Prospects for Application of Gallium Arsenide Doped with Transition Metals as a Material for Spintronics

  • Stanislav S. Khludkov
  • Ilya A. Prudaev
  • Oleg P. Tolbanov
Part of the Nanostructure Science and Technology book series (NST)


This chapter is a review of the literature dealing with the production and properties of ferromagnetic gallium arsenide and the possibility of using it in spintronics. A study of ferromagnetic GaAs has been under way for two decades, and this material and the structures on its basis remain of great interest nowadays. In the review, the most attention is paid to the GaMnAs and GaFeAs materials, as well as ferromagnetic metal/GaAs structures. By the present day, the GaMnAs is one of the most promising spintronics materials. Despite the great number of studies devoted to the production and investigation of this compound, there exist urgent problems of raising the operating temperature of the structures based on GaMnAs increasing, for this purpose, the Mn content in the structures. The low solubility of Mn in gallium arsenide prevents from increasing the Curie temperature. Doping above this limit results in increasing the Mn concentration in the interstice and the development of individual phases manifesting both ferromagnetic and antiferromagnetic properties. Unlike GaMnAs, in the doping of GaAs with iron, a considerable contribution of the d-orbitals encourages aggregation of the Fe cautions and the formation of inclusions of the condensed magnetic semiconductor. The second-phase inclusions and Fe-based microclusters were observed in GaAs grown by different techniques. The paper discusses various effects for these materials: spin injection, giant magneto-optical effect, shift of the magnetic domain walls, interlayer exchange coupling, strong magnetic anisotropy, etc. The prospects have been shown for application of GaAs doped with transition metals in spintronics. A number of devices have been made, e.g., field-effect transistors and light-emitting diodes, a light-driven microactuator, magneto-optical materials, and magnetic field sensors.


  1. 1.
    Zutic I, Fabian J, Das Sarma S (2004) Spintronics: fundamentals and applications. Rev Mod Phys 76:323CrossRefGoogle Scholar
  2. 2.
    Zakharchenya BP, Korenev VL (2005) Integrating magnetism into semiconductor electronics. Phys-Usp 48(6):603–608CrossRefGoogle Scholar
  3. 3.
    Fert A (2008) Nobel lecture: origin, development, and future of spintronics. Rev Mod Phys 80(4):1517–1530CrossRefGoogle Scholar
  4. 4.
    Grunberg PA (2008) Nobel lecture: from spin waves to giant magnetoresistance. Rev Mod Phys 80(4):1531–1540CrossRefGoogle Scholar
  5. 5.
    Baibich MN, Bruto JM, Fert A, Nguyen van Dau F, Petroff F, Eitenne P, Creuzet G, Friederich A, Chazelas J (1988) Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys Rev Lett 61:2472CrossRefGoogle Scholar
  6. 6.
    Binasch G, Grunberg P, Saurenbach F, Zinn W (1989) Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys Rev В 39:4828CrossRefGoogle Scholar
  7. 7.
    Moodera JS, Kinder LR, Wong TM, Meservey R (1995) Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys Rev Lett 74:3273CrossRefGoogle Scholar
  8. 8.
    Ohno H (1998) Making nonmagnetic semiconductors ferromagnetic. Science 281:951CrossRefGoogle Scholar
  9. 9.
    Kasuya T, Yanase A (1968) Anomalous transport phenomena in Eu-chalcogenide alloys. Rev Mod Phys 40:684CrossRefGoogle Scholar
  10. 10.
    Furdyna J (1988) Diluted magnetic semiconductors. J Appl Phys 64:R29–R64CrossRefGoogle Scholar
  11. 11.
    Ohno H, Munekata H, von Molnar S, Chang LL (1991) New III–V diluted magnetic semiconductors (invited). J Appl Phys 69:6103CrossRefGoogle Scholar
  12. 12.
    Ohno H, Shen A, Matsukura F, Oiwa A, Endo A, Katsumoto S, Iye H (1996) (Ga, Mn)As: a new diluted magnetic semiconductor based on GaAs. Appl Phys Lett 69:363CrossRefGoogle Scholar
  13. 13.
    Jungwirth T, Sinova J, Macek J, Kucera J, MacDonald AH (2006) Theory of ferromagnetic (III, Mn) V semiconductors. Rev Mod Phys 78:809CrossRefGoogle Scholar
  14. 14.
    Dreher L, Bihler C, Peiner E, Waag A, Schoch W, Limmer W, Goennenwein STB, Brandt MS (2013) Angle-dependent spin-wave resonance spectroscopy of (Ga, Mn) As films. Phys Rev В 87:224422CrossRefGoogle Scholar
  15. 15.
    Sliwa C, Dietl T (2014) Orbital magnetization in dilute ferromagnetic semiconductors. Phys Rev В 90:045202CrossRefGoogle Scholar
  16. 16.
    He Z-X, Zheng H-Z, Xue-Jiao H, Hai-Long W, Zhao J-H (2014) What has been measured by reflection magnetic circular dichroism in Ga1–xMnxAs/GaAs structures. Chin Phys B 23(7):077801CrossRefGoogle Scholar
  17. 17.
    Kim K-M, Jho Y-S, Kim K-S (2015) Dilute magnetic topological semiconductors. Phys Rev В 91:115125CrossRefGoogle Scholar
  18. 18.
    Szwacki NG, Majewski JA, Dietl T (2015) (Ga,Mn)As under pressure: a first-principles investigation. Phys Rev В 91:184409CrossRefGoogle Scholar
  19. 19.
    Hayashi T, Katsumoto S, Hashimoto Y (2000) Anisotropy and Barkhausen jumps in diluted magnetic semiconductor (Ga,Mn)As. Physica B 284:1175CrossRefGoogle Scholar
  20. 20.
    Yoona IT, Kanga TW, Kimb KH, Kimb DJ (2004) A Hall coefficient investigation of ferromagnetic Ga1–xMnxAs layers on (100) GaAs substrates. Solid State Comm 130:627CrossRefGoogle Scholar
  21. 21.
    Hayashi T, Hashimoto Y, Katsumoto S, Iye Y (2001) Effect of low-temperature annealing on transport and magnetism of diluted magnetic semiconductor (Ga, Mn) As. Appl Phys Lett 78:1691CrossRefGoogle Scholar
  22. 22.
    Hayashi T, Hashimoto Y, Yoshida S, Katsumoto S, Iye Y (2001) Control of material parameters and metal–insulator transition in (Ga, Mn) As. Phys E 10:130CrossRefGoogle Scholar
  23. 23.
    Chiba D, Yamanouchi M, Matsukura F, Ohno H (2003) Electrical manipulation of magnetization reversal in a ferromagnetic semiconductor. Science 301:943CrossRefGoogle Scholar
  24. 24.
    Novak V, Olejník K, Wunderlich J, Cukr M, Výborný K, Rushforth AW, Edmonds KW, Campion RP, Gallagher BL, Sinova J, Jungwirth T (2008) Curie point singularity in the temperature derivative of resistivity in (Ga, Mn) As. Phys Rev Lett 101:077201CrossRefGoogle Scholar
  25. 25.
    Olejnik K, Owen MHS, Novak V, Mašek J, Irvine AC, Wunderlich J, Jungwirth T (2008) Enhanced annealing, high Curie temperature, and low-voltage gating in (Ga, Mn) As: a surface oxide control study. Phys Rev B 78:054403CrossRefGoogle Scholar
  26. 26.
    Liu J (2014) Successful Mn ions spin polarization in magnetic semiconductor at room temperature in a Co2FeAl/(Ga,Mn)As bilayer. Natl Sci Rev 1(1):3–4CrossRefGoogle Scholar
  27. 27.
    Chen L, Yang X, Yang FH, Zhao JH, Misuraca J, Xiong P, Molnar SV (2011) Enhancing the Curie temperature of ferromagnetic semiconductor (Ga, Mn) As to 200 K via nanostructure engineering. Nano Lett 11:2584CrossRefGoogle Scholar
  28. 28.
    De Biasia E, Pudenzia MAA, Beharc M, Carvasand F, Knobel M (2008) Study of the magnetic properties on Mn and As co-implanted GaAs. J Magn Magn Mater 320:404CrossRefGoogle Scholar
  29. 29.
    Yokoyama M, Ogawa T, Nazmul AM, Tanaka M (2006) Large magnetoresistance (> 600%) of a GaAs: MnAs granular thin film at room temperature. J Appl Phys 99:08D502CrossRefGoogle Scholar
  30. 30.
    Danilov YA, Kruglov AV, Pitirimova EA, Drozdov AV, Murel AV, Bekhar MA, Pudenzi MA (2004) Structure and properties of GaAs <Mn> layers formed by ion implantation. Izvestiya Akademii Nauk Ser Fizicheskaya [in Russian] 68(1):65–68Google Scholar
  31. 31.
    Zvonkov BN, Vikhrova OB, Danilov YA, Drozdov YN, Kudrin AB, Sapozhnikov MB (2010) Effect of compressive and tensile stresses in GaMnAs layers on their magnetic properties. Phys Solid State 52(11):2267–2270CrossRefGoogle Scholar
  32. 32.
    Pereira ALJ, Dias da Silva JH (2008) Disorder effects produced by the Mn and H incorporations on the optical absorption edge of Ga1–xMnxAs:H nanocrystalline films. J Non-Cryst Solids 354:5372CrossRefGoogle Scholar
  33. 33.
    Angelico JC, Pereira ALJ, de Arruda LB, Dias da Silva JH (2015) Electrical transport mechanisms and structure of hydrogenated and non-hydrogenated nanocrystalline Ga1–xMnxAs films. J Alloy Comp 630:78CrossRefGoogle Scholar
  34. 34.
    Bürger D, Zhou S, Pandey M, Viswanadham CS, Grenzer J, Roshchupkina O, Anwand W, Reuther H, Gottschalch V, Helm M, Schmidt H (2010) Application of pulsed laser annealing to ferromagnetic GaMnAs. Phys Rev B 81:115202CrossRefGoogle Scholar
  35. 35.
    Piano S, Grein R, Mellor CJ, Vyborn K, Campion R, Wang M, Eschrig M, Gallagher BL (2011) Spin polarization of (Ga, Mn) As measured by Andreev spectroscopy: the role of spin-active scattering. Phys Rev B 83:081305(R)CrossRefGoogle Scholar
  36. 36.
    Wadley P, Freeman AA, Edmonds KW, van der Laan G, Chauhan JS, Campion RP, Rushforth AW, Gallagher BL, Foxon CT, Wilhelm F, Smekhova AG, Rogalev A (2010) Element-resolved orbital polarization in (III, Mn) As ferromagnetic semiconductors from K-edge x-ray magnetic circular dichroism. Phys Rev B 81:235208CrossRefGoogle Scholar
  37. 37.
    Uchitomi N, Sato S, Jinbo Y (2003) Growth and annealing effect of ferromagnetic (Ga, Mn) As on Si (100) substrates. Appl Surf Sci 216:607CrossRefGoogle Scholar
  38. 38.
    Hamida AB, Sievers S, Pierz K, Schumacher HW (2013) Broadband ferromagnetic resonance characterization of GaMnAs thin films. J Appl Phys 114:123704CrossRefGoogle Scholar
  39. 39.
    Hamida AB, Sievers S, Bergmann F, Racu A-M, Bieler M, Pierz K, Schumacher HW (2014) Magnetotransport and magnetization dynamics of GaMnAs thin films and magnetic tunnel junctions. Phys Status Solidi B 251(9):1652–1662CrossRefGoogle Scholar
  40. 40.
    Jungwirth T, Wang KY, Masek J, Edmonds KW, Konig J, Sinova J, Polini M, Goncharuk NA, MacDonald AH, Sawicki M, Rushforth AW, Campion RP, Zhao LX, Foxon CT, Gallagher BL (2005) Prospects for high temperature ferromagnetism in (Ga, Mn) As semiconductors. Phys Rev B 72:165204CrossRefGoogle Scholar
  41. 41.
    Dietl T, Ohno H, Matsukura F, Cibert J, Ferrard D (2000) Zener model description of ferromagnetism in Zinc-Blende magnetic semiconductors. Science 287:1019CrossRefGoogle Scholar
  42. 42.
    Chiba D, Sawicki M, Nishitani Y, Nakatani Y, Matsukura F, Ohno H (2008. Sep. 25) Magnetization vector manipulation by electric fields. Nature 455(7212):515–518CrossRefGoogle Scholar
  43. 43.
    Nishitani Y, Chiba D, Endo M, Sawicki M, Matsukura F, Dietl T, Ohno H (2010) Curie temperature versus hole concentration in field-effect structures of Ga1−xMnxAs. Phys Rev B 81:045208CrossRefGoogle Scholar
  44. 44.
    Ohno H (2013) Bridging semiconductor and magnetism. J Appl Phys 113:136509CrossRefGoogle Scholar
  45. 45.
    Dietl T, Ohno H (2014) Dilute ferromagnetic semiconductors: physics and spintronic structures. Rev Mod Phys 86:187CrossRefGoogle Scholar
  46. 46.
    Stolichnov I, Riester SWE, Mikheev E, Setter N, Rushforth AW, Edmonds KW, Campion RP, Foxon CT, Gallagher BL, Jungwirth T, Trodahl HJ (2011) Enhanced Curie temperature and nonvolatile switching of ferromagnetism in ultrathin (Ga, Mn) As channels. Phys Rev B 83:115203CrossRefGoogle Scholar
  47. 47.
    Stolichnov I, Riester SWE, Mikheev E, Setter N, Rushforth AW, Edmonds KW, Campion RP, Foxon CT, Gallagher BL, Jungwirth T, Trodahl HJ (2011) Ferroelectric polymer gates for non-volatile field effect control of ferromagnetism in (Ga, Mn) As layers. Nanotechnology 22:254004CrossRefGoogle Scholar
  48. 48.
    Riester SWE, Stolichnov I, Trodahl HJ, Setter N, Rushforth AW, Edmonds KW, Campion RP, Foxon CT, Gallagher BL, Jungwirth T (2009) Toward a low-voltage multiferroic transistor: magnetic GaMnAs under ferroelectric control. Appl Phys Lett 94:063504CrossRefGoogle Scholar
  49. 49.
    Rader O, Fauth K, Gould C, Ruster C, Schott GM, Schmidt G, Brunner K, Molenkamp LW, Schutz G, Kronast F, Durr HA, Eberhardt W, Gudat W (2005) Identification of extrinsic Mn contributions in Ga1–xMnxAs by field-dependent magnetic circular X-ray dichroism. J Electron Spectrosc Relat Phenom 144:789CrossRefGoogle Scholar
  50. 50.
    Hoffmann F, Woltersdorf G, Wegscheider W, Einwanger A, Weiss D, Back CH (2009) Mapping the magnetic anisotropy in (Ga, Mn) As nanostructures. Phys Rev B 80:054417CrossRefGoogle Scholar
  51. 51.
    Winter A, Pascher H, Krenn H, Liu X, Furdyna JK (2010) Interpretation of hysteresis loops of GaMnAs in the framework of the Stoner–Wohlfarth model. J Appl Phys 108:043921CrossRefGoogle Scholar
  52. 52.
    Chung S, Kim HC, Lee S (2009) The effect of carrier density on magnetic anisotropy of the ferromagnetic semiconductor (Ga, Mn) As. Solid State Commun 149:1739CrossRefGoogle Scholar
  53. 53.
    Bihler C, Schoch W, Limmer W, Goennenwein STB, Brandt MS (2009) Spin-wave resonances and surface spin pinning in Ga1–xMnxAs thin films. Phys Rev B 79:045205CrossRefGoogle Scholar
  54. 54.
    Lee S, Chung J-H, Liu X, Furdyna JK, Kirby BJ (2009) Ferromagnetic semiconductor GaMnAs. Mater Today 12:14CrossRefGoogle Scholar
  55. 55.
    Woltersdorf G, Hoffmann F, Bauer HG, Back CH (2013) Magnetic homogeneity of the dynamic properties of (Ga,Mn) As films from the submicrometer to millimeter length scale. Phys Rev B 87:054422CrossRefGoogle Scholar
  56. 56.
    Komamiya D, Okabayashi J, Yoshino J (2009) Mn deposition on GaAs (001)–c(4×4)α reconstructed surfaces: a scanning-tunneling-microscopy study. J Cryst Growth 311:2135CrossRefGoogle Scholar
  57. 57.
    Sapega VF, Sablina NI, Panaiotti IE, Averkiev NS, Ploog KH (2009) Hole spin polarization in the exchange field of the dilute magnetic (Ga, Mn) As semiconductor studied by means of polarized hot-electron photoluminescence spectroscopy. Phys Rev B 80:041202(R)CrossRefGoogle Scholar
  58. 58.
    Parchinskiy PB, Bobylev AY, Vlasov SI, Yu FC, Kim DJ (2007) Study of the photoluminescence spectra of GaMnAs produced by low-temperature molecular beam epitaxy. Semiconductors 41(10):1145–1149CrossRefGoogle Scholar
  59. 59.
    Yastrubchak O, Zuk J, Krzyzanowska H, Domagala JZ, Andrearczyk T, Sadowski J, Wosinski T (2011) Photoreflectance study of the fundamental optical properties of (Ga, Mn) As epitaxial films. Phys Rev B 83:245201CrossRefGoogle Scholar
  60. 60.
    Haisty RW (1965) On temperature depends of the iron acceptor level in GaAs. Appl Phys Lett 7:208CrossRefGoogle Scholar
  61. 61.
    Omeljanovskii EM, Fistul VI (1983). Impurities of transition metals in semiconductors [in Russian]. M: Metallurgy: 192.Google Scholar
  62. 62.
    Harris IR, Smith NA, Cockayne B, MacEwan WR (1987) Phase identification in Fe-doped GaAs single crystals. J Cryst Growth 82:450CrossRefGoogle Scholar
  63. 63.
    Isaev-Ivanov VV, Kolchanova NI, Masterov VF, Nasledov DN, Talalakin GN (1973) Magnetic properties of iron-doped gallium arsenide. Sov Phys Semicond [in Russian] 7(2):299–300Google Scholar
  64. 64.
    Masterov VF, Samorukov BE (1978) Deep centers in III-V compounds (review). Sov Phys Semicond [in Russian] 12(4):363–381Google Scholar
  65. 65.
    Popov BP, Sobolevskii VK, Apushkinskii EG, Savel’ev BP (2005) Magnetic ordering effects in heavily doped GaAs:Fe crystals. Semiconductors 39(5):493–498CrossRefGoogle Scholar
  66. 66.
    Chernov NA, Vilisova MD, Bakin NN, Asanov OM (1983) Determination of the position of the Π-ν-junction in epitaxial structures of gallium arsenide doped with iron. Sov Phys 26(11):1043–1046CrossRefGoogle Scholar
  67. 67.
    Vilisova MD, Ikonnikova GM, Moskovkin VA, Ruzaikin MP, Saprykin AI, Yabzanov VB, Yakubenya MP (1986) State of an Iron Impurity in the Gaseous and Solid Phases During Epitaxial Growth of Gallium Arsenide in the Ga-AsCl//3-H//2 System. Neorganiceskie materialy [in Russian] 22:363–366Google Scholar
  68. 68.
    Lavrent’eva LG, Vilisova MD (1989) Formation of centers with deep levels in gaseous phase epitaxy of gallium arsenide. Sov Phys J 29(5):339–347CrossRefGoogle Scholar
  69. 69.
    Messmer R, Söderström E, Hult D, Marcinkevicius P, Lourdudoss S, Look S (2000) Properties of semi-insulating GaAs:Fe grown by hydride vapor phase epitaxy. J Electrochem Soc 147:3109CrossRefGoogle Scholar
  70. 70.
    Hirose S, Yamaura M, Haneda S, Hara K, Munekata H (2000) GaFeAs: a diluted magnetic semiconductor grown by molecular beam epitaxy. Thin Solid Films 371:272CrossRefGoogle Scholar
  71. 71.
    Haneda S, Yamaura M, Takatani Y, Hara K, Harigae S, Munekata H (2000) Preparation and characterization of Fe-based III–V diluted magnetic semiconductor (Ga, Fe)As. Jpn J Appl Phys Part 2 39:L9CrossRefGoogle Scholar
  72. 72.
    Haneda S, Munekata H, Takatani Y, Koshihara S (2000) Fe-based magnetic-semiconductor hybrid structures for photocarrier-induced magnetism. J Appl Phys 87:6445CrossRefGoogle Scholar
  73. 73.
    Soo YL, Kioseoglou G, Huang S, Kim S, Kao YH, Takatani Y, Haneda S, Munekata H (2001) Local structure around Fe in the diluted magnetic semiconductors Ga1−xFexAs studied by X-ray absorption fine structure. Phys Rev B 63:195209CrossRefGoogle Scholar
  74. 74.
    Park YJ, Oh HT, Park CJ, Cho HY, Shon Y, Kim EK, Moriya R, Munekata H (2002) Characteristics of molecular beam epitaxy-grown GaFeAs. Curr Appl Phys 2:379CrossRefGoogle Scholar
  75. 75.
    Députier S, Guérin R, Lépine B, Guivarc’h A, Jézéquel G (1997) The ternary compound Fe3Ga2–хAsx: a promising candidate for epitaxial and thermodynamically stable contacts on GaAs. J Alloys Compd 262–263:416Google Scholar
  76. 76.
    Raghavan V (2004) As–Fe–Ga (Arsenic–Iron–Gallium). J Phase Equilib 25(1):77–78CrossRefGoogle Scholar
  77. 77.
    Haneda S, Koshihara S, Munekata H (2001) Formation of FeAs and Fe crystallites in GaAs–Fe composite structures and their roles in light-enhanced magnetization. Phys E 10:437CrossRefGoogle Scholar
  78. 78.
    Koshihara S, Iowa A, Hirasawa M, Katsumoto S, Iye Y, Urano C, Takagi H, Munekata H (1997) Ferromagnetic order induced by photogenerated carriers in magnetic III–V semiconductor Heterostructures of (In,Mn)As/GaSb. Phys Rev Lett 78:4617CrossRefGoogle Scholar
  79. 79.
    Fumagalli P, Sommer G, Lippitz H, Haneda S, Munekata H (2001) Observation of reversed hysteresis loops and negative coercivity in granular GaAs–Fe hybrid structures. J Appl Phys 89:7016CrossRefGoogle Scholar
  80. 80.
    Jamil ATMK, Noguchi H, Shiratori K, Kondo T, Munekata H (2005) Room-temperature photomagnetic effect of Fe3Ga4 grown on GaAs substrates. J Supercond 18(3):321–324CrossRefGoogle Scholar
  81. 81.
    Jamil ATMK, Noguchi H (2011) Effect of thermal annealing of high temperature grows of (GaAsm(Fe)n)p composite films on GaAs (001) by molecular beam epitaxy. Indian J Phys 85:737CrossRefGoogle Scholar
  82. 82.
    Changa JCP, Otsukab N, Harmon ES, Melloch MR, Woodall JM (1994) Precipitation in Fe- or Ni-implanted and annealed GaAs. Appl Phys Lett 65:2801CrossRefGoogle Scholar
  83. 83.
    Taylor N, Sun K (2011) Fe–Ga–As precipitates and their magnetic domain structures in high-dose iron implanted GaAs. J Mater Sci 46:13CrossRefGoogle Scholar
  84. 84.
    Khludkov SS, Prudaev IA, Novikov VA, Budnitskii DL, Lopatetskaya KS (2014) Electrical properties of GaAs doped with iron. Russ Phys J 56(12):1435–1438CrossRefGoogle Scholar
  85. 85.
    Khludkov SS, Prudaev IA, Novikov VA, Tolbanov OP, Ivonin IV (2010) A study of the process of decomposition of supersaturated GaAs:Fe solid solution by scanning probe microscopy. Semiconductors 44(8):975–977CrossRefGoogle Scholar
  86. 86.
    Prudaev IA, Khludkov SS, Gutakovskii AK, Novikov VA, Tolbanov OP, Ivonin IV (2012) Decomposition of a supersaturated solid solution of Fe in GaAs. Inorg Mater 48(2):93–95CrossRefGoogle Scholar
  87. 87.
    Grunberg R, Schreiber Y, Pang M, Brodsky B, Sowers H (1986) Layered magnetic Structures: evidence for antiferromagnetic coupling of Fe layers across Cr interlayers. Phys Rev Lett 57:2442CrossRefGoogle Scholar
  88. 88.
    Jamil ATMK, Noguchi H, Munekata H (2008) Growth of Fe–As crystalline films on GaAs(100) by molecular beam epitaxy. Thin Solid Films 516:3015CrossRefGoogle Scholar
  89. 89.
    Prinz GA, Rado GT, Krebs JJ (1982) Magnetic properties of single-crystal {110} iron films grown on GaAs by molecular beam epitaxy (invited). J Appl Phys 53:2087CrossRefGoogle Scholar
  90. 90.
    Krebs JJ, Jonker BT, Prinz GA (1987) Properties of Fe single crystal films grown on (100) GaAs by molecular beam epitaxy. J Appl Phys 61:2596CrossRefGoogle Scholar
  91. 91.
    Tivakornsasithorn K, Liu X, Li X, Dobrowolska M, Furdyna JK (2014) Magnetic anisotropy in ultrathin Fe films on GaAs, ZnSe, and Ge (001) substrates. J Appl Phys 116:043915CrossRefGoogle Scholar
  92. 92.
    Godde C, Noor S, Urban C, Köhler U (2008) Structural changes and alloying of annealed iron layers on GaAs(001) and GaAs(110). Surf Sci 602:3343CrossRefGoogle Scholar
  93. 93.
    Chye Y, Huard V, White ME, Petroff PM (2002) Properties of a Fe/GaAs (001) hybrid structure grown by molecular-beam epitaxy. Appl Phys Lett 80:449CrossRefGoogle Scholar
  94. 94.
    Lepin B, Lallaizon L, Schieffer P, Guivarc’h A, Jézéquel G, Rocher A, Abel F, Cohen C, Deputier S, Nguyen Van Dau F (2004) FeIIIGaAs (001): a stable and magnetic metal-semiconductor heterostructure. Thin Solid Films 446:6CrossRefGoogle Scholar
  95. 95.
    Herfort J, Braun W, Trampert A, Schonherr H-P, Ploog KH (2004) Atomically engineered interfaces for spin injection: ultrathin epitaxial Fe films grown on As- and Ga-terminated GaAs(001) substrates. Appl Surf Sci 237:181CrossRefGoogle Scholar
  96. 96.
    Torelli P, Sperl M, Ciancio R, Fujii J, Rinaldi C, Cantoni M, Bertacco R, Utz M, Bougeard D, Soda M, Carlino E, Rossi G, Back CH, Panaccione G (2012) Growth of ultrathin epitaxial Fe/MgO spin injector on (001) (Ga, Mn) As. Nanotechnology 23:465202CrossRefGoogle Scholar
  97. 97.
    Bianco F, Bouchon P, Sousa M, Salis G, Alvaradoa SF (2008) Enhanced uniaxial magnetic anisotropy in Fe31Co69 thin films on GaAs. J Appl Phys 104:083901CrossRefGoogle Scholar
  98. 98.
    Sacchi M, Marangolo M, Spezzani C, Breitwieser R, Popescu H, Dealaunay R, Salles BR, Eddrief M, Etgens VH (2010) Thermal switching of the magnetization in an iron film on a magnetically active template MnAs/GaAs (001). Phys Rev B 81:220401(R)CrossRefGoogle Scholar
  99. 99.
    Salis S, Alvarado F, Fuhrer A (2011) Spin-injection spectra of CoFe/GaAs contacts: dependence on Fe concentration, interface and annealing conditions. Phys Rev B 84:041307(R)CrossRefGoogle Scholar
  100. 100.
    Shaw JM, Falco CM (2007) Structure, spin dynamics, and magnetic properties of annealed nanoscale Fe layers on GaAs. J Appl Phys 101:033905CrossRefGoogle Scholar
  101. 101.
    Dietl T, Haury A, d’Aubigne YM (1997) Free carrier-induced ferromagnetism in structures of diluted magnetic semiconductors. Phys Rev B 55:R3347(R)CrossRefGoogle Scholar
  102. 102.
    Szałowski K, Balcerzak T (2009) Antiferromagnetic interlayer coupling in diluted magnetic thin films with RKKY interaction. Phys Rev B 79:214430CrossRefGoogle Scholar
  103. 103.
    Luo M, Tang Z, Zhu ZQ, Chu JH (2011) Interlayer exchange coupling in GaN-based diluted magnetic semiconductor multilayers studied by first-principles calculations. J Appl Phys 109:123720CrossRefGoogle Scholar
  104. 104.
    Huang GQ, Wang JX (2012) Magnetic behavior of Mn-doped GaN (1100) film from first-principles calculations. J Appl Phys 111:043907CrossRefGoogle Scholar
  105. 105.
    Leiner J, Tivakornsasithorn K, Liu X, Furdyna JK, Dobrowolska M, Kirby BJ, Lee H, Yoo T, Lee S (2011) Antiferromagnetic exchange coupling between GaMnAs layers separated by a nonmagnetic GaAs: Be spacer. J Appl Phys 109:07C307CrossRefGoogle Scholar
  106. 106.
    Chung S, Lee S, Chung J-H, Yoo T, Lee H, Kirby B, Liu X, Furdyna JK (2010) Giant magnetoresistance and long-range antiferromagnetic interlayer exchange coupling in (Ga,Mn)As/GaAs: Be multilayers. Phys Rev B 82:054420CrossRefGoogle Scholar
  107. 107.
    Chung J-H, Song Y-S, Yoo T, Chung SJ, Lee S, Kirby BJ, Liu X, Furdyna JK (2011) Investigation of weak interlayer exchange coupling in GaMnAs/GaAs superlattices with insulating nonmagnetic spacers. J Appl Phys 110:013912CrossRefGoogle Scholar
  108. 108.
    Nazmul AM, Sugahara S, Tanaka M (2003) Ferromagnetism and high Curie temperature in semiconductor heterostructures with Mn δ-doped GaAs and p-type selective doping. Phys Rev B 67:241308(R)CrossRefGoogle Scholar
  109. 109.
    Sapega VF, Brandt O, Ramsteiner M, Ploog KH, Panaiotti IE, Averkiev NS (2007) Hole spin polarization in GaAs:Mn/AlAs multiple quantum wells. Phys Rev B 75:113310CrossRefGoogle Scholar
  110. 110.
    Vaz CAF (2012) Electric field control of magnetism in multiferroic heterostructures. J Phys Condens Matter 24:333201CrossRefGoogle Scholar
  111. 111.
    Morgunov RB, Dmitriev AI (2009) Spin dynamics in magnetic semiconductor nanostructures. Phys Solid State 51(10):1985–2002CrossRefGoogle Scholar
  112. 112.
    Wolf SA, Awschalom DD, Buhrman RA, Daughton JM, von Molnár S, Roukes ML, Chtchelkanova AY, Treger DM (2001) Spintronics: a spin-based electronics vision for the future. Science 294:1488CrossRefGoogle Scholar
  113. 113.
    Prinz ZA (1998) Magnetoelectronics. Science 282:1660CrossRefGoogle Scholar
  114. 114.
    Di VDP (1995) Quantum computation. Science 270:255CrossRefGoogle Scholar
  115. 115.
    Akinaga A, Miyanishi S, Tanaka K, Van Roy W, Onodera K (2000) Magneto-optical properties and the potential application of GaAs with magnetic MnAs nanoclusters. Appl Phys Lett 76:97CrossRefGoogle Scholar
  116. 116.
    Shinshi T, Kato F, Shimokohbe A, Noguchi H, Munekata H (2003) Light-driven microcantilever actuator based on photoenhanced magnetization in a GaAs–Fe composite film. Appl Phys Lett 83:3425CrossRefGoogle Scholar
  117. 117.
    Choi H-J, Seong H-K, Chang J, Lee K-I, Park Y-J, Kim J-J, Lee S-K, He R, Kuykendall T, Yang P (2005) Single-crystalline diluted magnetic semiconductor GaN:Mn nanowires. Adv Mater 17:1351CrossRefGoogle Scholar
  118. 118.
    Dorokhin MV, Zaitsev SV, Brichkin AS, Vikhrova OV, Danilov YA, Zvonkov BN, Kulakovsky VD, Prokof’eva MM, Sholina AE (2010) Influence of delta〈Mn〉 doping parameters of the GaAs barrier on circularly polarized luminescence of GaAs/InGaAs heterostructures. Phys Solid State 52(11):2291–2296CrossRefGoogle Scholar
  119. 119.
    Ohno Y, Young DK, Beschoten B, Matsukura F, Ohno H, Awschalom DD (1999) Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature 402:790CrossRefGoogle Scholar
  120. 120.
    Taniyama T, Wada E, Itoh M, Yamaguchi M (2011) Electrical and optical spin injection in ferromagnet/semiconductor. NPG Asia Mater 3:65CrossRefGoogle Scholar
  121. 121.
    Myers RC, Gossard AC, Awschalom DD (2004) Tunable spin polarization in III–V quantum wells with a ferromagnetic barrier. Phys Rev B 69:161305(R)CrossRefGoogle Scholar
  122. 122.
    Dorokhin MB, Zaitsev SV, Brichkin AS, Vikhrova OB, Danilov YA, Zvonkov BN, Kulakovskii VD, Prokof’eva MM, Sholina AE (2010) Influence of parameters of the Mn Delta-doping GaAs barrier on circularly polarized luminescence of the heterostructures GaAs/InGaAs. Phys Solid State 52(11):2191–2296CrossRefGoogle Scholar
  123. 123.
    Dorokhin MB, Danilov YA, Prokof’eva MM, Sholina AE (2010) Temperature stability of photoluminescence in heterostructures with InGaAs/GaAs quantum well and the acceptor Mn Delta-layer in the GaAs barrier. Tech Phys Lett 36(9):819–822CrossRefGoogle Scholar
  124. 124.
    Zvonkov BN, Vikhrova OB, Danilov YA, Drozdov YN, Drozdov MN, Kalent’eva IL, Kudrin AV (2012) Fabrication and properties of GaAsSb/GaAs heterostructures doped with a magnetic impurity. Semiconductors 46(12):1493–1496CrossRefGoogle Scholar
  125. 125.
    Pavlova ED, Gorshkov AP, Bobrov AI, Malekhonova NV, Zvonkov BN (2013) Study of heterostructures with a combined In(Ga)As/GaAs quantum dot/quantum well layer and a Mn δ layer. Semiconductors 47(12):1591–1594CrossRefGoogle Scholar
  126. 126.
    Nikolichev DE, Boryakov AV, Zubkov SY, Kryukov RN, Dorokhin MV, Kudrin AV (2014) Chemical and phase composition of the spin-light emitting diodes GaMnAs/GaAs/InGaAs. Semiconductors 48(6):815–820CrossRefGoogle Scholar
  127. 127.
    Dorokhin MV, Malysheva EI, Zdoroveischev AV, Danilov YA (2012) Spin-polarized light-emitting diodes based on heterostructures with a GaAs/InGaAs/GaAs quantum well and ferromagnetic GaMnSb injection layer. Tech Phys Lett 38(8):764–767CrossRefGoogle Scholar
  128. 128.
    Dorokhin MV, Malysheva EI, Zdoroveischev AV, Danilov YA, Kudrin AV (2012) GaMnSb/InGaAs/GaAs heterostructure leds with a ferromagnetic injector layer. Semiconductors 46(12):1518–1523CrossRefGoogle Scholar
  129. 129.
    Kusrayev YG (2010) Spin phenomena in semiconductors: physics and applications. Physics-Uspekhi 53(7):725–738CrossRefGoogle Scholar
  130. 130.
    Averkiev NS (2010) Spin relaxation anisotropy in two-dimensional semiconductors. Physics-Uspekhi 53(7):742–745CrossRefGoogle Scholar
  131. 131.
    Tarasenko SA (2010) Spin photocurrents in semiconductors. Physics-Uspekhi 53(7):739–742CrossRefGoogle Scholar
  132. 132.
    Jungwirth T, Wunderlich J, Novak V, Olejnik K, Gallagher BL, Campion RP, Edmonds KW, Rushforth AW, Ferguson AJ, Nemec P (2014) Spin-dependent phenomena and device concepts explored in (Ga,Mn)As. Rev Mod Phys 86:855CrossRefGoogle Scholar
  133. 133.
    Tanaka M, Ohya S, Hail PN (2014) Recent progress in III–V based ferromagnetic semi-conductors: band structure, Fermi level, and tunneling transport. Appl Phys Rev 1:011102CrossRefGoogle Scholar
  134. 134.
    Khludkov SS (2008) Prospects for the use of gallium arsenide doped with transition metals as a material for spintronics [in Russian]. Russ Phys J 51(9/3):42–44Google Scholar
  135. 135.
    Khludkov SS (2010) Diluted magnetic semiconductors and devices based on spin-dependent phenomena [in Russian]. Russ Phys J 53(9/2):324–326Google Scholar
  136. 136.
    Khludkov SS, Prudaev IA, Tolbanov OP (2013) Gallium nitride as a material for spintronics. Russ Phys J 55(8):903–909CrossRefGoogle Scholar
  137. 137.
    Khludkov SS, Prudaev IA, Tolbanov OP (2013) Prospects for the use of dilute magnetic semiconductors as a material for spintronics. In: Proceedings of XI Russian semiconductor physics symposium, Saint-Petersburg, 16–20 September, p 2Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Stanislav S. Khludkov
    • 1
  • Ilya A. Prudaev
    • 1
  • Oleg P. Tolbanov
    • 1
  1. 1.Functional Electronics LaboratoryTomsk State UniversityTomskRussia

Personalised recommendations