-state parameters. Phys Rev Lett 108(5):052501.  https://doi.org/10.1103/PhysRevLett.108.052501 ADSCrossRefGoogle Scholar
  259. Möller P, Sierk AJ, Ichikawa T, Sagawa H (2016) Nuclear ground-state masses and deformations: FRDM(2012). At Data Nucl Data Tables 109:1–204. https://doi.org/10.1016/j.adt.2015.10.002. arXiv:1508.06294ADSCrossRefGoogle Scholar
  260. Moriya TJ, Tominaga N, Langer N, Nomoto K, Blinnikov SI, Sorokina EI (2014) Electron-capture supernovae exploding within their progenitor wind. Astron Astrophys 569:A57. https://doi.org/10.1051/0004-6361/201424264. arXiv:1407.4563ADSCrossRefGoogle Scholar
  261. Mösta P, Richers S, Ott CD, Haas R, Piro AL, Boydstun K, Abdikamalov E, Reisswig C, Schnetter E (2014) Magnetorotational core-collapse supernovae in three dimensions. Astrophys J 785:L29. https://doi.org/10.1088/2041-8205/785/2/L29. arXiv:1403.1230ADSCrossRefGoogle Scholar
  262. Mösta P, Ott CD, Radice D, Roberts LF, Schnetter E, Haas R (2015) A large-scale dynamo and magnetoturbulence in rapidly rotating core-collapse supernovae. Nature 528:376–379.  https://doi.org/10.1038/nature15755. arXiv:1512.00838ADSCrossRefGoogle Scholar
  263. Mösta P, Roberts LF, Halevi G, Ott CD, Lippuner J, Haas R, Schnetter E (2017) R-process nucleosynthesis from three-dimensional magnetorotational core-collapse supernovae. ArXiv e-prints 1712.09370 Google Scholar
  264. Müller B, Heger A, Liptai D, Cameron JB (2016a) A simple approach to the supernova progenitor-explosion connection. Mon Not R Astron Soc 460:742–764.  https://doi.org/10.1093/mnras/stw1083. arXiv:1602.05956ADSCrossRefGoogle Scholar
  265. Müller B, Viallet M, Heger A, Janka HT (2016b) The last minutes of oxygen shell burning in a massive star. Astrophys J 833:124. https://doi.org/10.3847/1538-4357/833/1/124. arXiv:1605.01393ADSCrossRefGoogle Scholar
  266. Müller B, Wanajo S, Janka HT, Heger A, Gay D, Sim SA (2017) Simulations of electron capture and low-mass iron core supernovae. ArXiv e-prints 1710.02641 Google Scholar
  267. Nagataki S (2000) Effects of jetlike explosion in SN 1987A. Astrophys J Suppl 127:141–157. https://doi.org/10.1086/313317. arXiv:astro-ph/9907109ADSCrossRefGoogle Scholar
  268. Nagataki S (2011) Grb-Sn connection:. central engine of long GRBs and explosive nucleosynthesis. Int J Mod Phys D 20:1975–1978. https://doi.org/10.1142/S0218271811020032 ADSCrossRefGoogle Scholar
  269. Nagataki S, Hashimoto MA, Sato K, Yamada S, Mochizuki YS (1998) The high ratio of 44Ti/ 56Ni in Cassiopeia A and the axisymmetric collapse-driven supernova explosion. Astrophys J 492:L45+. https://doi.org/10.1086/311089. arXiv:astro-ph/9807015ADSCrossRefGoogle Scholar
  270. Nagataki S, Takahashi R, Mizuta A, Takiwaki T (2007) Numerical study of gamma-ray burst jet formation in collapsars. Astrophys J 659:512–529. https://doi.org/10.1086/512057. arXiv:astro-ph/0608233ADSCrossRefGoogle Scholar
  271. Nakamura K, Takiwaki T, Kuroda T, Kotake K (2015) Systematic features of axisymmetric neutrino-driven core-collapse supernova models in multiple progenitors. Publ Astron Soc Jpn 67:107.  https://doi.org/10.1093/pasj/psv073. arXiv:1406.2415ADSCrossRefGoogle Scholar
  272. Nakamura T, Umeda H, Nomoto K, Thielemann F, Burrows A (1999) Nucleosynthesis in type II supernovae and the abundances in metal-poor stars. Astrophys J 517:193–208. https://doi.org/10.1086/307167. arXiv:astro-ph/9809307ADSCrossRefGoogle Scholar
  273. Nakamura T, Umeda H, Iwamoto K, Nomoto K, Hashimoto M, Hix WR, Thielemann F (2001) Explosive nucleosynthesis in hypernovae. Astrophys J 555:880–899. https://doi.org/10.1086/321495. arXiv:astro-ph/0011184ADSCrossRefGoogle Scholar
  274. Nakar E, Piran T (2017) The observable signatures of GRB cocoons. Astrophys J 834:28. https://doi.org/10.3847/1538-4357/834/1/28. arXiv:1610.05362ADSCrossRefGoogle Scholar
  275. Nishimura N, Takiwaki T, Thielemann FK (2015) The r-process nucleosynthesis in the various jet-like explosions of magnetorotational core-collapse supernovae. Astrophys J 810:109. https://doi.org/10.1088/0004-637X/810/2/109. arXiv:1501.06567ADSCrossRefGoogle Scholar
  276. Nishimura N, Hirschi R, Rauscher T, St J Murphy A, Cescutti G (2017a) Uncertainties in s-process nucleosynthesis in massive stars determined by Monte Carlo variations. Mon Not R Astron Soc 469:1752–1767.  https://doi.org/10.1093/mnras/stx696. arXiv:1701.00489ADSCrossRefGoogle Scholar
  277. Nishimura N, Sawai H, Takiwaki T, Yamada S, Thielemann FK (2017b) The Intermediate r-process in core-collapse supernovae driven by the magneto-rotational instability. Astrophys J 836:L21. https://doi.org/10.3847/2041-8213/aa5dee. arXiv:1611.02280ADSCrossRefGoogle Scholar
  278. Nomoto K (1987) Evolution of 8-10 solar mass stars toward electron capture supernovae. II - collapse of an O + NE + MG core. Astrophys J 322:206–214. https://doi.org/10.1086/165716 ADSCrossRefGoogle Scholar
  279. Nomoto K (2017) Nucleosynthesis in hypernovae associated with gamma ray bursts. In: Alsabti AW, Murdin P (eds) Handbook of supernovae. Springer, Berlin. https://doi.org/10.1007/978-3-319-20794-0_86-1 Google Scholar
  280. Nomoto K, Hashimoto M (1988) Presupernova evolution of massive stars. Phys Rep 163:13–36. https://doi.org/10.1016/0370-1573(88)90032-4 ADSCrossRefGoogle Scholar
  281. Nomoto K, Thielemann F, Miyaji S (1985) The triple alpha reaction at low temperatures in accreting white dwarfs and neutron stars. Astron Astrophys 149:239–245ADSGoogle Scholar
  282. Nomoto K, Mazzali PA, Nakamura T, Iwamoto K, Danziger IJ, Patat F (2001) The properties of hypernovae: SNe Ic 1998bw, 1997ef, and SN IIn 1997cy. In: Livio M, Panagia N, Sahu (eds) Supernovae and gamma-ray bursts: the greatest explosions since the big bang, pp 144–170Google Scholar
  283. Nomoto K, Tominaga N, Umeda H, Kobayashi C, Maeda K (2006) Nucleosynthesis yields of core-collapse supernovae and hypernovae, and galactic chemical evolution. Nucl Phys A 777:424–458. https://doi.org/10.1016/j.nuclphysa.2006.05.008. arXiv:astro-ph/0605725ADSCrossRefGoogle Scholar
  284. Nomoto K, Tanaka M, Tominaga N, Maeda K (2010) Hypernovae, gamma-ray bursts, and first stars. New A Rev 54:191–200. https://doi.org/10.1016/j.newar.2010.09.022 ADSCrossRefGoogle Scholar
  285. Nomoto K, Kobayashi C, Tominaga N (2013) Nucleosynthesis in stars and the chemical enrichment of galaxies. Annu Rev Astron Astrophys 51:457–509.  https://doi.org/10.1146/annurev-astro-082812-140956 ADSCrossRefGoogle Scholar
  286. O’Connor E, Ott CD (2011) Black hole formation in failing core-collapse supernovae. Astrophys J 730:70. https://doi.org/10.1088/0004-637X/730/2/70. arXiv:1010.5550ADSCrossRefGoogle Scholar
  287. O’Connor E, Ott CD (2013) The progenitor dependence of the pre-explosion neutrino emission in core-collapse supernovae. Astrophys J 762:126. https://doi.org/10.1088/0004-637X/762/2/126. arXiv:1207.1100ADSCrossRefGoogle Scholar
  288. Oda T, Hino M, Muto K, Takahara M, Sato K (1994) Rate tables for the weak processes of sd-shell nuclei in stellar matter. At Data Nucl Data Tables 56:231–403.  https://doi.org/10.1006/adnd.1994.1007 ADSCrossRefGoogle Scholar
  289. Oertel M, Hempel M, Klähn T, Typel S (2017) Equations of state for supernovae and compact stars. Rev Mod Phys 89(1):015007.  https://doi.org/10.1103/RevModPhys.89.015007. arXiv:1610.03361
  290. Ohkubo T, Umeda H, Maeda K, Nomoto K, Suzuki T, Tsuruta S, Rees MJ (2008) Evolution of core-collapse very massive population III stars. In: O’Shea BW, Heger A (eds) First stars III. American institute of physics conference series, vol 990, pp 244–246. https://doi.org/10.1063/1.2905553
  291. Ono M, Hashimoto M, Fujimoto S, Kotake K, Yamada S (2012) Explosive nucleosynthesis in magnetohydrodynamical jets from collapsars. II — heavy-element nucleosynthesis of s, p, r-processes. Prog Theor Phys 128:741–765. arXiv:1203.6488ADSCrossRefGoogle Scholar
  292. Palacios A, Meynet G, Vuissoz C, Knödlseder J, Schaerer D, Cerviño M, Mowlavi N (2005) New estimates of the contribution of Wolf-Rayet stellar winds to the galactic 26Al. Astron Astrophys 429:613–624. https://doi.org/10.1051/0004-6361:20041757. arXiv:astro-ph/0409580ADSCrossRefGoogle Scholar
  293. Pan KC, Liebendörfer M, Hempel M, Thielemann FK (2016) Two-dimensional core-collapse supernova simulations with the isotropic diffusion source approximation for neutrino transport. Astrophys J 817:72. https://doi.org/10.3847/0004-637X/817/1/72. arXiv:1505.02513ADSCrossRefGoogle Scholar
  294. Pan KC, Liebendörfer M, Couch SM, Thielemann FK (2017) Equation of state dependent dynamics and multimessenger signals from stellar-mass black hole formation. arXiv:1710.01690Google Scholar
  295. Panov IV, Korneev IY, Thielemann FK (2008) The r-Process in the region of transuranium elements and the contribution of fission products to the nucleosynthesis of nuclei with A ≤ 130. Astron Lett 34:189–197. https://doi.org/10.1007/s11443-008-3006-1 ADSCrossRefGoogle Scholar
  296. Paxton B, Bildsten L, Dotter A, Herwig F, Lesaffre P, Timmes F (2011) Modules for experiments in stellar astrophysics (MESA). Astrophys J Suppl 192:3. https://doi.org/10.1088/0067-0049/192/1/3. arXiv:1009.1622ADSCrossRefGoogle Scholar
  297. Perego A, Rosswog S, Cabezón RM, Korobkin O, Käppeli R, Arcones A, Liebendörfer M (2014) Neutrino-driven winds from neutron star merger remnants. Mon Not R Astron Soc 443:3134–3156.  https://doi.org/10.1093/mnras/stu1352. arXiv:1405.6730ADSCrossRefGoogle Scholar
  298. Perego A, Hempel M, Fröhlich C, Ebinger K, Eichler M, Casanova J, Liebendörfer M, Thielemann FK (2015) PUSHing core-collapse supernovae to explosions in spherical symmetry i: the model and the case of SN 1987A. Astrophys J 806:275. https://doi.org/10.1088/0004-637X/806/2/275. arXiv:1501.02845ADSCrossRefGoogle Scholar
  299. Perego A, Cabezón RM, Käppeli R (2016) An advanced leakage scheme for neutrino treatment in astrophysical simulations. Astrophys J Suppl 223:22. https://doi.org/10.3847/0067-0049/223/2/22. arXiv:1511.08519ADSCrossRefGoogle Scholar
  300. Pettini M, Zych BJ, Steidel CC, Chaffee FH (2008) C, N, O abundances in the most metal-poor damped Lyman alpha systems. Mon Not R Astron Soc 385:2011–2024. https://doi.org/10.1111/j.1365-2966.2008.12951.x. arXiv:0712.1829ADSCrossRefGoogle Scholar
  301. Pignatari M, Gallino R, Meynet G, Hirschi R, Herwig F, Wiescher M (2008) The s-process in massive stars at low metallicity: the effect of primary 14N from fast rotating stars. Astrophys J 687:L95–L98. https://doi.org/10.1086/593350. arXiv:0810.0182ADSCrossRefGoogle Scholar
  302. Pignatari M, Herwig F, Hirschi R, Bennett M, Rockefeller G, Fryer C, Timmes FX, Ritter C, Heger A, Jones S, Battino U, Dotter A, Trappitsch R, Diehl S, Frischknecht U, Hungerford A, Magkotsios G, Travaglio C, Young P (2016) NuGrid stellar data set. I.Stellar yields from H to Bi for stars with metallicities Z = 0.02 and Z = 0.01. Astrophys J Suppl 225:24. https://doi.org/10.3847/0067-0049/225/2/24. arXiv:1307.6961ADSCrossRefGoogle Scholar
  303. Piran T (2004) The physics of gamma-ray bursts. Rev Mod Phys 76:1143–1210.  https://doi.org/10.1103/RevModPhys.76.1143. arXiv:astro-ph/0405503ADSCrossRefGoogle Scholar
  304. Pruet J, Woosley SE, Buras R, Janka H, Hoffman RD (2005) Nucleosynthesis in the hot convective bubble in core-collapse supernovae. Astrophys J 623:325–336. https://doi.org/10.1086/428281. arXiv:astro-ph/0409446ADSCrossRefGoogle Scholar
  305. Pruet J, Hoffman RD, Woosley SE, Janka H, Buras R (2006) Nucleosynthesis in early supernova winds. II. The role of neutrinos. Astrophys J 644:1028–1039. https://doi.org/10.1086/503891. arXiv:astro-ph/0511194ADSCrossRefGoogle Scholar
  306. Qian YZ, Wasserburg GJ (2007) Where, oh where has the r-process gone? Phys Rep 442:237–268. https://doi.org/10.1016/j.physrep.2007.02.006. arXiv:0708.1767ADSCrossRefGoogle Scholar
  307. Qian YZ, Woosley SE (1996) Nucleosynthesis in neutrino-driven winds. I. The physical conditions. Astrophys J 471:331–+. https://doi.org/10.1086/177973. arXiv:astro-ph/9611094ADSCrossRefGoogle Scholar
  308. Ramirez-Ruiz E, Trenti M, MacLeod M, Roberts LF, Lee WH, Saladino-Rosas MI (2015) Compact stellar binary assembly in the first nuclear star clusters and r-process synthesis in the early universe. Astrophys J 802:L22. https://doi.org/10.1088/2041-8205/802/2/L22. arXiv:1410.3467ADSCrossRefGoogle Scholar
  309. Rapp W, Görres J, Wiescher M, Schatz H, Käppeler F (2006) Sensitivity of p-process nucleosynthesis to nuclear reaction rates in a 25 Msolar supernova model. Astrophys J 653:474–489. https://doi.org/10.1086/508402. arXiv:astro-ph/0608341ADSCrossRefGoogle Scholar
  310. Rauscher T (2006) Branchings in the γ process path revisited. Phys Rev C 73(1):015,804–+.  https://doi.org/10.1103/PhysRevC.73.015804. arXiv:astro-ph/0510710
  311. Rauscher T (2013) Solution of the α-potential mystery in the γ process and its impact on the Nd/Sm ratio in meteorites. Phys Rev Lett 111(6):061104.  https://doi.org/10.1103/PhysRevLett.111.061104. arXiv:1307.4921
  312. Rauscher T, Heger A, Hoffman RD, Woosley SE (2002) Nucleosynthesis in massive stars with improved nuclear and stellar physics. Astrophys J 576:323–348. https://doi.org/10.1086/341728. arXiv:astro-ph/0112478ADSCrossRefGoogle Scholar
  313. Rauscher T, Dauphas N, Dillmann I, Fröhlich C, Fülöp Z, Gyürky G (2013) Constraining the astrophysical origin of the p-nuclei through nuclear physics and meteoritic data. Rep Prog Phys 76(6):066201. https://doi.org/10.1088/0034-4885/76/6/066201. arXiv:1303.2666ADSCrossRefGoogle Scholar
  314. Rayet M, Arnould M, Prantzos N (1990) The p-process revisited. Astron Astrophys 227:271–281ADSGoogle Scholar
  315. Rayet M, Arnould M, Hashimoto M, Prantzos N, Nomoto K (1995) The p-process in type II supernovae. Astron Astrophys 298:517–+Google Scholar
  316. Renaud M, Vink J, Decourchelle A, Lebrun F, Terrier R, Ballet J (2006) An INTEGRAL/IBIS view of young galactic SNRs through the 44Ti gamma-ray lines. New Astron Rev 50:540–543. https://doi.org/10.1016/j.newar.2006.06.061. arXiv:astro-ph/0602304ADSCrossRefGoogle Scholar
  317. Roberts LF, Woosley SE, Hoffman RD (2010) Integrated nucleosynthesis in neutrino-driven winds. Astrophys J 722:954–967. https://doi.org/10.1088/0004-637X/722/1/954. arXiv:1004.4916ADSCrossRefGoogle Scholar
  318. Roberts LF, Reddy S, Shen G (2012) Medium modification of the charged-current neutrino opacity and its implications. Phys Rev C 86(6):065803.  https://doi.org/10.1103/PhysRevC.86.065803. arXiv:1205.4066
  319. Rosswog S, Korobkin O, Arcones A, Thielemann FK, Piran T (2014) The long-term evolution of neutron star merger remnants - I. The impact of r-process nucleosynthesis. Mon Not R Astron Soc 439:744–756.  https://doi.org/10.1093/mnras/stt2502. arXiv:1307.2939ADSCrossRefGoogle Scholar
  320. Rugel G, Faestermann T, Knie K, Korschinek G, Poutivtsev M, Schumann D, Kivel N, Günther-Leopold I, Weinreich R, Wohlmuther M (2009) New measurement of the Fe60 half-life. Phys Rev Lett 103(7):072,502–+.  https://doi.org/10.1103/PhysRevLett.103.072502
  321. Sagert I, Fischer T, Hempel M, Pagliara G, Schaffner-Bielich J, Mezzacappa A, Thielemann F, Liebendörfer M (2009) Signals of the QCD phase transition in core-collapse supernovae. Phys Rev Lett 102(8):081101.  https://doi.org/10.1103/PhysRevLett.102.081101. arXiv:0809.4225
  322. Sallaska AL, Iliadis C, Champange AE, Goriely S, Starrfield S, Timmes FX (2013) STARLIB: A next-generation reaction-rate library for nuclear astrophysics. Astrophys J Suppl 207:18. https://doi.org/10.1088/0067-0049/207/1/18. arXiv:1304.7811ADSCrossRefGoogle Scholar
  323. Sampaio JM, Langanke K, Martínez-Pinedo G, Kolbe E, Dean DJ (2003) Electron capture rates for core collapse supernovae. Nucl Phys A 718:440–442. https://doi.org/10.1016/S0375-9474(03)00832-7. arXiv:nucl-th/0209057ADSCrossRefGoogle Scholar
  324. Sauer DN, Mazzali PA, Deng J, Valenti S, Nomoto K, Filippenko AV (2006) The properties of the ‘standard’ type Ic supernova 1994I from spectral models. Mon Not R Astron Soc 369:1939–1948. https://doi.org/10.1111/j.1365-2966.2006.10438.x. arXiv:astro-ph/0604293ADSCrossRefGoogle Scholar
  325. Sawyer RF (2005) Effects of ion and electron correlations on neutrino scattering in the infall phase of a supernova. Phys Lett B 630:1–6. https://doi.org/10.1016/j.physletb.2005.09.032. arXiv:astro-ph/0505520ADSCrossRefGoogle Scholar
  326. Schatz H, Aprahamian A, Goerres J, Wiescher M, Rauscher T, Rembges JF, Thielemann F, Pfeiffer B, Moeller P, Kratz K, Herndl H, Brown BA, Rebel H (1998) rp-Process nucleosynthesis at extreme temperature and density conditions. Phys Rep 294:167–264. https://doi.org/10.1016/S0370-1573(97)00048-3 ADSCrossRefGoogle Scholar
  327. Schulreich MM, Breitschwerdt D, Feige J, Dettbarn C (2017) Numerical studies on the link between radioisotopic signatures on Earth and the formation of the local bubble. I. 60Fe transport to the solar system by turbulent mixing of ejecta from nearby supernovae into a locally homogeneous interstellar medium. Astron Astrophys 604:A81. https://doi.org/10.1051/0004-6361/201629837. arXiv:1704.08221ADSCrossRefGoogle Scholar
  328. Seitenzahl IR, Taubenberger S, Sim SA (2009) Late-time supernova light curves: the effect of internal conversion and Auger electrons. Mon Not R Astron Soc 400:531–535. https://doi.org/10.1111/j.1365-2966.2009.15478.x. arXiv:0908.0247
  329. Seitenzahl I, Timmes F, Magkotsios G (2012) Sn87a late lightcurve analysis. Astrophys J 792(1):7Google Scholar
  330. Sekiguchi Y, Shibata M (2011) Formation of black hole and accretion disk in a massive high-entropy stellar core collapse. Astrophys J 737:6. https://doi.org/10.1088/0004-637X/737/1/6. arXiv:1009.5303ADSCrossRefGoogle Scholar
  331. Shibagaki S, Kajino T, Mathews GJ, Chiba S, Nishimura S, Lorusso G (2016) Relative contributions of the weak, main, and fission-recycling r-process. Astrophys J 816:79. https://doi.org/10.3847/0004-637X/816/2/79. arXiv:1505.02257ADSCrossRefGoogle Scholar
  332. Siegert T, Diehl R, Krause MGH, Greiner J (2015) Revisiting INTEGRAL/SPI observations of 44Ti from Cassiopeia A. Astron Astrophys 579:A124. https://doi.org/10.1051/0004-6361/201525877. arXiv:1505.05999ADSCrossRefGoogle Scholar
  333. Sim SA, Kromer M, Roepke FK, Sorokina EI, Blinnikov SI, Kasen D, Hillebrandt W (2009) Monte Carlo radiative transfer simulations: applications to astrophysical outflows and explosions. ArXiv e-prints 0911.1549 Google Scholar
  334. Sinha S, Fröhlich C, Ebinger K, Perego A, Hempel M, Eichler M, Liebendörfer M, Thielemann FK (2017) PUSHing core-collapse supernovae to explosions in spherical symmetry: nucleosynthesis yields. In: Kubono S, Kajino T, Nishimura S, Isobe T, Nagataki S, Shima T, Takeda Y (eds) 14th international symposium on nuclei in the cosmos (NIC2016), p 020608.  https://doi.org/10.7566/JPSCP.14.020608. arXiv:1701.05203
  335. Slane P, Hughes JP, Edgar RJ, Plucinsky PP, Miyata E, Tsunemi H, Aschenbach B (2001) RX J0852.0-4622: another nonthermal shell-type supernova remnant (G266.2-1.2). Astrophys J 548:814–819. https://doi.org/10.1086/319033. arXiv:astro-ph/0010510ADSCrossRefGoogle Scholar
  336. Sneden C, McWilliam A, Preston GW, Cowan JJ, Burris DL, Armosky BJ (1996) The ultra–metal-poor, neutron-capture–rich giant star CS 22892-052. Astrophys J 467:819. https://doi.org/10.1086/177656 ADSCrossRefGoogle Scholar
  337. Sneden C, Cowan JJ, Gallino R (2008) Neutron-capture elements in the early galaxy. Annu Rev Astron Astrophys 46:241–288.  https://doi.org/10.1146/annurev.astro.46.060407.145207 ADSCrossRefGoogle Scholar
  338. Sneden C, Cowan JJ, Kobayashi C, Pignatari M, Lawler JE, Den Hartog EA, Wood MP (2016) Iron-group abundances in the metal-poor main-sequence turnoff star HD˜84937. Astrophys J 817:53. https://doi.org/10.3847/0004-637X/817/1/53. arXiv:1511.05985ADSCrossRefGoogle Scholar
  339. Sollerman J, Holland ST, Challis P, Fransson C, Garnavich P, Kirshner RP, Kozma C, Leibundgut B, Lundqvist P, Patat F, Filippenko AV, Panagia N, Wheeler JC (2002) Supernova 1998bw - the final phases. Astron Astrophys 386:944–956. https://doi.org/10.1051/0004-6361:20020326. arXiv:astro-ph/0204498ADSCrossRefGoogle Scholar
  340. Spite M, Cayrel R, Plez B, Hill V, Spite F, Depagne E, François P, Bonifacio P, Barbuy B, Beers T, Andersen J, Molaro P, Nordström B, Primas F (2005) First stars VI - abundances of C, N, O, Li, and mixing in extremely metal-poor giants. Galactic evolution of the light elements. Astron Astrophys 430:655–668. https://doi.org/10.1051/0004-6361:20041274. arXiv:astro-ph/0409536ADSCrossRefGoogle Scholar
  341. Sukhbold T, Ertl T, Woosley SE, Brown JM, Janka HT (2016) Core-collapse supernovae from 9 to 120 solar masses based on neutrino-powered explosions. Astrophys J 821:38. https://doi.org/10.3847/0004-637X/821/1/38. arXiv:1510.04643ADSCrossRefGoogle Scholar
  342. Sukhbold T, Woosley S, Heger A (2017) High resolution study of presupernova compactness. arXiv:1710.03243Google Scholar
  343. Sullivan C, O’Connor E, Zegers RGT, Grubb T, Austin SM (2016) The sensitivity of core-collapse supernovae to nuclear electron capture. Astrophys J 816:44. https://doi.org/10.3847/0004-637X/816/1/44. arXiv:1508.07348ADSCrossRefGoogle Scholar
  344. Sumiyoshi K, Terasawa M, Mathews GJ, Kajino T, Yamada S, Suzuki H (2001) r-Process in prompt supernova explosions revisited. Astrophys J 562:880–886. https://doi.org/10.1086/323524. arXiv:astro-ph/0106407ADSCrossRefGoogle Scholar
  345. Sumiyoshi K, Yamada S, Suzuki H (2007) Dynamics and neutrino signal of black hole formation in nonrotating failed supernovae. I. Equation of state dependence. Astrophys J 667:382–394. https://doi.org/10.1086/520876. arXiv:0706.3762ADSCrossRefGoogle Scholar
  346. Suntzeff NB, Bouchet P (1990) The bolometric light curve of SN 1987A. I - Results from ESO and CTIO U to Q0 photometry. Astron J 99:650–663. https://doi.org/10.1086/115358 ADSCrossRefGoogle Scholar
  347. Surman R, McLaughlin GC, Hix WR (2006) Nucleosynthesis in the outflow from gamma-ray burst accretion disks. Astrophys J 643:1057–1064. https://doi.org/10.1086/501116. arXiv:astro-ph/0509365ADSCrossRefGoogle Scholar
  348. Takahashi K, Witti J, Janka H (1994) Nucleosynthesis in neutrino-driven winds from protoneutron stars II. The r-process. Astron Astrophys 286:857–869ADSGoogle Scholar
  349. Takiwaki T, Kotake K, Suwa Y (2014) A comparison of two- and three-dimensional neutrino-hydrodynamics simulations of core-collapse supernovae. Astrophys J 786:83. https://doi.org/10.1088/0004-637X/786/2/83. arXiv:1308.5755ADSCrossRefGoogle Scholar
  350. Tanvir NR, Levan AJ, Fruchter AS, Hjorth J, Hounsell RA, Wiersema K, Tunnicliffe RL (2013) A ‘kilonova’ associated with the short-duration γ-ray burst GRB 130603B. Nature 500:547–549.  https://doi.org/10.1038/nature12505. arXiv:1306.4971ADSCrossRefGoogle Scholar
  351. The L, El Eid MF, Meyer BS (2007) s-Process nucleosynthesis in advanced burning phases of massive stars. Astrophys J 655:1058–1078. https://doi.org/10.1086/509753. arXiv:astro-ph/0609788ADSCrossRefGoogle Scholar
  352. The LS, Clayton DD, Diehl R, Hartmann DH, Iyudin AF, Leising MD, Meyer BS, Motizuki Y, Schönfelder V (2006) Are 44Ti-producing supernovae exceptional? Astron Astrophys 450:1037–1050. https://doi.org/10.1051/0004-6361:20054626. arXiv:astro-ph/0601039ADSCrossRefGoogle Scholar
  353. Thielemann FK, Arnett WD (1985) Hydrostatic nucleosynthesis - part two - core neon to silicon burning and presupernova abundance yields of massive stars. Astrophys J 295:604–+. https://doi.org/10.1086/163403 ADSCrossRefGoogle Scholar
  354. Thielemann FK, Nomoto K, Yokoi K (1986) Explosive nucleosynthesis in carbon deflagration models of Type I supernovae. Astron Astrophys 158:17–33ADSGoogle Scholar
  355. Thielemann F, Hashimoto M, Nomoto K (1990) Explosive nucleosynthesis in SN 1987A. II - composition, radioactivities, and the neutron star mass. Astrophys J 349:222–240. https://doi.org/10.1086/168308 ADSCrossRefGoogle Scholar
  356. Thielemann FK, Nomoto K, Hashimoto MA (1996) Core-collapse supernovae and their ejecta. Astrophys J 460:408–+. https://doi.org/10.1086/176980 ADSCrossRefGoogle Scholar
  357. Thielemann F, Hauser P, Kolbe E, Martinez-Pinedo G, Panov I, Rauscher T, Kratz K, Pfeiffer B, Rosswog S, Liebendörfer M, Mezzacappa A (2002) Heavy elements and age determinations. Space Sci Rev 100:277–296ADSCrossRefGoogle Scholar
  358. Thielemann FK, Eichler M, Panov IV, Pignatrari M, Wehmeyer B (2017a) Making the heaviest elements in a rare class of supernovae. In: Alsabti AW, Murdin P (eds) Handbook of supernovae. Springer, Berlin. https://doi.org/10.1007/978-3-319-20794-0_81-1 Google Scholar
  359. Thielemann FK, Eichler M, Panov IV, Wehmeyer B (2017b) Neutron star mergers and nucleosynthesis of heavy elements. Annu Rev Nucl Part Sci 67.  https://doi.org/10.1146/annurev-nucl-101916-123246. arXiv:1710.02142ADSCrossRefGoogle Scholar
  360. Timmes FX (1999) Integration of nuclear reaction networks for stellar hydrodynamics. Astrophys J Suppl 124:241–263. https://doi.org/10.1086/313257 ADSCrossRefGoogle Scholar
  361. Tominaga N, Umeda H, Nomoto K (2007) Supernova nucleosynthesis in population III 13-50 Msolar stars and abundance patterns of extremely metal-poor stars. Astrophys J 660:516–540. https://doi.org/10.1086/513063 ADSCrossRefGoogle Scholar
  362. Travaglio C, Gallino R, Arnone E, Cowan J, Jordan F, Sneden C (2004) Galactic evolution of Sr, Y, and Zr: a multiplicity of nucleosynthetic processes. Astrophys J 601:864–884. https://doi.org/10.1086/380507. arXiv:astro-ph/0310189ADSCrossRefGoogle Scholar
  363. Tsygankov SS, Krivonos RA, Lutovinov AA, Revnivtsev MG, Churazov EM, Sunyaev RA, Grebenev SA (2016) Galactic survey of 44Ti sources with the IBIS telescope onboard INTEGRAL. Mon Not R Astron Soc 458:3411–3419.  https://doi.org/10.1093/mnras/stw549. arXiv:1603.01264ADSCrossRefGoogle Scholar
  364. Tueller J, Barthelmy S, Gehrels N, Teegarden BJ, Leventhal M, MacCallum CJ (1990) Observations of gamma-ray line profiles from SN 1987A. Astrophys J 351:L41–L44. https://doi.org/10.1086/185675 ADSCrossRefGoogle Scholar
  365. Tur C, Heger A, Austin SM (2010) Production of 26Al, 44Ti, and 60Fe in core-collapse supernovae: sensitivity to the rates of the triple alpha and 12C(α, γ)16O reactions. Astrophys J 718:357–367. https://doi.org/10.1088/0004-637X/718/1/357. arXiv:0908.4283ADSCrossRefGoogle Scholar
  366. Uberseder E, Reifarth R, Schumann D, Dillmann I, Pardo CD, Görres J, Heil M, Käppeler F, Marganiec J, Neuhausen J, Pignatari M, Voss F, Walter S, Wiescher M (2009) Measurement of the Fe60(n,γ)61Fe cross section at stellar temperatures. Phys Rev Lett 102(15):151,101–+.  https://doi.org/10.1103/PhysRevLett.102.151101
  367. Ugliano M, Janka HT, Marek A, Arcones A (2012) Progenitor-explosion connection and remnant birth masses for neutrino-driven supernovae of iron-core progenitors. Astrophys J 757:69. https://doi.org/10.1088/0004-637X/757/1/69. arXiv:1205.3657ADSCrossRefGoogle Scholar
  368. Umeda H, Nomoto K (2005) Variations in the abundance pattern of extremely metal-poor stars and nucleosynthesis in population III supernovae. Astrophys J 619:427–445. https://doi.org/10.1086/426097. arXiv:astro-ph/0308029ADSCrossRefGoogle Scholar
  369. Umeda H, Nomoto K (2008) How much 56Ni can be produced in core-collapse supernovae? Evolution and explosions of 30-100 M solar stars. Astrophys J 673:1014–1022. https://doi.org/10.1086/524767. arXiv:0707.2598ADSCrossRefGoogle Scholar
  370. Vink J (2005) Gamma-ray observations of explosive nucleosynthesis products. Adv Space Res 35:976–986. https://doi.org/10.1016/j.asr.2005.01.097. arXiv:astro-ph/0501645ADSCrossRefGoogle Scholar
  371. Vink J, Laming JM, Kaastra JS, Bleeker JAM, Bloemen H, Oberlack U (2001) Detection of the 67.9 and 78.4 keV lines associated with the radioactive decay of 44Ti in Cassiopeia A. Astrophys J 560:L79–L82. https://doi.org/10.1086/324172. arXiv:astro-ph/0107468ADSCrossRefGoogle Scholar
  372. Walder R, Burrows A, Ott CD, Livne E, Lichtenstadt I, Jarrah M (2005) Anisotropies in the neutrino fluxes and heating profiles in two-dimensional, time-dependent, multigroup radiation hydrodynamics simulations of rotating core-collapse supernovae. Astrophys J 626:317–332. https://doi.org/10.1086/429816. arXiv:astro-ph/0412187ADSCrossRefGoogle Scholar
  373. Wallace RK, Woosley SE (1981) Explosive hydrogen burning. Astrophys J Suppl 45:389–420. https://doi.org/10.1086/190717 ADSCrossRefGoogle Scholar
  374. Wallner A, Faestermann T, Feige J, Feldstein C, Knie K, Korschinek G, Kutschera W, Ofan A, Paul M, Quinto F, Rugel G, Steier P (2015) Abundance of live 244Pu in deep-sea reservoirs on earth points to rarity of actinide nucleosynthesis. Nat Commun 6:5956.  https://doi.org/10.1038/ncomms6956. arXiv:1509.08054
  375. Wanajo S (2006) The rp-process in neutrino-driven winds. Astrophys J 647:1323–1340. https://doi.org/10.1086/505483. arXiv:astro-ph/0602488ADSCrossRefGoogle Scholar
  376. Wanajo S, Nomoto K, Janka H, Kitaura FS, Müller B (2009) Nucleosynthesis in electron capture supernovae of asymptotic giant branch stars. Astrophys J 695:208–220. https://doi.org/10.1088/0004-637X/695/1/208. arXiv:0810.3999ADSCrossRefGoogle Scholar
  377. Wanajo S, Janka HT, Müller B (2011) Electron-capture supernovae as the origin of elements beyond iron. Astrophys J 726:L15. https://doi.org/10.1088/2041-8205/726/2/L15. arXiv:1009.1000ADSCrossRefGoogle Scholar
  378. Wanajo S, Sekiguchi Y, Nishimura N, Kiuchi K, Kyutoku K, Shibata M (2014) Production of all the r-process nuclides in the dynamical ejecta of neutron star mergers. Astrophys J 789:L39. https://doi.org/10.1088/2041-8205/789/2/L39. arXiv:1402.7317ADSCrossRefGoogle Scholar
  379. Wang W, Harris MJ, Diehl R, Halloin H, Cordier B, Strong AW, Kretschmer K, Knödlseder J, Jean P, Lichti GG, Roques JP, Schanne S, von Kienlin A, Weidenspointner G, Wunderer C (2007) SPI observations of the diffuse 60Fe emission in the galaxy. Astron Astrophys 469:1005–1012. https://doi.org/10.1051/0004-6361:20066982. arXiv:0704.3895ADSCrossRefGoogle Scholar
  380. Wang W, Lang MG, Diehl R, Halloin H, Jean P, Knödlseder J, Kretschmer K, Martin P, Roques JP, Strong AW, Winkler C, Zhang XL (2009) Spectral and intensity variations of Galactic 26Al emission. Astron Astrophys 496:713–724. https://doi.org/10.1051/0004-6361/200811175. arXiv:0902.0211ADSCrossRefGoogle Scholar
  381. Weaver TA, Woosley SE (1980) Evolution and explosion of massive stars. In: Ehlers J, Perry JJ, Walker M (ed) Ninth texas symposium on relativistic astrophysics. N Y Acad Sci Ann, 336:335–357. https://doi.org/10.1111/j.1749-6632.1980.tb15942.x ADSCrossRefGoogle Scholar
  382. Weber C, Elomaa V, Ferrer R, Fröhlich C, Ackermann D, Äystö J, Audi G, Batist L, Blaum K, Block M, Chaudhuri A, Dworschak M, Eliseev S, Eronen T, Hager U, Hakala J, Herfurth F, Heßberger FP, Hofmann S, Jokinen A, Kankainen A, Kluge H, Langanke K, Martín A, Martínez-Pinedo G, Mazzocco M, Moore ID, Neumayr JB, Novikov YN, Penttilä H, Plaß WR, Popov AV, Rahaman S, Rauscher T, Rauth C, Rissanen J, Rodríguez D, Saastamoinen A, Scheidenberger C, Schweikhard L, Seliverstov DM, Sonoda T, Thielemann F, Thirolf PG, Vorobjev GK (2008) Mass measurements in the vicinity of the rp-process and the νp-process paths with the penning trap facilities JYFLTRAP and SHIPTRAP. Phys Rev C 78(5):054,310–+.  https://doi.org/10.1103/PhysRevC.78.054310. arXiv:0808.4065
  383. Wehmeyer B, Pignatari M, Thielemann FK (2015) Galactic evolution of rapid neutron capture process abundances: the inhomogeneous approach. Mon Not R Astron Soc 452:1970–1981.  https://doi.org/10.1093/mnras/stv1352. arXiv:1501.07749ADSCrossRefGoogle Scholar
  384. West C, Heger A (2018, in preparation)Google Scholar
  385. Wiescher M, Görres J, Pignatari M (2010) Experimental status of reactions in H- and He-burning. Annu Rev Nucl Part Sci 60:175–251.  https://doi.org/10.1146/annurev.nucl.60.1.175 CrossRefGoogle Scholar
  386. Wiescher M, Käppeler F, Langanke K (2012) Critical reactions in contemporary nuclear astrophysics. Annu Rev Astron Astrophys 50:165–210.  https://doi.org/10.1146/annurev-astro-081811-125543 ADSCrossRefGoogle Scholar
  387. Wilson JR, Mayle RW (1993) Report on the progress of supernova research by the Livermore group. Phys Rep 227:97–111. https://doi.org/10.1016/0370-1573(93)90059-M ADSCrossRefGoogle Scholar
  388. Winteler C, Käppeli R, Perego A, Arcones A, Vasset N, Nishimura N, Liebendörfer M, Thielemann FK (2012) Magnetorotationally driven supernovae as the origin of early galaxy r-process elements? Astrophys J 750:L22. https://doi.org/10.1088/2041-8205/750/1/L22. arXiv:1203.0616ADSCrossRefGoogle Scholar
  389. Wolfenstein L (1978) Neutrino oscillations in matter. Phys Rev D 17:2369–2374.  https://doi.org/10.1103/PhysRevD.17.2369 ADSCrossRefGoogle Scholar
  390. Wongwathanarat A, Müller E, Janka HT (2015) Three-dimensional simulations of core-collapse supernovae: from shock revival to shock breakout. Astron Astrophys 577:A48. https://doi.org/10.1051/0004-6361/201425025. arXiv:1409.5431ADSCrossRefGoogle Scholar
  391. Wongwathanarat A, Janka HT, Müller E, Pllumbi E, Wanajo S (2017) Production and distribution of 44Ti and 56Ni in a three-dimensional supernova model resembling Cassiopeia A. Astrophys J 842:13. https://doi.org/10.3847/1538-4357/aa72de. arXiv:1610.05643ADSCrossRefGoogle Scholar
  392. Woosley SE, Bloom JS (2006) The supernova gamma-ray burst connection. Annu Rev Astron Astrophys 44:507–556.  https://doi.org/10.1146/annurev.astro.43.072103.150558. arXiv:astro-ph/0609142ADSCrossRefGoogle Scholar
  393. Woosley SE, Heger A (2007) Nucleosynthesis and remnants in massive stars of solar metallicity. Phys Rep 442:269–283. https://doi.org/10.1016/j.physrep.2007.02.009. arXiv:astro-ph/0702176ADSCrossRefGoogle Scholar
  394. Woosley SE, Heger A (2015a) The deaths of very massive stars. In: Vink JS (ed) Very massive stars in the local universe. Astrophysics and space science library, vol 412, p 199. https://doi.org/10.1007/978-3-319-09596-7_7. arXiv:1406.5657Google Scholar
  395. Woosley SE, Heger A (2015b) The remarkable deaths of 9-11 solar mass stars. Astrophys J 810:34. https://doi.org/10.1088/0004-637X/810/1/34. arXiv:1505.06712ADSCrossRefGoogle Scholar
  396. Woosley SE, Hoffman RD (1992) The alpha-process and the r-process. Astrophys J 395:202–239. https://doi.org/10.1086/171644 ADSCrossRefGoogle Scholar
  397. Woosley SE, Howard WM (1978) The p-process in supernovae. Astrophys J Suppl 36:285–304. https://doi.org/10.1086/190501 ADSCrossRefGoogle Scholar
  398. Woosley SE, Weaver TA (1994) Sub-Chandrasekhar mass models for type IA supernovae. Astrophys J 423:371–379. https://doi.org/10.1086/173813 ADSCrossRefGoogle Scholar
  399. Woosley SE, Weaver TA (1995) The evolution and explosion of massive stars. II. Explosive hydrodynamics and nucleosynthesis. Astrophys J Suppl 101:181–+. https://doi.org/10.1086/192237 ADSCrossRefGoogle Scholar
  400. Woosley SE, Arnett WD, Clayton DD (1973) The explosive burning of oxygen and silicon. Astrophys J Suppl 26:231–+. https://doi.org/10.1086/190282 ADSCrossRefGoogle Scholar
  401. Woosley SE, Wilson JR, Mathews GJ, Hoffman RD, Meyer BS (1994) The r-process and neutrino-heated supernova ejecta. Astrophys J 433:229–246. https://doi.org/10.1086/174638 ADSCrossRefGoogle Scholar
  402. Woosley SE, Heger A, Weaver TA (2002) The evolution and explosion of massive stars. Rev Mod Phys 74:1015–1071.  https://doi.org/10.1103/RevModPhys.74.1015 ADSCrossRefGoogle Scholar
  403. Woosley SE, Kasen D, Blinnikov S, Sorokina E (2007) Type Ia supernova light curves. Astrophys J 662:487–503. https://doi.org/10.1086/513732. arXiv:astro-ph/0609562ADSCrossRefGoogle Scholar
  404. Wu MR, Fischer T, Huther L, Martínez-Pinedo G, Qian YZ (2014) Impact of active-sterile neutrino mixing on supernova explosion and nucleosynthesis. Phys Rev D 89(6):061303.  https://doi.org/10.1103/PhysRevD.89.061303. arXiv:1305.2382
  405. Wu MR, Qian YZ, Martínez-Pinedo G, Fischer T, Huther L (2015) Effects of neutrino oscillations on nucleosynthesis and neutrino signals for an 18 M? supernova model. Phys Rev D 91(6):065016.  https://doi.org/10.1103/PhysRevD.91.065016. arXiv:1412.8587
  406. Wu MR, Fernández R, Martínez-Pinedo G, Metzger BD (2016a) Production of the entire range of r-process nuclides by black hole accretion disc outflows from neutron star mergers. Mon Not R Astron Soc 463:2323–2334.  https://doi.org/10.1093/mnras/stw2156. arXiv:1607.05290ADSCrossRefGoogle Scholar
  407. Wu MR, Martínez-Pinedo G, Qian YZ (2016b) Linking neutrino oscillations to the nucleosynthesis of elements. Eur Phys J Web Conf 109, 06005.  https://doi.org/10.1051/epjconf/201610906005. arXiv:1512.03630CrossRefGoogle Scholar
  408. Xu Y, Takahashi K, Goriely S, Arnould M, Ohta M, Utsunomiya H (2013) NACRE II: an update of the NACRE compilation of charged-particle-induced thermonuclear reaction rates for nuclei with mass number A< 16. Nucl Phys A 918:61–169. https://doi.org/10.1016/j.nuclphysa.2013.09.007. arXiv:1310.7099ADSCrossRefGoogle Scholar
  409. Yalçın C, Güray RT, Özkan N, Kutlu S, Gyürky G, Farkas J, Kiss GG, Fülöp Z, Simon A, Somorjai E, Rauscher T (2009) Odd p isotope In113: measurement of α-induced reactions. Phys Rev C 79(6):065,801–+.  https://doi.org/10.1103/PhysRevC.79.065801. arXiv:0906.4041
  410. Yamamoto Y, Fujimoto Si, Nagakura H, Yamada S (2013) Post-shock-revival evolution in the neutrino-heating mechanism of core-collapse supernovae. Astrophys J 771:27. https://doi.org/10.1088/0004-637X/771/1/27. arXiv:1209.4824ADSCrossRefGoogle Scholar
  411. Yamasaki T, Yamada S (2005) Effects of rotation on the revival of a stalled shock in supernova explosions. Astrophys J 623:1000–1010. https://doi.org/10.1086/428496. arXiv:astro-ph/0412625ADSCrossRefGoogle Scholar
  412. Yoon SC (2015) Evolutionary models for type Ib/c supernova progenitors. Publ Astron Soc Aust 32:e015.  https://doi.org/10.1017/pasa.2015.16. arXiv:1504.01205
  413. Yoshida T, Suwa Y, Umeda H, Shibata M, Takahashi K (2017) Explosive nucleosynthesis of ultra-stripped Type Ic supernovae: application to light trans-iron elements. Mon Not R Astron Soc 471:4275–4285.  https://doi.org/10.1093/mnras/stx1738. arXiv:1707.02685ADSCrossRefGoogle Scholar
  414. Yusof N, Hirschi R, Meynet G, Crowther PA, Ekström S, Frischknecht U, Georgy C, Abu Kassim H, Schnurr O (2013) Evolution and fate of very massive stars. Mon Not R Astron Soc 433:1114–1132.  https://doi.org/10.1093/mnras/stt794. arXiv:1305.2099ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Friedrich-Karl Thielemann
    • 1
    • 2
  • Roland Diehl
    • 3
  • Alexander Heger
    • 4
    • 5
  • Raphael Hirschi
    • 6
  • Matthias Liebendörfer
    • 1
  1. 1.Department of PhysicsUniversity of BaselBaselSwitzerland
  2. 2.GSI Helmholtz Center for Heavy Ion ResearchDarmstadtGermany
  3. 3.Max Planck Institut für extraterrestrische PhysikExcellence Cluster ‘Universe’GarchingGermany
  4. 4.Monash Centre for Astrophysics, School of Physics and AstronomyMonash UniversityClaytonAustralia
  5. 5.Tsung-Dao Lee InstituteShanghaiChina
  6. 6.University of KeeleKeeleUK

Personalised recommendations