Advertisement

Organic Nanostructures by Molecular Layer Epitaxy: A Tutorial

  • Tatjana N. Kopylova
  • Sergey Yu Nikonov
  • Evgeny N. Telminov
  • Ruslan M. Gadirov
  • Konstantin M. Degtyarenko
  • Vladimir BurtmanEmail author
Chapter
Part of the Nanostructure Science and Technology book series (NST)

Abstract

This chapter presents a short introduction to molecular layer epitaxy (MLE). MLE is a novel vapor-phase self-assembly approach to create molecular nanoelectronic materials, structures, and devices. The main principles of MLE technology and related topics of surface chemistry are introduced to demonstrate the possibilities of vapor-phase self-assembly, which can be used to achieve desired organic structures and chemical functionalities. We describe equipment, which can produce MLE structures, and monitoring methods used to describe growth of organic MLE structures. We demonstrate several devices, which were produced using MLE technology. These include field-effect transistors (MLE-FETs), organic light-emitting diode (MLE-OLED), MLE solar cells, and MLE laser media. The performance of MLE is compared with other technologies, which are currently used in molecular nanoelectronics, to demonstrate similarities and distinguish features of MLE.

Keywords

Molecular layer epitaxy Molecular nanoelectronics Thin film deposition Organic superlattices Inorganic-organic superlattices 

Notes

Acknowledgments

This research was supported by The Tomsk State University competitiveness improvement program under grant 8.2.20.2018.

References

  1. 1.
    Reed MA, Zhou C, Muller CJ, Burgin TP, Tour JM (1997) Science 278:252CrossRefGoogle Scholar
  2. 2.
    Aviram A, Ratner MA (1974) Molecular Rectifiers. Chem Physics 29:277–283Google Scholar
  3. 3.
    Anelli PL, Spencer N, Stoddart JF (1991) J Am Chem Soc 113:5131–5133CrossRefGoogle Scholar
  4. 4.
    Petta JR, Slater SK, Ralph DC (2004) Phys Rev Lett 93:136601CrossRefGoogle Scholar
  5. 5.
    Kelley SO, Barton JK (1999) Science 283:375–381CrossRefGoogle Scholar
  6. 6.
    Grätzel M (2003) J Photochem Photobiol C: Photochem Rev 4:145–153CrossRefGoogle Scholar
  7. 7.
    You J, Meng L, Song T-B, Guo T-F, Yang, Y.(M.), Chang W-H, Hong Z, Chen H, Zhou H, Chen Q, Liu Y, De Marco N, Yang Y (2015) Nat Nanotechnol:1–9. https://doi.org/10.1038/nnano.2015.230
  8. 8.
  9. 9.
    Emberly EG, Kirczenow G (2000) Phys Rev B 61:5740–5750CrossRefGoogle Scholar
  10. 10.
    Nature Nanotechnology 8, (2013). https://doi.org/10.1038/NNANO.2013.91
  11. 11.
    O’Brien E, Holt ME, Thompson MK, Salay LE, Ehlinger AC, Chazin W, Barton JK (2017) Science 355:1789CrossRefGoogle Scholar
  12. 12.
  13. 13.
  14. 14.
    Kopylova TN, Nikonov SU, Telminov EN, Gadirov RM, Degtyarenko KM, Burtman V (2016) chapter 1. In: Jensen K (ed) Heterogeneous catalysts. Nova publishers, New York, pp 1–21Google Scholar
  15. 15.
    Zhang Y, Xu L, Walker WR, Tittle CM, Backhouse CJ, Pope MA (2017) J Mater Chem C 43:13Google Scholar
  16. 16.
    Ulman A (1991) An introduction to ultrathin organic films. Boston, Academic PressGoogle Scholar
  17. 17.
    Yao Q, Luo Z, Yuan X, Yu Y, Zhang C, Xie J, Lee JY (2014) Sci Rep 4:3848CrossRefGoogle Scholar
  18. 18.
    Zimmerman JD, Lassiter BE, Xiao X, Sun K, Dolocan A, Gearba R, Vanden-Bout DA, Stevenson KJ, Wickramasinghe P, Thompson ME, Forrest SR (2013) ACS Nano 7:9268CrossRefGoogle Scholar
  19. 19.
    Kiy M, Suhner U, Gamboni I, Gunter P, Biaggio I (2000) Synth Met 111:307–310CrossRefGoogle Scholar
  20. 20.
    Tubino R, Borghesi A, Dalla BL, Destrid S, Porziod W, Sassella A (1998) Opt Mater 9:437–444CrossRefGoogle Scholar
  21. 21.
    Puurunen RL (2014) A short history of atomic layer deposition: Tuomo Suntola’s atomic layer epitaxy (essay). Chem Vap Depos 20:332–334CrossRefGoogle Scholar
  22. 22.
    Burtman V, Zelichenok A, Yitzchaik S (1999) Angew Chem Int Eng Ed 38:2041CrossRefGoogle Scholar
  23. 23.
    Whitesides GM, Laibinis PE (1990) Langmuir 6:87CrossRefGoogle Scholar
  24. 24.
    Burtman V, Ofir Y, Yitzchaik S (2001) Langmuir 17:2137CrossRefGoogle Scholar
  25. 25.
    Burtman V, Vardeny ZV (2008) Jpn J Appl Phys 47:1165–1172CrossRefGoogle Scholar
  26. 26.
    Yitzchaik S, Marks TJ (1996) Acc Chem Res 29:197–202CrossRefGoogle Scholar
  27. 27.
    Burtman V (2012) In: Antsyforov GI, Ivanski AF (eds) Naphthalene: structure, properties and applications, chapter 1. Nova Publishers, New York, pp 1–58Google Scholar
  28. 28.
    Zaslavsky D, Pakoulev AV, Burtman V (2004) J Phys Chem B 108:15815CrossRefGoogle Scholar
  29. 29.
    Sze S (1985) Semiconductor devices physics and technology. Wiley, New YorkGoogle Scholar
  30. 30.
    Hagfeldt A, Gratzel M (2000) Acc Chem Res 33:269CrossRefGoogle Scholar
  31. 31.
    Grätzel M (2001) Nature 414:338CrossRefGoogle Scholar
  32. 32.
    Huynh WU, Dittmer JJ, Alivisatos AP (2002) Science 295:2425CrossRefGoogle Scholar
  33. 33.
    Glazer AN (1983) Annu Rev Biochem 52:125CrossRefGoogle Scholar
  34. 34.
    Di Bilio AJ, Crane BR, Wehbi WA, Kiser CN, Abu-Omar MM, Carlos RM, Richards JH, Winkler JR, Gray HB (2001) J Am Chem Soc 123:3181CrossRefGoogle Scholar
  35. 35.
    Burtman V, Zelichonok A, Pakoulev AV (2011) Int J Mol Sci 12:173–225CrossRefGoogle Scholar
  36. 36.
    Coropceanu V, Cornil J, da Silva-Filho DA, Olivier Y, Silbey R, Bredas J-L (2007) Chem Rev 107:926CrossRefGoogle Scholar
  37. 37.
    Laquindanum JG, Katz HE, Dodabalapur A, Lovinger AJ (1996) J Am Chem Soc 118:11331CrossRefGoogle Scholar
  38. 38.
    Tanida S, Noda K, Kawabata H, Matsushige K (2009) Thin Solid Films 518:571CrossRefGoogle Scholar
  39. 39.
    Facchetti A (2007) Mater Today 10:28CrossRefGoogle Scholar
  40. 40.
    Katz HE, Johnson J, Lovinger AJ, Li W (2000) J Am Chem Soc 122:7787CrossRefGoogle Scholar
  41. 41.
    Singh TB, Erten S, Günes S, Zafer C, Turkmen G, Kuhan B, Teoman Y, Sariciftci NS, Icli S (2006) Org Electron 7:480CrossRefGoogle Scholar
  42. 42.
    Kao CC, Lin P, Lee CC, Wang YK, Ho JC, Shen YY (2007) Appl Phys Lett 90:212101CrossRefGoogle Scholar
  43. 43.
    Letizia JA, Facchetti A, Stern CL, Ratner MA, Marks TJ (2005) J Am Chem Soc 127:13476CrossRefGoogle Scholar
  44. 44.
    Lee Y-L, Hsu H-L, Chen S-Y, Yew T-R (1694) J Phys Chem C 112:2008Google Scholar
  45. 45.
    Janssen D (2006) Long-term performance versus structure of polymer materials. Ph.D. thesis, Katholieke University of Leuven, BelgiumGoogle Scholar
  46. 46.
    Du K-z, Tu Q, Zhang X, Han Q, Liu J, Zauscher S, Mitzi DB (2017) Inorg Chem 56:9291–9302CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Tatjana N. Kopylova
    • 1
  • Sergey Yu Nikonov
    • 1
  • Evgeny N. Telminov
    • 1
  • Ruslan M. Gadirov
    • 1
  • Konstantin M. Degtyarenko
    • 1
  • Vladimir Burtman
    • 2
    Email author
  1. 1.Siberian Physics and Technical InstituteTomsk State UniversityTomskRussia
  2. 2.University of UtahSalt Lake CityUSA

Personalised recommendations