Advertisement

Low- and Intermediate-Mass Stars

  • Maria Lugaro
  • Alessandro Chieffi
Chapter
Part of the Astrophysics and Space Science Library book series (ASSL, volume 453)

Abstract

Energy in stars is provided by nuclear reactions, which, in many cases, produce radioactive nuclei. When stable nuclei are irradiated by a flux of protons or neutrons, capture reactions push stable matter out of stability into the regime of unstable species. The ongoing production of radioactive nuclei in the deep interior of the Sun via proton-capture reactions is recorded by neutrinos emitted during radioactive decay. These neutrinos escape the inner region of the Sun and can be detected on Earth. Radioactive nuclei that have relatively long half lives may also be detected in stars via spectroscopic observations and in stardust recovered from primitive meteorites via laboratory analysis. The vast majority of these stardust grains originated from Asymptotic Giant Branch (AGB) stars. This is the final phase in the evolution of stars initially less massive than ≃10 M, during which nuclear energy is produced by alternate hydrogen and helium burning in shells above the core. The long-lived radioactive nucleus26Al is produced in AGB stars by proton captures at relatively high temperatures, above 60 MK. Efficient production of 26Al occurs in massive AGB stars (> 4:5 M), where the base of the convective envelope reaches such temperatures. Several other long-lived radioactive nuclei, including 60Fe, 87Rb, and 99Tc, are produced in AGB stars when matter is exposed to a significant neutron flux leading to the synthesis of elements heavier than iron. Here, neutron captures occur on a timescale that is typically slower than β-decay timescales, resulting in a process known as slow neutron captures (the s-process). However, when radioactive nuclei with half lives greater than a few days are produced, depending on the temperature and the neutron density, they may either decay or capture a neutron, thus branching up the path of neutron captures and defining the final s-process abundance distribution. The effect of these branching points is observable in the composition of AGB stars and stardust. This nucleosynthesis in AGB stars could produce some long-living radioactive nuclei in relative abundances that resemble those observed in the early solar system.

References

  1. Abdurashitov JN, Bowles TJ, Cherry ML, Cleveland BT, Davis R, Elliott SR, Gavrin VN, Girin SV, Gorbachev VV, Ibragimova TV, Kalikhov AV, Khairnasov NG, Knodel TV, Lande K, Mirmov IN, Nico JS, Shikhin AA, Teasdale WA, Veretenkin EP, Vermul VM, Wark DL, Wildenhain PS, Wilkerson JF, Yants VE, Zatsepin GT (1999) Measurement of the solar neutrino capture rate by SAGE and implications for neutrino oscillations in vacuum. Phys Rev Lett 83:4686–4689.  https://doi.org/10.1103/PhysRevLett.83.4686, https://arXiv:astro-ph/9907131 ADSCrossRefGoogle Scholar
  2. Abia C, Busso M, Gallino R, Domínguez I, Straniero O, Isern J (2001) The 85Kr s-Process branching and the mass of carbon stars. Astrophys J 559:1117–1134. https://doi.org/10.1086/322383, https://arXiv:astro-ph/0105486 ADSCrossRefGoogle Scholar
  3. Abia C, Hedrosa RP, Domínguez I, Straniero O (2017) The puzzle of the CNO isotope ratios in asymptotic giant branch carbon stars. Astron Astrophys 599:A39. https://doi.org/10.1051/0004-6361/201629969, http://doi.org/1611.06400
  4. Amari S, Gao X, Nittler LR, Zinner E, José J, Hernanz M, Lewis RS (2001a) Presolar grains from novae. Astrophys J 551:1065–1072. https://doi.org/10.1086/320235, https://arXiv:astro-ph/0012465 ADSCrossRefGoogle Scholar
  5. Amari S, Nittler LR, Zinner E, Gallino R, Lugaro M, Lewis RS (2001b) Presolar SIC grains of type Y: origin from low-metallicity asymptotic giant branch stars. Astrophys J 546:248–266. https://doi.org/10.1086/318230 ADSCrossRefGoogle Scholar
  6. Amari S, Nittler LR, Zinner E, Lodders K, Lewis RS (2001c) Presolar SiC grains of type A and B: their isotopic compositions and stellar origins. Astrophys J 559:463–483. https://doi.org/10.1086/322397 ADSCrossRefGoogle Scholar
  7. Aoki W, Honda S, Beers TC, Sneden C (2003a) Measurement of the europium isotope ratio for the extremely metal poor, r-Process-enhanced star CS 31082-001. Astrophys J 586:506–511. https://doi.org/10.1086/367540, https://arXiv:astro-ph/0211617 ADSCrossRefGoogle Scholar
  8. Aoki W, Ryan SG, Iwamoto N, Beers TC, Norris JE, Ando H, Kajino T, Mathews GJ, Fujimoto MY (2003b) Europium Isotope Ratios in s-Process Element-enhanced Metal-poor Stars: A New Probe of the 151Sm Branching. Astrophys J 592:L67–L70. https://doi.org/10.1086/377681, https://arXiv:astro-ph/0306544 ADSCrossRefGoogle Scholar
  9. Arlandini C, Käppeler F, Wisshak K, Gallino R, Lugaro M, Busso M, Straniero O (1999) Neutron capture in low-mass asymptotic giant branch stars: cross sections and abundance signatures. Astrophys J 525:886–900. https://doi.org/10.1086/307938, https://arXiv:astro-ph/9906266 ADSCrossRefGoogle Scholar
  10. Arpesella C, Back HO, Balata M, Bellini G, Benziger J, Bonetti S, Brigatti A, Caccianiga B, Cadonati L, Calaprice F, Carraro C, Cecchet G, Chavarria A, Chen M, Dalnoki-Veress F, D’Angelo D, de Bari A, de Bellefon A, de Kerret H, Derbin A, Deutsch M, di Credico A, di Pietro G, Eisenstein R, Elisei F, Etenko A, Fernholz R, Fomenko K, Ford R, Franco D, Freudiger B, Galbiati C, Gatti F, Gazzana S, Giammarchi M, Giugni D, Goeger-Neff M, Goldbrunner T, Goretti A, Grieb C, Hagner C, Hampel W, Harding E, Hardy S, Hartman FX, Hertrich T, Heusser G, Ianni A, Ianni A, Joyce M, Kiko J, Kirsten T, Kobychev V, Korga G, Korschinek G, Kryn D, Lagomarsino V, Lamarche P, Laubenstein M, Lendvai C, Leung M, Lewke T, Litvinovich E, Loer B, Lombardi P, Ludhova L, Machulin I, Malvezzi S, Manecki S, Maneira J, Maneschg W, Manno I, Manuzio D, Manuzio G, Martemianov A, Masetti F, Mazzucato U, McCarty K, McKinsey D, Meindl Q, Meroni E, Miramonti L, Misiaszek M, Montanari D, Monzani ME, Muratova V, Musico P, Neder H, Nelson A, Niedermeier L, Oberauer L, Obolensky M, Orsini M, Ortica F, Pallavicini M, Papp L, Parmeggiano S, Perasso L, Pocar A, Raghavan RS, Ranucci G, Rau W, Razeto A, Resconi E, Risso P, Romani A, Rountree D, Sabelnikov A, Saldanha R, Salvo C, Schimizzi D, Schönert S, Shutt T, Simgen H, Skorokhvatov M, Smirnov O, Sonnenschein A, Sotnikov A, Sukhotin S, Suvorov Y, Tartaglia R, Testera G, Vignaud D, Vitale S, Vogelaar RB, von Feilitzsch F, von Hentig R, von Hentig T, Wojcik M, Wurm M, Zaimidoroga O, Zavatarelli S, Zuzel G (2008) Direct measurement of the Be7 solar neutrino flux with 192 days of borexino data. Phys Rev Lett 101(9):091302.  https://doi.org/10.1103/PhysRevLett.101.091302, http://doi.org/0805.3843
  11. Aschwanden MJ (2008) Solar flare physics enlivened by TRACE and RHESSI. J Astrophys Astron 29:115–124. https://doi.org/10.1007/s12036-008-0015-0 ADSCrossRefGoogle Scholar
  12. Asplund M, Grevesse N, Sauval AJ, Scott P (2009) The chemical composition of the sun. Annu Rev Astron Astrophys 47:481–522.  https://doi.org/10.1146/annurev.astro.46.060407.145222, http://doi.org/0909.0948
  13. Ávila JN, Lugaro M, Ireland TR, Gyngard F, Zinner E, Cristallo S, Holden P, Buntain J, Amari S, Karakas A (2012) Tungsten isotopic compositions in stardust SiC grains from the murchison meteorite: constraints on the s-process in the Hf-Ta-W-Re-Os Region. Astrophys J 744:49. https://doi.org/10.1088/0004-637X/744/1/49, http://doi.org/1110.4763
  14. Ávila JN, Ireland TR, Lugaro M, Gyngard F, Zinner E, Cristallo S, Holden P, Rauscher T (2013) Europium s-process signature at close-to-solar Metallicity in stardust SiC grains from asymptotic giant branch stars. Astrophys J 768:L18. https://doi.org/10.1088/2041-8205/768/1/L18, http://doi.org/1303.5932
  15. Bahcall JN, Cleveland BT, Davis R Jr, Rowley JK (1985) Chlorine and gallium solar neutrino experiments. Astrophys J 292:L79–L82. https://doi.org/10.1086/184477 ADSCrossRefGoogle Scholar
  16. Balachandran SC (2005) Anomalous abundances in red giants: the Li-Rich stars. In: Barnes TG III, Bash FN (eds) Cosmic abundances as records of stellar evolution and nucleosynthesis, Astronomical society of the pacific conference series, vol 336, p 113Google Scholar
  17. Bellini G, Benziger J, Bonetti S, Buizza Avanzini M, Caccianiga B, Cadonati L, Calaprice F, Carraro C, Chavarria A, Chepurnov A, Dalnoki-Veress F, D’Angelo D, Davini S, de Kerret H, Derbin A, Etenko A, Fomenko K, Franco D, Galbiati C, Gazzana S, Ghiano C, Giammarchi M, Goeger-Neff M, Goretti A, Guardincerri E, Hardy S, Ianni A, Ianni A, Joyce M, Korga G, Kryn D, Laubenstein M, Leung M, Lewke T, Litvinovich E, Loer B, Lombardi P, Ludhova L, Machulin I, Manecki S, Maneschg W, Manuzio G, Meindl Q, Meroni E, Miramonti L, Misiaszek M, Montanari D, Muratova V, Oberauer L, Obolensky M, Ortica F, Pallavicini M, Papp L, Perasso L, Perasso S, Pocar A, Raghavan RS, Ranucci G, Razeto A, Re A, Risso P, Romani A, Rountree D, Sabelnikov A, Saldanha R, Salvo C, Schönert S, Simgen H, Skorokhvatov M, Smirnov O, Sotnikov A, Sukhotin S, Suvorov Y, Tartaglia R, Testera G, Vignaud D, Vogelaar RB, von Feilitzsch F, Winter J, Wojcik M, Wright A, Wurm M, Xu J, Zaimidoroga O, Zavatarelli S, Zuzel G, Borexino Collaboration (2010) Measurement of the solar B8 neutrino rate with a liquid scintillator target and 3 MeV energy threshold in the Borexino detector. Phys Rev D 82(3):033006.  https://doi.org/10.1103/PhysRevD.82.033006, http://doi.org/0808.2868
  18. Bond H, Sion E, Murdin P (2000) CH stars and barium stars. https://doi.org/10.1888/0333750888/5413
  19. Bondarenko V, Berzins J, Prokofjevs P, Simonova L, von Egidy T, Honzátko J, Tomandl I, Alexa P, Wirth HF, Köster U, Eisermann Y, Metz A, Graw G, Hertenberger R, Rubacek L (2002) Interplay of quasiparticle and phonon excitations in 181Hf. Nucl Phys A 709:3–59. https://doi.org/10.1016/S0375-9474(02)00646-2 ADSCrossRefGoogle Scholar
  20. Boothroyd AI, Sackmann IJ, Wasserburg GJ (1995) Hot bottom burning in asymptotic giant branch stars and its effect on oxygen isotopic abundances. Astrophys J 442:L21–L24. https://doi.org/10.1086/187806 ADSCrossRefGoogle Scholar
  21. BOREXINO Collaboration, Bellini G, Benziger J, Bick D, Bonfini G, Bravo D, Caccianiga B, Cadonati L, Calaprice F, Caminata A, Cavalcante P, Chavarria A, Chepurnov A, D’Angelo D, Davini S, Derbin A, Empl A, Etenko A, Fomenko K, Franco D, Gabriele F, Galbiati C, Gazzana S, Ghiano C, Giammarchi M, Göger-Neff M, Goretti A, Gromov M, Hagner C, Hungerford E, Ianni A, Ianni A, Kobychev V, Korablev D, Korga G, Kryn D, Laubenstein M, Lehnert B, Lewke T, Litvinovich E, Lombardi F, Lombardi P, Ludhova L, Lukyanchenko G, Machulin I, Manecki S, Maneschg W, Marcocci S, Meindl Q, Meroni E, Meyer M, Miramonti L, Misiaszek M, Montuschi M, Mosteiro P, Muratova V, Oberauer L, Obolensky M, Ortica F, Otis K, Pallavicini M, Papp L, Perasso L, Pocar A, Ranucci G, Razeto A, Re A, Romani A, Rossi N, Saldanha R, Salvo C, Schönert S, Simgen H, Skorokhvatov M, Smirnov O, Sotnikov A, Sukhotin S, Suvorov Y, Tartaglia R, Testera G, Vignaud D, Vogelaar RB, von Feilitzsch F, Wang H, Winter J, Wojcik M, Wright A, Wurm M, Zaimidoroga O, Zavatarelli S, Zuber K, Zuzel G (2014) Neutrinos from the primary proton-proton fusion process in the Sun. Nature 512:383–386.  https://doi.org/10.1038/nature13702 ADSCrossRefGoogle Scholar
  22. Brandon AD, Humayun M, Puchtel IS, Leya I, Zolensky M (2005) Osmium isotope evidence for an s-Process carrier in primitive chondrites. Science 309:1233–1236.  https://doi.org/10.1126/science.1115053 ADSCrossRefGoogle Scholar
  23. Bruno CG, Scott DA, Aliotta M, Formicola A, Best A, Boeltzig A, Bemmerer D, Broggini C, Caciolli A, Cavanna F, Ciani GF, Corvisiero P, Davinson T, Depalo R, Di Leva A, Elekes Z, Ferraro F, Fülöp Z, Gervino G, Guglielmetti A, Gustavino C, Gyürky G, Imbriani G, Junker M, Menegazzo R, Mossa V, Pantaleo FR, Piatti D, Prati P, Somorjai E, Straniero O, Strieder F, Szücs T, Takács MP, Trezzi D, LUNA Collaboration (2016) Improved direct measurement of the 64.5 keV resonance strength in the 17O (p,α )14N reaction at LUNA. Phys Rev Lett 117(14):142502.  https://doi.org/10.1103/PhysRevLett.117.142502, http://doi.org/1610.00483
  24. Cameron AGW, Fowler WA (1971) Lithium and the s-PROCESS in red-giant stars. Astrophys J 164:111. https://doi.org/10.1086/150821 ADSCrossRefGoogle Scholar
  25. Campbell SW, Lattanzio JC (2008) Evolution and nucleosynthesis of extremely metal-poor and metal-free low- and intermediate-mass stars. I. Stellar yield tables and the CEMPs. Astron Astrophys 490:769–776. https://doi.org/10.1051/0004-6361:200809597, http://doi.org/0901.0799
  26. Castilho BV, Gregorio-Hetem J, Spite F, Barbuy B, Spite M (2000) Detailed analysis of a sample of Li-rich giants. Astron Astrophys 364:674–682ADSGoogle Scholar
  27. Chupp EL (1971) Gamma ray and neutron emissions from the sun. Space Sci Rev 12:486–525. https://doi.org/10.1007/BF00171976 ADSCrossRefGoogle Scholar
  28. Clayton DD (1968) Principles of stellar evolution and nucleosynthesisGoogle Scholar
  29. Clayton DD, Nittler LR (2004) Astrophysics with presolar stardust. Annu Rev Astron Astrophys 42:39–78.  https://doi.org/10.1146/annurev.astro.42.053102.134022 ADSCrossRefGoogle Scholar
  30. Cleveland BT, Daily T, Davis RJ, Distel JR, Lande K, Lee CK, Wildenhain PS, Ullman J (1998) Measurement of the solar electron neutrino flux with the homestake chlorine detector. Astrophys J 496:505. https://doi.org/10.1086/305343 ADSCrossRefGoogle Scholar
  31. Cosner K, Iben I Jr, Truran JW (1980) The effects of unthermalized isomeric states and of a time-varying neutron flux on s-process branching ratios. Astrophys J 238:L91–L96. https://doi.org/10.1086/183265 ADSCrossRefGoogle Scholar
  32. Côté B, Fryer CL, Belczynski K, Korobkin O, Chruślińska M, Vassh N, Mumpower MR, Lippuner J, Sprouse TM, Surman R, Wollaeger R (2017) The origin of r-Process elements in the Milky Way. ArXiv e-prints http://doi.org/1710.05875
  33. Cowan JJ, Rose WK (1977) Production of C-14 and neutrons in red giants. Astrophys J 212:149–158. https://doi.org/10.1086/155030 ADSCrossRefGoogle Scholar
  34. Cox JP, Giuli RT (1968) Principles of stellar structure. Gordon and Breach Science Publishers, New YorkGoogle Scholar
  35. Cristallo S, Straniero O, Gallino R, Piersanti L, Domínguez I, Lederer MT (2009) Evolution, nucleosynthesis, and yields of low-mass asymptotic giant branch stars at different metallicities. Astrophys J 696:797–820. https://doi.org/10.1088/0004-637X/696/1/797 ADSCrossRefGoogle Scholar
  36. Cristallo S, Piersanti L, Straniero O (2016) The FRUITY database on AGB stars: past, present and future. J Phys Conf Ser 665:012019. https://doi.org/10.1088/1742-6596/665/1/012019, http://doi.org/1405.3392
  37. Dardelet L, Ritter C, Prado P, Heringer E, Higgs C, Jones S, Denissenkov P, Venn K, Bertolli M, Pignatari M, Woodward P, Herwig F (2014) i process and CEMP-s/r stars. In: Nuclei in the Cosmos (NIC XIII), p PoS(NIC XIII)145, http://doi.org/1505.05500
  38. Dauphas N, Schauble EA (2016) Mass fractionation laws, mass-independent effects, and isotopic anomalies. Annu Rev Earth Planet Sci 44:709–783.  https://doi.org/10.1146/annurev-earth-060115-012157 ADSCrossRefGoogle Scholar
  39. de Smet L, Wagemans C, Heyse J, Vermote S, Van Gils J (2006) Experimental determination of the 41Ca(n, α)38Ar reaction cross section. In: Ninth international symposium on nuclei in the Cosmos, Proceedings of science, PoS(NIC-IX)085Google Scholar
  40. Dell’Agli F, García-Hernández DA, Schneider R, Ventura P, La Franca F, Valiante R, Marini E, Di Criscienzo M (2017) Asymptotic giant branch and super-asymptotic giant branch stars: modelling dust production at solar metallicity. Mon Not R Astron Soc 467:4431–4440.  https://doi.org/10.1093/mnras/stx387, http://doi.org/1702.03904
  41. Denissenkov PA, Tout CA (2003) Partial mixing and formation of the 13C pocket by internal gravity waves in asymptotic giant branch stars. Mon Not R Astron Soc 340:722–732. https://doi.org/10.1046/j.1365-8711.2003.06284.x ADSCrossRefGoogle Scholar
  42. Denissenkov PA, Herwig F, Battino U, Ritter C, Pignatari M, Jones S, Paxton B (2017) I-process nucleosynthesis and mass retention efficiency in he-shell flash evolution of rapidly accreting white dwarfs. Astrophys J 834:L10. https://doi.org/10.3847/2041-8213/834/2/L10, http://doi.org/1610.08541
  43. Dennis BR, Hudson HS, Krucker S (2007) Review of selected RHESSI solar results. In: Klein KL, MacKinnon AL (eds) Lecture Notes in Physics, vol 725. Springer, Berlin, p 33Google Scholar
  44. Despain KH (1980) A difficulty with Ne-22 as the neutron source for the solar system s-process. Astrophys J 236:L165–L168. https://doi.org/10.1086/183219 ADSCrossRefGoogle Scholar
  45. Doherty CL, Gil-Pons P, Siess L, Lattanzio JC (2017) Super-AGB stars and their role as electron capture supernova progenitors. Publ Astron Soc Aust 34:e056.  https://doi.org/10.1017/pasa.2017.52, http://doi.org/1703.06895
  46. Dorfi EA, Höfner S, Feuchtinger MU (2001) Pulsation and mass loss. Kluwer Academic Publisher, Dordrecht, pp 137–154Google Scholar
  47. Dupree AK (1986) Mass loss from cool stars. Annu Rev Astron Astrophys 24:377–420.  https://doi.org/10.1146/annurev.aa.24.090186.002113 ADSCrossRefGoogle Scholar
  48. Ferrarotti AS, Gail HP (2002) Mineral formation in stellar winds. III. Dust formation in S stars. Astron Astrophys 382:256–281. https://doi.org/10.1051/0004-6361:20011580 ADSCrossRefGoogle Scholar
  49. Ferrarotti AS, Gail HP (2006) Composition and quantities of dust produced by AGB-stars and returned to the interstellar medium. Astron Astrophys 447:553–576. https://doi.org/10.1051/0004-6361:20041198 ADSCrossRefGoogle Scholar
  50. Fleischer AJ, Gauger A, Sedlmayr E (1992) Circumstellar dust shells around long-period variables. I - Dynamical models of C-stars including dust formation, growth and evaporation. Astron Astrophys 266:321–339ADSGoogle Scholar
  51. Frogel JA, Mould J, Blanco VM (1990) The asymptotic giant branch of magellanic cloud clusters. Astrophys J 352:96–122. https://doi.org/10.1086/168518 ADSCrossRefGoogle Scholar
  52. Fuller GM, Fowler WA, Newman MJ (1982) Stellar weak interaction rates for intermediate mass nuclei. III - Rate tables for the free nucleons and nuclei with A= 21 to A = 60. Astrophys J Suppl 48:279–319. https://doi.org/10.1086/190779 ADSCrossRefGoogle Scholar
  53. Gail HP, Sedlmayr E (1999) Mineral formation in stellar winds. I. Condensation sequence of silicate and iron grains in stationary oxygen rich outflows. Astron Astrophys 347:594–616ADSGoogle Scholar
  54. Gail HP, Zhukovska SV, Hoppe P, Trieloff M (2009) Stardust from asymptotic giant branch stars. Astrophys J 698:1136–1154. https://doi.org/10.1088/0004-637X/698/2/1136 ADSCrossRefGoogle Scholar
  55. Gallino R, Arlandini C, Busso M, Lugaro M, Travaglio C, Straniero O, Chieffi A, Limongi M (1998) Evolution and nucleosynthesis in low-mass asymptotic giant branch stars. II. Neutron capture and the s-Process. Astrophys J 497:388. https://doi.org/10.1086/305437 ADSCrossRefGoogle Scholar
  56. García-Hernández DA, García-Lario P, Plez B, D’Antona F, Manchado A, Trigo-Rodríguez JM (2006) Rubidium-rich asymptotic giant branch stars. Science 314:1751.  https://doi.org/10.1126/science.1133706, https://arXiv:astro-ph/0611319 ADSCrossRefGoogle Scholar
  57. García-Hernández DA, García-Lario P, Plez B, Manchado A, D’Antona F, Lub J, Habing H (2007) Lithium and zirconium abundances in massive Galactic O-rich AGB stars. Astron Astrophys 462:711–730. https://doi.org/10.1051/0004-6361:20065785, https://arXiv:astro-ph/0609106 ADSCrossRefGoogle Scholar
  58. Goriely S, Mowlavi N (2000) Neutron-capture nucleosynthesis in AGB stars. Astron Astrophys 362:599–614ADSGoogle Scholar
  59. Grevesse N, Sauval AJ (1998) Standard solar composition. Space Sci Rev 85:161–174. https://doi.org/10.1023/A:1005161325181 ADSCrossRefGoogle Scholar
  60. Gribov V, Pontecorvo B (1969) Neutrino astronomy and lepton charge. Physics Letters B 28:493–496. https://doi.org/10.1016/0370-2693(69)90525-5 ADSCrossRefGoogle Scholar
  61. Groopman E, Zinner E, Amari S, Gyngard F, Hoppe P, Jadhav M, Lin Y, Xu Y, Marhas K, Nittler LR (2015) Inferred initial 26Al/27Al ratios in presolar stardust grains from supernovae are higher than previously estimated. Astrophys J 809:31. https://doi.org/10.1088/0004-637X/809/1/31 ADSCrossRefGoogle Scholar
  62. Guelin M, Forestini M, Valiron P, Ziurys LM, Anderson MA, Cernicharo J, Kahane C (1995) Nucleosynthesis in AGB stars: observation of Mg-25 and Mg-26 in IRC+10216 and possible detection of Al-26. Astron Astrophys 297:183–196ADSGoogle Scholar
  63. Hampel W, Heusser G, Kiko J, Kirsten T, Laubenstein M, Pernicka E, Rau W, Roenn U, Schlosser C, Wojcik M, von Ammon R, Ebert KH, Fritsch T, Heidt D, Henrich E, Stieglitz L, Weirich F, Balata M, Hartmann FX, Sann M, Bellotti E, Cattadori C, Cremonesi O, Ferrari N, Fiorini E, Zanotti L, Altmann M, von Feilitzsch F, Moessbauer R, Berthomieu G, Schatzman E, Carmi I, Dostrovsky I, Bacci C, Belli P, Bernabei R, D’Angelo S, Paoluzi L, Bevilacqua A, Cribier M, Gosset L, Rich J, Spiro M, Tao C, Vignaud D, Boger J, Hahn RL, Rowley JK, Stoenner RW, Weneser J (1998) Final results of the 51Cr neutrino source experiments in GALLEX. Phys Lett B 420:114–126ADSCrossRefGoogle Scholar
  64. Hampel M, Stancliffe RJ, Lugaro M, Meyer BS (2016) The intermediate neutron-capture process and carbon-enhanced metal-poor stars. Astrophys J 831:171. https://doi.org/10.3847/0004-637X/831/2/171, http://doi.org/1608.08634
  65. Harris MJ, Lambert DL, Hinkle KH, Gustafsson B, Eriksson K (1987) Oxygen isotopic abundances in evolved stars. III - 26 carbon stars. Astrophys J 316:294–304. https://doi.org/10.1086/165201 ADSCrossRefGoogle Scholar
  66. Heck PR, Marhas KK, Hoppe P, Gallino R, Baur H, Wieler R (2007) Presolar He and Ne isotopes in single circumstellar SiC grains. Astrophys J 656:1208–1222. https://doi.org/10.1086/510478 ADSCrossRefGoogle Scholar
  67. Heck PR, Amari S, Hoppe P, Baur H, Lewis RS, Wieler R (2009) Ne isotopes in individual presolar graphite grains from the murchison meteorite together with He, C, O, Mg-Al isotopic analyses as tracers of their origins. Astrophys J 701:1415–1425. https://doi.org/10.1088/0004-637X/701/2/1415 ADSCrossRefGoogle Scholar
  68. Herwig F (2005) Evolution of asymptotic giant branch stars. Annu Rev Astron Astrophys 43:435–479.  https://doi.org/10.1146/annurev.astro.43.072103.150600 ADSCrossRefGoogle Scholar
  69. Herwig F, Bloecker T, Schoenberner D, El Eid M (1997) Stellar evolution of low and intermediate-mass stars. IV. Hydrodynamically-based overshoot and nucleosynthesis in AGB stars. Astron Astrophys 324:L81–L84. https://arXiv:astro-ph/9706122 ADSGoogle Scholar
  70. Herwig F, Blöcker T, Langer N, Driebe T (1999) On the formation of hydrogen-deficient post-AGB stars. Astron Astrophys 349:L5–L8. https://arXiv:astro-ph/9908108 ADSGoogle Scholar
  71. Herwig F, Pignatari M, Woodward PR, Porter DH, Rockefeller G, Fryer CL, Bennett M, Hirschi R (2011) Convective-reactive proton-12C combustion in Sakurai’s object (V4334 Sagittarii) and implications for the evolution and yields from the first generations of stars. Astrophys J 727:89. https://doi.org/10.1088/0004-637X/727/2/89, http://doi.org/1002.2241
  72. Hinkle KH, Lebzelter T, Straniero O (2016) Carbon and oxygen isotopic ratios for nearby miras. Astrophys J 825:38. https://doi.org/10.3847/0004-637X/825/1/38, http://doi.org/1606.08478
  73. Hoffman RD, Müller B, Janka H (2008) Nucleosynthesis in O-Ne-Mg supernovae. Astrophys J 676:L127–L130. https://doi.org/10.1086/587621, http://doi.org/0712.4257
  74. Höfner S, Olofsson H (2018) Mass loss of stars on the asymptotic giant branch. Mechanisms, models and measurements. Astron Astrophys Rev 26:1. https://doi.org/10.1007/s00159-017-0106-5
  75. Hoppe P, Ott U (1997) Mainstream silicon carbide grains from meteorites. In: Bernatowicz TJ, Zinner E (eds) American Institute of Physics conference series, vol 402, pp 27–58. https://doi.org/10.1063/1.53314
  76. Hoppe P, Annen P, Strebel R, Eberhardt P, Gallino R, Lugaro M, Amari S, Lewis RS (1997) Meteoritic silicon carbide grains with unusual Si isotopic compositions: evidence for an origin in low-mass, Low-metallicity asymptotic giant branch stars. Astrophys J 487:L101. https://doi.org/10.1086/310869 ADSCrossRefGoogle Scholar
  77. Humayun M, Brandon AD (2007) s-Process implications from osmium isotope anomalies in chondrites. Astrophys J 664:L59–L62. https://doi.org/10.1086/520636 ADSCrossRefGoogle Scholar
  78. Iben I Jr (1975) Thermal pulses; p-capture, alpha-capture, s-process nucleosynthesis; and convective mixing in a star of intermediate mass. Astrophys J 196:525–547. https://doi.org/10.1086/153433 ADSCrossRefGoogle Scholar
  79. Iben I Jr, Renzini A (1982) On the formation of carbon star characteristics and the production of neutron-rich isotopes in asymptotic giant branch stars of small core mass. Astrophys J 263:L23–L27. https://doi.org/10.1086/183916 ADSCrossRefGoogle Scholar
  80. Iben I Jr, Renzini A (1983) Asymptotic giant branch evolution and beyond. Annu Rev Astron Astrophys 21:271–342.  https://doi.org/10.1146/annurev.aa.21.090183.001415 ADSCrossRefGoogle Scholar
  81. Iben I Jr, Truran JW (1978) On the surface composition of thermally pulsing stars of high luminosity and on the contribution of such stars to the element enrichment of the interstellar medium. Astrophys J 220:980–995. https://doi.org/10.1086/155986 ADSCrossRefGoogle Scholar
  82. Iliadis C, D’Auria JM, Starrfield S, Thompson WJ, Wiescher M (2001) Proton-induced thermonuclear reaction rates for A=20-40 nuclei. Astrophys J Suppl 134:151–171. https://doi.org/10.1086/320364 ADSCrossRefGoogle Scholar
  83. Iliadis C, Angulo C, Descouvemont P, Lugaro M, Mohr P (2008) New reaction rate for O16(p,γ)F17 and its influence on the oxygen isotopic ratios in massive AGB stars. Phys Rev C 77(4):045802.  https://doi.org/10.1103/PhysRevC.77.045802, http://doi.org/0803.2757
  84. Iliadis C, Longland R, Champagne AE, Coc A, Fitzgerald R (2010) Charged-particle thermonuclear reaction rates: II. Tables and graphs of reaction rates and probability density functions. Nucl Phys A 841:31–250. https://doi.org/10.1016/j.nuclphysa.2010.04.009, http://doi.org/1004.4517
  85. Itoh N, Adachi T, Nakagawa M, Kohyama Y, Munakata H (1989) Neutrino energy loss in stellar interiors. III - Pair, photo-, plasma, and bremsstrahlung processes. Astrophys J 339:354–364. https://doi.org/10.1086/167301 ADSCrossRefGoogle Scholar
  86. Izzard RG, Lugaro M, Karakas AI, Iliadis C, van Raai M (2007) Reaction rate uncertainties and the operation of the NeNa and MgAl chains during HBB in intermediate-mass AGB stars. Astron Astrophys 466:641–648. https://doi.org/10.1051/0004-6361:20066903, https://arXiv:astro-ph/0703078 ADSCrossRefGoogle Scholar
  87. Jones S, Ritter C, Herwig F, Fryer C, Pignatari M, Bertolli MG, Paxton B (2016) H ingestion into He-burning convection zones in super-AGB stellar models as a potential site for intermediate neutron-density nucleosynthesis. Mon Not R Astron Soc 455:3848–3863.  https://doi.org/10.1093/mnras/stv2488, http://doi.org/1510.07417
  88. Jonsell K, Barklem PS, Gustafsson B, Christlieb N, Hill V, Beers TC, Holmberg J (2006) The Hamburg/ESO R-process enhanced star survey (HERES). III. HE 0338-3945 and the formation of the r + s stars. Astron Astrophys 451:651–670. https://doi.org/10.1051/0004-6361:20054470. https://arXiv:astro-ph/0601476 ADSCrossRefGoogle Scholar
  89. Jorissen A, Van Eck S, Mayor M, Udry S (1998) Insights into the formation of barium and Tc-poor S stars from an extended sample of orbital elements. Astron Astrophys 332:877–903. https://arXiv:astro-ph/9801272 ADSGoogle Scholar
  90. Kaeppeler F, Beer H, Wisshak K, Clayton DD, Macklin RL, Ward RA (1982) S-process studies in the light of new experimental cross sections - distribution of neutron fluences and r-process residuals. Astrophys J 257:821–846. https://doi.org/10.1086/160033 ADSCrossRefGoogle Scholar
  91. Karakas A, Lattanzio JC (2007) Stellar models and yields of asymptotic giant branch stars. Publ Astron Soc Aust 24:103–117. https://doi.org/10.1071/AS07021, http://doi.org/0708.4385
  92. Karakas AI, Lattanzio JC (2014) The dawes review 2: nucleosynthesis and stellar yields of low- and intermediate-mass single stars. Publ Astron Soc Aust 31:e030.  https://doi.org/10.1017/pasa.2014.21, http://doi.org/1405.0062
  93. Karakas AI, Lugaro M (2016) Stellar yields from metal-rich asymptotic giant branch models. Astrophys J 825:26. https://doi.org/10.3847/0004-637X/825/1/26, http://doi.org/1604.02178
  94. Kozlovsky B, Murphy RJ, Ramaty R (2002) Nuclear deexcitation gamma-ray lines from accelerated particle interactions. Astrophys J Suppl 141:523–541. https://doi.org/10.1086/340545 ADSCrossRefGoogle Scholar
  95. Lambert DL, Smith VV, Busso M, Gallino R, Straniero O (1995) The chemical composition of red giants. IV. The neutron density at the s-Process site. Astrophys J 450:302. https://doi.org/10.1086/176141 ADSCrossRefGoogle Scholar
  96. Langer N, Heger A, Wellstein S, Herwig F (1999) Mixing and nucleosynthesis in rotating TP-AGB stars. Astron Astrophys 346:L37–L40. https://arXiv:astro-ph/9904257 ADSGoogle Scholar
  97. Lattanzio JC, Wood PR (2004) Evolution, Nucleosynthesis and pulsation of AGB stars. In: Habing HJ, Olofsson H (eds) Asymptotic giant branch stars, astronomy and astrophysics library, vol 145. Springer, Berlin, p 23Google Scholar
  98. Lewis RS, Amari S, Anders E (1994) Interstellar grains in meteorites: II. SiC and its noble gases. Geochim Cosmochim Acta 58:471–494. https://doi.org/10.1016/0016-7037(94)90478-2 ADSCrossRefGoogle Scholar
  99. Limongi M, Chieffi A (2006) The nucleosynthesis of 26Al and 60Fe in solar metallicity stars extending in mass from 11 to 120 solar masses: the hydrostatic and explosive contributions. Astrophys J 647:483–500. https://doi.org/10.1086/505164 ADSCrossRefGoogle Scholar
  100. Liu N, Gallino R, Bisterzo S, Davis AM, Savina MR, Pellin MJ (2014a) The 13C-pocket structure in AGB models: constraints from zirconium isotope abundances in single mainstream SiC grains. Astrophys J 788:163. https://doi.org/10.1088/0004-637X/788/2/163, http://doi.org/1405.1441
  101. Liu N, Savina MR, Davis AM, Gallino R, Straniero O, Gyngard F, Pellin MJ, Willingham DG, Dauphas N, Pignatari M, Bisterzo S, Cristallo S, Herwig F (2014b) Barium isotopic composition of mainstream silicon carbides from murchison: constraints for s-process nucleosynthesis in asymptotic giant branch stars. Astrophys J 786:66. https://doi.org/10.1088/0004-637X/786/1/66, http://doi.org/1403.4336
  102. Liu N, Savina MR, Gallino R, Davis AM, Bisterzo S, Gyngard F, Käppeler F, Cristallo S, Dauphas N, Pellin MJ, Dillmann I (2015) Correlated strontium and barium isotopic compositions of acid-cleaned single mainstream silicon carbides from murchison. Astrophys J 803:12. https://doi.org/10.1088/0004-637X/803/1/12, http://doi.org/1501.05883
  103. Lodders K, Fegley B Jr (1993) Chemistry in circumstellar envelopes of carbon stars: the influence of P, T, and elemental abundances. Meteoritics 28:387ADSCrossRefGoogle Scholar
  104. Lucatello S, Tsangarides S, Beers TC, Carretta E, Gratton RG, Ryan SG (2005) The binary frequency among carbon-enhanced, s-Process-rich, metal-poor stars. Astrophys J 625:825–832. https://doi.org/10.1086/428104, https://arXiv:astro-ph/0412422 ADSCrossRefGoogle Scholar
  105. Lugaro M (2005) Stardust from meteorites. An introduction to presolar grains. World Scientific Publishing, SingaporeCrossRefGoogle Scholar
  106. Lugaro M, Karakas AI (2008) 26Al and 60Fe yields from AGB stars. New Astron Rev 52:416–418. https://doi.org/10.1016/j.newar.2008.05.005 ADSCrossRefGoogle Scholar
  107. Lugaro M, Davis AM, Gallino R, Pellin MJ, Straniero O, Käppeler F (2003a) Isotopic compositions of strontium, zirconium, molybdenum, and barium in single presolar SiC grains and asymptotic giant branch stars. Astrophys J 593:486–508. https://doi.org/10.1086/376442 ADSCrossRefGoogle Scholar
  108. Lugaro M, Herwig F, Lattanzio JC, Gallino R, Straniero O (2003b) s-Process nucleosynthesis in asymptotic giant branch stars: a test for stellar evolution. Astrophys J 586:1305–1319. https://doi.org/10.1086/367887, https://arXiv:astro-ph/0212364 ADSCrossRefGoogle Scholar
  109. Lugaro M, Karakas AI, Nittler LR, Alexander CMO, Hoppe P, Iliadis C, Lattanzio JC (2007) On the asymptotic giant branch star origin of peculiar spinel grain OC2. Astron Astrophys 461:657–664. https://doi.org/10.1051/0004-6361:20065768, https://arXiv:astro-ph/0610464 ADSCrossRefGoogle Scholar
  110. Lugaro M, Doherty CL, Karakas AI, Maddison ST, Liffman K, García-Hernández DA, Siess L, Lattanzio JC (2012) Short-lived radioactivity in the early solar system: the Super-AGB star hypothesis. Meteorit Planet Sci 47:1998–2012. https://doi.org/10.1111/j.1945-5100.2012.01411.x, http://doi.org/1208.5816
  111. Lugaro M, Heger A, Osrin D, Goriely S, Zuber K, Karakas AI, Gibson BK, Doherty CL, Lattanzio JC, Ott U (2014a) Stellar origin of the 182Hf cosmochronometer and the presolar history of solar system matter. Science 345:650–653.  https://doi.org/10.1126/science.1253338, http://doi.org/1408.2050
  112. Lugaro M, Tagliente G, Karakas AI, Milazzo PM, Käppeler F, Davis AM, Savina MR (2014b) The impact of updated Zr neutron-capture cross sections and new asymptotic giant branch models on our understanding of the S process and the origin of stardust. Astrophys J 780:95. https://doi.org/10.1088/0004-637X/780/1/95, http://doi.org/1311.2660
  113. Lugaro M, Karakas AI, Bruno CG, Aliotta M, Nittler LR, Bemmerer D, Best A, Boeltzig A, Broggini C, Caciolli A, Cavanna F, Ciani GF, Corvisiero P, Davinson T, Depalo R, di Leva A, Elekes Z, Ferraro F, Formicola A, Fülöp Z, Gervino G, Guglielmetti A, Gustavino C, Gyürky G, Imbriani G, Junker M, Menegazzo R, Mossa V, Pantaleo FR, Piatti D, Prati P, Scott DA, Straniero O, Strieder F, Szücs T, Takács MP, Trezzi D (2017) Origin of meteoritic stardust unveiled by a revised proton-capture rate of 17O. Nat Astron 1:0027. https://doi.org/10.1038/s41550-016-0027, http://doi.org/1703.00276
  114. Lugaro M, Karakas AI, Pető M, Plachy E (2018) Do meteoritic silicon carbide grains originate from asymptotic giant branch stars of super-solar metallicity? Geochim Cosmochim Acta 221:6–20. https://doi.org/10.1016/j.gca.2017.06.006 ADSCrossRefGoogle Scholar
  115. Marhas KK, Hoppe P, Ott U (2007) NanoSIMS studies of Ba isotopic compositions in single presolar silicon carbide grains from AGB stars and supernovae. Meteorit Planet Sci 42:1077–1101ADSCrossRefGoogle Scholar
  116. McDonald AB, Ahmad QR, Allen RC, Andersen TC, Anglin JD, Barton JC, Beier EW, Bercovitch M, Bigu J, Biller SD, Black RA, Blevis I, Boardman RJ, Boger J, Bonvin E, Boulay MG, Bowler MG, Bowles TJ, Brice SJ, Browne MC, Bullard TV, Bühler G, Cameron J, Chan YD, Chen HH, Chen M, Chen X, Cleveland BT, Clifford ETH, Cowan JHM, Cowen DF, Cox GA, Dai X, Dalnoki-Veress F, Davidson WF, Doe PJ, Doucas G, Dragowsky MR, Duba CA, Duncan FA, Dunford M, Dunmore JA, Earle ED, Elliott SR, Evans HC, Ewan GT, Farine J, Fergani H, Ferraris AP, Ford RJ, Formaggio JA, Fowler MM, Frame K, Frank ED, Frati W, Gagnon N, Germani JV, Gil S, Graham K, Grant DR, Hahn RL, Hallin AL, Hallman ED, Hamer AS, Hamian AA, Handler WB, Haq RU, Hargrove CK, Harvey PJ, Hazama R, Heeger KM, Heintzelman WJ, Heise J, Helmer RL, Hepburn JD, Heron H, Hewett J, Hime A, Howe M, Hykawy JG, Isaac MCP, Jagam P, Jelley NA, Jillings C, Jonkmans G, Kazkaz K, Keener PT, Klein JR, Knox AB, Komar RJ, Kouzes R, Kutter T, Kyba CCM, Law J, Lawson IT, Lay M, Lee HW, Lesko KT, Leslie JR, Levine I, Locke W, Luoma S, Lyon J, Majerus S, Mak HB, Maneira J, Manor J, Marino AD, McCauley N, McDonald DS, McFarlane K, McGregor G, Drees RM, Mifflin C, Miller GG, Milton G, Moffat BA, Moorhead M, Nally CW, Neubauer MS, Newcomer FM, Ng HS, Noble AJ, Norman EB, Novikov VM, O’Neill M, Okada CE, Ollerhead RW, Omori M, Orrell JL, Oser SM, Poon AWP, Radcliffe TJ, Roberge A, Robertson BC, Robertson RGH, Rosendahl SSE, Rowley JK, Rusu VL, Saettler E, Schaffer KK, Schwendener MH, Schülke A, Seifert H, Shatkay M, Simpson JJ, Sims CJ, Sinclair D, Skensved P, Smith AR, Smith MWE, Spreitzer T, Starinsky N, Steiger TD, Stokstad RG, Stonehill LC, Storey RS, Sur B, Tafirout R, Tagg N, Tanner NW, Taplin RK, Thorman M, Thornewell PM, Trent PT, Tserkovnyak YI, van Berg R, van de Water RG, Virtue CJ, Waltham CE, Wang J, Wark DL, West N, Wilhelmy JB, Wilkerson JF, Wilson JR, Wittich P, Wouters JM, Yeh M (2002) Direct evidence for neutrino flavor transformation from neutral-current interactions in SNO. In: Elias V, Epp R, Myers RC (eds) Theoretical physics: MRST 2002, American Institute of Physics conference series, vol 646. pp 43–58. https://doi.org/10.1063/1.1524553
  117. McWilliam A, Lambert DL (1988) Isotopic magnesium abundances in stars. Mon Not R Astron Soc 230:573–585ADSCrossRefGoogle Scholar
  118. Mikheyev SP, Smirnov AY (1985) Resonance enhancement of oscillations in matter and solar neutrino spectroscopy. Yadernaya Fizika 42:1441–1448ADSGoogle Scholar
  119. Mowlavi N, Meynet G (2000) Aluminum 26 production in asymptotic giant branch stars. Astron Astrophys 361:959–976ADSGoogle Scholar
  120. Mowlavi N, Goriely S, Arnould M (1998) The survival of 205Pb in intermediate-mass AGB stars. Astron Astrophys 330:206–214. https://arXiv:astro-ph/9711025 ADSGoogle Scholar
  121. Murphy RJ, Share GH (2005) What gamma-ray deexcitation lines reveal about solar-flares. Adv Space Res 35:1825–1832. https://doi.org/10.1016/j.asr.2005.03.004 ADSCrossRefGoogle Scholar
  122. Murphy RJ, Share GH, Skibo JG, Kozlovsky B (2005) The physics of positron annihilation in the solar atmosphere. Astrophys J Suppl 161:495–519. https://doi.org/10.1086/452634 ADSCrossRefGoogle Scholar
  123. Nanni A, Bressan A, Marigo P, Girardi L (2013) Evolution of thermally pulsing asymptotic giant branch stars - II. Dust production at varying metallicity. Mon Not R Astron Soc 434:2390–2417.  https://doi.org/10.1093/mnras/stt1175, http://doi.org/1306.6183
  124. Neyskens P, van Eck S, Jorissen A, Goriely S, Siess L, Plez B (2015) The temperature and chronology of heavy-element synthesis in low-mass stars. Nature 517:174–176.  https://doi.org/10.1038/nature14050, http://doi.org/1601.05640
  125. Nichols RH Jr, Hohenberg CM, Amari S, Lewis RS (1991) 22Ne-E(H) and 4He Measured in individual SiC grains using laser gas extraction. Meteoritics 26:377Google Scholar
  126. Nicolussi GK, Davis AM, Pellin MJ, Lewis RS, Clayton RN, Amari S (1997) s-process zirconium in presolar silicon carbide grains. Science 277:1281–1283.  https://doi.org/10.1126/science.277.5330.1281 ADSCrossRefGoogle Scholar
  127. Nicolussi GK, Pellin MJ, Lewis RS, Davis AM, Amari S, Clayton RN (1998a) Molybdenum isotopic composition of individual presolar silicon carbide grains from the murchison meteorite. Geochim Cosmochim Acta 62:1093–1104. https://doi.org/10.1016/S0016-7037(98)00038-6 ADSCrossRefGoogle Scholar
  128. Nicolussi GK, Pellin MJ, Lewis RS, Davis AM, Clayton RN, Amari S (1998b) Strontium isotopic composition in individual circumstellar silicon carbide grains: a record of s-Process nucleosynthesis. Phys Rev Lett 81:3583–3586.  https://doi.org/10.1103/PhysRevLett.81.3583 ADSCrossRefGoogle Scholar
  129. Nittler LR, Hoppe P, Alexander CMO, Amari S, Eberhardt P, Gao X, Lewis RS, Strebel R, Walker RM, Zinner E (1995) Silicon Nitride from Supernovae. Astrophys J 453:L25. https://doi.org/10.1086/309743 ADSCrossRefGoogle Scholar
  130. Nittler LR, Alexander CMO, Gao X, Walker RM, Zinner E (1997) Stellar sapphires: the properties and origins of presolar AL 2O 3 in meteorites. Astrophys J 483:475. https://doi.org/10.1086/304234 ADSCrossRefGoogle Scholar
  131. Nittler LR, Alexander CMO, Gallino R, Hoppe P, Nguyen AN, Stadermann FJ, Zinner EK (2008) Aluminum-, calcium- and titanium-rich oxide stardust in ordinary chondrite meteorites. Astrophys J 682:1450–1478. https://doi.org/10.1086/589430, http://doi.org/0804.2866
  132. Nollett KM, Busso M, Wasserburg GJ (2003) Cool bottom processes on the thermally pulsing asymptotic giant branch and the isotopic composition of circumstellar dust grains. Astrophys J 582:1036–1058. https://doi.org/10.1086/344817, https://arXiv:astro-ph/0211271 ADSCrossRefGoogle Scholar
  133. Ott U, Begemann F (1990) Discovery of s-process barium in the Murchison meteorite. Astrophys J 353:L57–L60. https://doi.org/10.1086/185707 ADSCrossRefGoogle Scholar
  134. Palmerini S, La Cognata M, Cristallo S, Busso M (2011) Deep mixing in evolved stars. I. The effect of reaction rate revisions from C to Al. Astrophys J 729:3. https://doi.org/10.1088/0004-637X/729/1/3, http://doi.org/1011.3948
  135. Palmerini S, Trippella O, Busso M, Vescovi D, Petrelli M, Zucchini A, Frondini F (2018) s-Processing from MHD-induced mixing and isotopic abundances in presolar SiC grains. Geochim Cosmochim Acta 221:21–36. https://doi.org/10.1016/j.gca.2017.05.030, http://doi.org/1711.03039
  136. Pérez-Mesa V, Zamora O, García-Hernández DA, Plez B, Manchado A, Karakas AI, Lugaro M (2017) Rubidium and zirconium abundances in massive Galactic asymptotic giant branch stars revisited. Astron Astrophys 606:A20. https://doi.org/10.1051/0004-6361/201731245, http://doi.org/1706.02268
  137. Pignatari M, Gallino R, Straniero O, Reifarth R, Käppeler F, Davis AM (2004) Stellar origin of the meteoritic Xe-S anomalous component. Memorie della Societa Astronomica Italiana 75:182ADSGoogle Scholar
  138. Pignatari M, Gallino R, Amari S, Davis AM (2006) Krypton in presolar mainstream SiC grains from AGB stars. Memorie della Societa Astronomica Italiana 77:897ADSGoogle Scholar
  139. Pignatari M, Gallino R, Heil M, Wiescher M, Käppeler F, Herwig F, Bisterzo S (2010) The weak s-Process in massive stars and its dependence on the neutron capture cross sections. Astrophys J 710:1557–1577. https://doi.org/10.1088/0004-637X/710/2/1557 ADSCrossRefGoogle Scholar
  140. Pignatari M, Wiescher M, Timmes FX, de Boer RJ, Thielemann FK, Fryer C, Heger A, Herwig F, Hirschi R (2013) Production of carbon-rich presolar grains from massive stars. Astrophys J 767:L22 https://doi.org/10.1088/2041-8205/767/2/L22, http://doi.org/1303.3374
  141. Pignatari M, Herwig F, Hirschi R, Bennett M, Rockefeller G, Fryer C, Timmes FX, Ritter C, Heger A, Jones S, Battino U, Dotter A, Trappitsch R, Diehl S, Frischknecht U, Hungerford A, Magkotsios G, Travaglio C, Young P (2016) NuGrid stellar data set. I. Stellar yields from H to Bi for stars with Metallicities Z = 0.02 and Z = 0.01. Astrophys J Suppl 225:24. https://doi.org/10.3847/0067-0049/225/2/24, http://doi.org/1307.6961
  142. Podosek FA, Prombo CA, Amari S, Lewis RS (2004) s-Process Sr isotopic compositions in Presolar SiC from the murchison meteorite. Astrophys J 605:960–965. https://doi.org/10.1086/382650 ADSCrossRefGoogle Scholar
  143. Prombo CA, Podosek FA, Amari S, Lewis RS (1993) S-process BA isotopic compositions in presolar SiC from the Murchison meteorite. Astrophys J 410:393–399. https://doi.org/10.1086/172756 ADSCrossRefGoogle Scholar
  144. Raiteri CM, Gallino R, Busso M (1992) S-processing in massive stars as a function of metallicity and interpretation of observational trends. Astrophys J 387:263–275. https://doi.org/10.1086/171078 ADSCrossRefGoogle Scholar
  145. Ramaty R, Mandzhavidze N, Kozlovsky B, Murphy RJ (1995) Solar atmopheric abundances and energy content in flare accelerated ions from gamma-ray spectroscopy. Astrophys J 455:L193. https://doi.org/10.1086/309841 ADSCrossRefGoogle Scholar
  146. Rauscher T, Thielemann FK (2000) Astrophysical reaction rates from statistical model calculations. At Data Nucl Data Tables 75:1–351.  https://doi.org/10.1006/adnd.2000.0834, https://arXiv:astro-ph/0004059 ADSCrossRefGoogle Scholar
  147. Raut R, Tonchev AP, Rusev G, Tornow W, Iliadis C, Lugaro M, Buntain J, Goriely S, Kelley JH, Schwengner R, Banu A, Tsoneva N (2013) Cross-section measurements of the Kr86(γ,n) reaction to probe the s-Process branching at Kr85. Phys Rev Lett 111(11):112501.  https://doi.org/10.1103/PhysRevLett.111.112501, http://doi.org/1309.4159
  148. Roederer IU, Karakas AI, Pignatari M, Herwig F (2016) The diverse origins of neutron-capture elements in the metal-poor star HD 94028: possible detection of products of I-Process nucleosynthesis. Astrophys J 821:37. https://doi.org/10.3847/0004-637X/821/1/37, http://doi.org/1603.00036
  149. Rugel G, Faestermann T, Knie K, Korschinek G, Poutivtsev M, Schumann D, Kivel N, Günther-Leopold I, Weinreich R, Wohlmuther M (2009) New measurement of the Fe60 half-life. Phys Rev Lett 103(7):072502.  https://doi.org/10.1103/PhysRevLett.103.072502 ADSCrossRefGoogle Scholar
  150. Savina MR, Davis AM, Tripa CE, Pellin MJ, Clayton RN, Lewis RS, Amari S, Gallino R, Lugaro M (2003a) Barium isotopes in individual presolar silicon carbide grains from the Murchison meteorite. Geochim Cosmochim Acta 67:3201–3214. https://doi.org/10.1016/S0016-7037(03)00083-8 ADSCrossRefGoogle Scholar
  151. Savina MR, Pellin MJ, Tripa CE, Veryovkin IV, Calaway WF, Davis AM (2003b) Analyzing individual presolar grains with CHARISMA. Geochim Cosmochim Acta 67:3215–3225. https://doi.org/10.1016/S0016-7037(03)00082-6 ADSCrossRefGoogle Scholar
  152. Savina MR, Davis AM, Tripa CE, Pellin MJ, Gallino R, Lewis RS, Amari S (2004) Extinct technetium in silicon carbide stardust grains: implications for stellar nucleosynthesis. Science 303:649–652.  https://doi.org/10.1126/science.3030649 ADSCrossRefGoogle Scholar
  153. Sedlmayr E, Dominik C (1995) Dust driven winds. Space Sci Rev 73:211–272. https://doi.org/10.1007/BF00751238 ADSCrossRefGoogle Scholar
  154. Serenelli AM, Haxton WC, Peña-Garay C (2011) Solar models with accretion. I. Application to the solar abundance problem. Astrophys J 743:24. https://doi.org/10.1088/0004-637X/743/1/24, http://doi.org/1104.1639
  155. Siess L, Arnould M (2008) Production of 26Al by super-AGB stars. Astron Astrophys 489:395–402. https://doi.org/10.1051/0004-6361:200810147 ADSCrossRefGoogle Scholar
  156. Smith VV, Lambert DL (1986) The chemical composition of red giants. II - helium burning and the s-process in the MS and S stars. Astrophys J 311:843–863. https://doi.org/10.1086/164823 ADSCrossRefGoogle Scholar
  157. Sneden C, Cowan JJ, Lawler JE, Burles S, Beers TC, Fuller GM (2002) Europium isotopic abundances in very metal poor stars. Astrophys J 566:L25–L28. https://doi.org/10.1086/339471, https://arXiv:astro-ph/0201456 ADSCrossRefGoogle Scholar
  158. Sneden C, Cowan JJ, Gallino R (2008) Neutron-capture elements in the early galaxy. Annu Rev Astron Astrophys 46:241–288.  https://doi.org/10.1146/annurev.astro.46.060407.145207 ADSCrossRefGoogle Scholar
  159. Speck AK, Barlow MJ, Sylvester RJ, Hofmeister AM (2000) Dust features in the 10-mu m infrared spectra of oxygen-rich evolved stars. Astron Astrophys Suppl 146:437–464.  https://doi.org/10.1051/aas:2000274 ADSCrossRefGoogle Scholar
  160. Speck AK, Corman AB, Wakeman K, Wheeler CH, Thompson G (2009) Silicon carbide absorption features: dust formation in the outflows of extreme carbon stars. Astrophys J 691:1202–1221. https://doi.org/10.1088/0004-637X/691/2/1202, http://doi.org/0810.2599
  161. Stancliffe RJ, Chieffi A, Lattanzio JC, Church RP (2009) Why do low-mass stars become red giants? Publications of the Astronomical Society of Australia 26:203–208. https://doi.org/10.1071/AS08060, http://doi.org/0902.0406
  162. Stephan T, Trappitsch R, Davis AM, Pellin MJ, Rost D, Savina MR, Yokochi R, Liu N (2016) CHILI - the chicago instrument for laser ionization - a new tool for isotope measurements in cosmochemistry. Int J Mass Spectrom 407:1–15. https://doi.org/10.1016/j.ijms.2016.06.001 CrossRefGoogle Scholar
  163. Straniero O, Imbriani G, Strieder F, Bemmerer D, Broggini C, Caciolli A, Corvisiero P, Costantini H, Cristallo S, DiLeva A, Formicola A, Elekes Z, Fülöp Z, Gervino G, Guglielmetti A, Gustavino C, Gyürky G, Junker M, Lemut A, Limata B, Marta M, Mazzocchi C, Menegazzo R, Piersanti L, Prati P, Roca V, Rolfs C, Rossi Alvarez C, Somorjai E, Terrasi F, Trautvetter HP (2013) Impact of a revised 25Mg(p, γ)26Al reaction rate on the operation of the Mg-Al cycle. Astrophys J 763:100. https://doi.org/10.1088/0004-637X/763/2/100, http://doi.org/1211.6661
  164. Takahashi K, Yokoi K (1987) Beta-decay rates of highly ionized heavy atoms in stellar interiors. At Data Nucl Data Tables 36:375. https://doi.org/10.1016/0092-640X(87)90010-6 ADSCrossRefGoogle Scholar
  165. Tatischeff V, Kozlovsky B, Kiener J, Murphy RJ (2006) Delayed X- and gamma-ray line emission from solar flare radioactivity. Astrophys J Suppl 165:606–617. https://doi.org/10.1086/505112, https://arXiv:astro-ph/0604325 ADSCrossRefGoogle Scholar
  166. Thielemann FK, Arcones A, Käppeli R, Liebendörfer M, Rauscher T, Winteler C, Fröhlich C, Dillmann I, Fischer T, Martinez-Pinedo G, Langanke K, Farouqi K, Kratz KL, Panov I, Korneev IK (2011) What are the astrophysical sites for the r-process and the production of heavy elements? Prog Part Nucl Phys 66:346–353. https://doi.org/10.1016/j.ppnp.2011.01.032 ADSCrossRefGoogle Scholar
  167. Trappitsch R, Stephan T, Savina MR, Davis AM, Pellin MJ, Rost D, Gyngard F, Gallino R, Bisterzo S, Cristallo S, Dauphas N (2018) Simultaneous iron and nickel isotopic analyses of presolar silicon carbide grains. Geochim Cosmochim Acta 221:87–108. https://doi.org/10.1016/j.gca.2017.05.031 ADSCrossRefGoogle Scholar
  168. Travaglio C, Gallino R, Amari S, Zinner E, Woosley S, Lewis RS (1999) Low-density graphite grains and mixing in type II supernovae. Astrophys J 510:325–354. https://doi.org/10.1086/306551 ADSCrossRefGoogle Scholar
  169. Treffers R, Cohen M (1974) High-resolution spectra of cool stars in the 10- and 20-micron regions. Astrophys J 188:545–552. https://doi.org/10.1086/152746 ADSCrossRefGoogle Scholar
  170. Trigo-Rodriguez JM, Anibal Garcia-Hernandez D, Lugaro M, Karakas AI, van Raai M, Garcia Lario P, Manchado A (2009) The role of massive Agb stars in the early solar system composition. Meteorit Planet Sci 44:627–641ADSCrossRefGoogle Scholar
  171. Uberseder E, Reifarth R, Schumann D, Dillmann I, Pardo CD, Görres J, Heil M, Käppeler F, Marganiec J, Neuhausen J, Pignatari M, Voss F, Walter S, Wiescher M (2009) Measurement of the Fe60(n,γ)61Fe cross section at stellar temperatures. Phys Rev Lett 102(15):151101.  https://doi.org/10.1103/PhysRevLett.102.151101 ADSCrossRefGoogle Scholar
  172. Uberseder E, Adachi T, Aumann T, Beceiro-Novo S, Boretzky K, Caesar C, Dillmann I, Ershova O, Estrade A, Farinon F, Hagdahl J, Heftrich T, Heil M, Heine M, Holl M, Ignatov A, Johansson HT, Kalantar N, Langer C, Le Bleis T, Litvinov YA, Marganiec J, Movsesyan A, Najafi MA, Nilsson T, Nociforo C, Panin V, Pietri S, Plag R, Prochazka A, Rastrepina G, Reifarth R, Ricciardi V, Rigollet C, Rossi DM, Savran D, Simon H, Sonnabend K, Streicher B, Terashima S, Thies R, Togano Y, Volkov V, Wamers F, Weick H, Weigand M, Wiescher M, Wimmer C, Winckler N, Woods PJ (2014) First experimental constraint on the Fe59(n,γ)Fe60 reaction cross section at astrophysical energies via the coulomb dissociation of Fe60. Phys Rev Lett 112(21):211101.  https://doi.org/10.1103/PhysRevLett.112.211101 ADSCrossRefGoogle Scholar
  173. Uttenthaler S, Lebzelter T, Palmerini S, Busso M, Aringer B, Lederer MT (2007) Low-mass lithium-rich AGB stars in the Galactic bulge: evidence for cool bottom processing? Astron Astrophys 471:L41–L45, https://doi.org/10.1051/0004-6361:20077879, http://doi.org/0707.1380
  174. van Raai MA, Lugaro M, Karakas AI, Iliadis C (2008) Reaction rate uncertainties and 26Al in AGB silicon carbide stardust. Astron Astrophys 478:521–526. https://doi.org/10.1051/0004-6361:20078307, http://doi.org/0712.3702
  175. van Raai MA, Lugaro M, Karakas AI, García-Hernández DA, Yong D (2012) Rubidium, zirconium, and lithium production in intermediate-mass asymptotic giant branch stars. Astron Astrophys 540:A44. https://doi.org/10.1051/0004-6361/201117896, http://doi.org/1202.2620
  176. Verchovsky AB, Wright IP, Pillinger CT (2004) Astrophysical significance of asymptotic giant branch stellar wind energies recorded in meteoritic SiC grains. Astrophys J 607:611–619. https://doi.org/10.1086/383230 ADSCrossRefGoogle Scholar
  177. Vollmer C, Hoppe P, Brenker FE (2008) Si isotopic compositions of presolar silicate grains from red giant stars and supernovae. Astrophys J 684:611–617. https://doi.org/10.1086/589913 ADSCrossRefGoogle Scholar
  178. Wallner A, Bichler M, Buczak K, Dillmann I, Käppeler F, Karakas A, Lederer C, Lugaro M, Mair K, Mengoni A, Schätzel G, Steier P, Trautvetter HP (2016) Accelerator mass spectrometry measurements of the 13C (n,γ )14C and 14N(n,p )14C cross sections. Phys Rev C 93(4):045803.  https://doi.org/10.1103/PhysRevC.93.045803 ADSCrossRefGoogle Scholar
  179. Wanajo S, Nomoto K, Janka H, Kitaura FS, Müller B (2009) Nucleosynthesis in electron capture supernovae of asymptotic giant branch stars. Astrophys J 695:208–220. https://doi.org/10.1088/0004-637X/695/1/208, http://doi.org/0810.3999
  180. Wasserburg GJ, Busso M, Gallino R, Raiteri CM (1994) Asymptotic giant branch stars as a source of short-lived radioactive nuclei in the solar nebula. Astrophys J 424:412–428. https://doi.org/10.1086/173899 ADSCrossRefGoogle Scholar
  181. Wasserburg GJ, Boothroyd AI, Sackmann IJ (1995) Deep circulation in red giant stars: a solution to the carbon and oxygen isotope puzzles? Astrophys J 447:L37. https://doi.org/10.1086/309555 ADSCrossRefGoogle Scholar
  182. Wasserburg GJ, Busso M, Gallino R, Nollett KM (2006) Short-lived nuclei in the early solar system: possible AGB sources. Nucl Phys A 777:5–69. https://doi.org/10.1016/j.nuclphysa.2005.07.015, https://arXiv:astro-ph/0602551 ADSCrossRefGoogle Scholar
  183. Whittet DCB (2002) Dust in the galactic environment. Series in astronomy and astrophysics, 2nd edn. Institute of Physics (IOP) Publishing, BristolGoogle Scholar
  184. Willson LA (2000) Mass loss from cool stars: impact on the evolution of stars and stellar populations. Annu Rev Astron Astrophys 38:573–611.  https://doi.org/10.1146/annurev.astro.38.1.573 ADSCrossRefGoogle Scholar
  185. Wolfenstein L (1978) Neutrino oscillations in matter. Phys Rev D 17:2369–2374.  https://doi.org/10.1103/PhysRevD.17.2369 ADSCrossRefGoogle Scholar
  186. Wood PR (1979) Pulsation and mass loss in Mira variables. Astrophys J 227:220–231. https://doi.org/10.1086/156721 ADSCrossRefGoogle Scholar
  187. Yin QZ, Lee CTA, Ott U (2006) Signatures of the s-Process in presolar silicon carbide grains: barium through hafnium. Astrophys J 647:676–684. https://doi.org/10.1086/505188 ADSCrossRefGoogle Scholar
  188. Zinner E, Amari S, Lewis RS (1991) S-process Ba, Nd, and SM in presolar SiC from the Murchison meteorite. Astrophys J 382:L47–L50. https://doi.org/10.1086/186210 ADSCrossRefGoogle Scholar
  189. Zinner E, Nittler LR, Gallino R, Karakas AI, Lugaro M, Straniero O, Lattanzio JC (2006) Silicon and carbon isotopic ratios in AGB stars: SiC grain data, models, and the galactic evolution of the Si isotopes. Astrophys J 650:350–373. https://doi.org/10.1086/506957 ADSCrossRefGoogle Scholar
  190. Zinner E, Amari S, Guinness R, Jennings C, Mertz AF, Nguyen AN, Gallino R, Hoppe P, Lugaro M, Nittler LR, Lewis RS (2007) NanoSIMS isotopic analysis of small presolar grains: Search for Si3 N4 grains from AGB stars and Al and Ti isotopic compositions of rare presolar SiC grains. Geochim Cosmochim Acta 71:4786–4813. https://doi.org/10.1016/j.gca.2007.07.012 ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Monash Centre for AstrophysicsMonash UniversityClayton, VICAustralia
  2. 2.Konkoly Observatory, Research Centre for Astronomy and Earth SciencesHungarian Academy of SciencesBudapestHungary
  3. 3.Istituto Nazionale Astronomia Fisica INAFRomaItaly

Personalised recommendations