Advertisement

Active Origami pp 201-268 | Cite as

Kinematics of Origami Structures with Smooth Folds

  • Edwin A. Peraza Hernandez
  • Darren J. Hartl
  • Dimitris C. Lagoudas

Abstract

A kinematic model for origami with creased folds was presented in Chap.  2 and most existing models for origami also assume that folds are straight creases. However, such previous models are not intended for origami structures having non-negligible fold thickness or maximum fold curvature constraints based on material or structural limitations. In this chapter, we develop a model that captures the kinematic response of sheets having realistic folds of non-zero surface area and exhibiting higher-order geometric continuity, referred to as smooth folds. The geometry of smooth folds and the constraints on their associated kinematic variables are presented. We also address the implementation of the model in a computational environment and provide various representative examples.

Supplementary material

978-3-319-91866-2_5_MOESM1_ESM.zip (99 kb)
Kinematics_Origami_Smooth_Folds (ZIP 100KB)
978-3-319-91866-2_5_MOESM2_ESM.zip (37 kb)
Kinematic_Variables_for_Smooth_Folds (ZIP 37KB)

References

  1. 1.
    T. Tachi, Simulation of rigid origami, in Origami 4, Fourth International Meeting of Origami Science, Mathematics, and Education, pp. 175–187 (2009)Google Scholar
  2. 2.
    T.A. Evans, R.J. Lang, S.P. Magleby, L.L. Howell, Rigidly foldable origami gadgets and tessellations. R. Soc. Open Sci. 2(9) (2015)Google Scholar
  3. 3.
    Z. Abel, J. Cantarella, E.D. Demaine, D. Eppstein, T.C. Hull, J.S. Ku, R.J. Lang, T. Tachi, Rigid origami vertices: conditions and forcing sets. J. Comput. Geom. 7(1), 171–194 (2016)MathSciNetMATHGoogle Scholar
  4. 4.
    T. Tachi, Geometric considerations for the design of rigid origami structures, in Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium, vol. 12, pp. 458–460 (2010)Google Scholar
  5. 5.
    T. Tachi, Designing freeform origami tessellations by generalizing Resch’s patterns, J. Mech. Des. 135(11), 111006 (2013)Google Scholar
  6. 6.
    T. Tachi, Freeform origami tessellations by generalizing Resch’s patterns, in Proceedings of the ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE, No. DETC2013–12326, pp. V06BT07A025 (American Society of Mechanical Engineers, New York, 2013)Google Scholar
  7. 7.
    J.M. Gattas, W. Wu, Z. You, Miura-base rigid origami: parameterizations of first-level derivative and piecewise geometries. J. Mech. Des. 135(11), 111011 (2013)Google Scholar
  8. 8.
    K. Wang, Y. Chen, Folding a patterned cylinder by rigid origami, in Origami 5: Fifth International Meeting of Origami Science, Mathematics, and Education, pp. 265–276 (2011)Google Scholar
  9. 9.
    X.-Y. Li, T. Ju, Y. Gu, S.-M. Hu, A geometric study of V-style pop-ups: theories and algorithms, in ACM SIGGRAPH 2011 Papers, SIGGRAPH ’11, pp. 98:1–98:10 (ACM, New York, 2011). ISBN: 978-1-4503-0943-1Google Scholar
  10. 10.
    S.N. Le, S.-J. Leow, T.-V. Le-Nguyen, C. Ruiz, K.-L. Low, Surface and contour-preserving origamic architecture paper pop-ups. IEEE Trans. Vis. Comput. Graph. 20(2), 276–288 (2014)CrossRefGoogle Scholar
  11. 11.
    P.M. Reis, F.L. Jiménez, J. Marthelot, Transforming architectures inspired by origami. Proc. Natl. Acad. Sci. 112(40), 12234–12235 (2015)CrossRefGoogle Scholar
  12. 12.
    R.J. Lang, Origami In Action: Paper Toys That Fly, Flag, Gobble and Inflate! (St. Martin’s Griffin, New York, 1997)Google Scholar
  13. 13.
    Y. Qin, J. Dai, Four motion branches of an origami based eight bar spatial mechanism, in Proceedings of the ASME 2013 International Design Engineering Technical Conference and Computers and Information in Engineering Conference IDETC/CIE, Portland, No. DETC2013–12584, pp. V06BT07A030 (2013)Google Scholar
  14. 14.
    L.A. Bowen, C.L. Grames, S.P. Magleby, L.L. Howell, R.J. Lang, A classification of action origami as systems of spherical mechanisms. J. Mech. Des. 135(11), 111008 (2013)Google Scholar
  15. 15.
    L.A. Bowen, C.L. Grames, S.P. Magleby, R.J. Lang, L.L. Howell, An approach for understanding action origami as kinematic mechanisms, in Proceedings of the ASME 2013 International Design Engineering Technical Conference and Computers and Information in Engineering Conference IDETC/CIE, Portland, No. DETC2013–13407, pp. V06BT07A044 (American Society of Mechanical Engineers, New York, 2013)Google Scholar
  16. 16.
    L.A. Bowen, W.L. Baxter, S.P. Magleby, L.L. Howell, A position analysis of coupled spherical mechanisms found in action origami. Mech. Mach. Theory 77, 13–24 (2014)CrossRefGoogle Scholar
  17. 17.
    E.R. Leal, J.S. Dai, From origami to a new class of centralized 3-DOF parallel mechanisms, in Proceedings of the ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE, pp. 1183–1193 (American Society of Mechanical Engineers, New York, 2007)Google Scholar
  18. 18.
    G. Wei, J.S. Dai, Origami-inspired integrated planar-spherical overconstrained mechanisms. J. Mech. Des. 136(5), 051003 (2014)Google Scholar
  19. 19.
    I.L. Delimont, S.P. Magleby, L.L. Howell, Evaluating compliant hinge geometries for origami-inspired mechanisms. J. Mech. Robot. 7(1), 011009 (2015)Google Scholar
  20. 20.
    B.G. Winder, S.P. Magleby, L.L. Howell, Kinematic representations of pop-up paper mechanisms. J. Mech. Robot. 1(2), 021009 (2009)Google Scholar
  21. 21.
    G. Wei, J.S. Dai, Geometry and kinematic analysis of an origami-evolved mechanism based on artmimetics, in Proceedings of the 2009 ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots ReMAR, pp. 450–455 (IEEE, Piscataway, 2009)Google Scholar
  22. 22.
    B.H. Hanna, S.P. Magleby, R.J. Lang, L.L. Howell, Force–deflection modeling for generalized origami waterbomb-base mechanisms. J. Appl. Mech. 82(8), 081001 (2015)Google Scholar
  23. 23.
    A. Yellowhorse, L.L. Howell, Creating rigid foldability to enable mobility of origami-inspired mechanisms. J. Mech. Robot. 8(1), 011011 (2016)Google Scholar
  24. 24.
    W. Gao, K. Ramani, R.J. Cipra, Reconfigurable foldable spatial mechanisms and robotic forms inspired by kinetogami, in Proceedings of the ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE, No. DETC2012–71403, pp. 1161–1168 (American Society of Mechanical Engineers, New York, 2012)Google Scholar
  25. 25.
    T. Evans, Deployable and foldable arrays of spatial mechanisms. Master’s thesis, Brigham Young University-Provo, 2015Google Scholar
  26. 26.
    Y.L. Kergosien, H. Gotoda, T.L. Kunii, Bending and creasing virtual paper. IEEE Comput. Graph. Appl. 14(1), 40–48 (1994)CrossRefGoogle Scholar
  27. 27.
    J. Solomon, E. Vouga, M. Wardetzky, E. Grinspun, Flexible developable surfaces. Comput. Graph. Forum 31(5), 1567–1576 (2012)CrossRefGoogle Scholar
  28. 28.
    H.-D. Hwang, S.-H. Yoon, Constructing developable surfaces by wrapping cones and cylinders. Comput. Aided Des. 58, 230–235 (2015)CrossRefGoogle Scholar
  29. 29.
    C. Schreck, D. Rohmer, S. Hahmann, M.-P. Cani, S. Jin, C.C.L. Wang, J.-F. Bloch, Nonsmooth developable geometry for interactively animating paper crumpling. ACM Trans. Graph. (TOG) 35(1), 10 (2015)Google Scholar
  30. 30.
    L. Zhu, T. Igarashi, J. Mitani, Soft folding. Comput. Graph. Forum 32(7), 167–176 (2013)CrossRefGoogle Scholar
  31. 31.
    E.A. Peraza Hernandez, D.J. Hartl, R.J. Malak Jr., D.C. Lagoudas, Origami-inspired active structures: a synthesis and review. Smart Mater. Struct. 23(9), 094001 (2014)Google Scholar
  32. 32.
    K. Fuchi, T.H. Ware, P.R. Buskohl, G.W. Reich, R.A. Vaia, T.J. White, J.J. Joo, Topology optimization for the design of folding liquid crystal elastomer actuators. Soft Matter 11(37), 7288–7295 (2015)CrossRefGoogle Scholar
  33. 33.
    K. Fuchi, P.R. Buskohl, T. Ware, R.A. Vaia, T.J. White, G.W. Reich, J.J. Joo, Inverse design of LCN films for origami applications using topology optimization, in Proceedings of the ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems SMASIS, No. SMASIS2014–7497, pp. V001T01A011 (American Society of Mechanical Engineers, New York, 2014)Google Scholar
  34. 34.
    Y. Liu, J.K. Boyles, J. Genzer, M.D. Dickey, Self-folding of polymer sheets using local light absorption. Soft Matter 8(6), 1764–1769 (2012)CrossRefGoogle Scholar
  35. 35.
    E.A. Peraza Hernandez, S. Hu, H.W. Kung, D. Hartl, E. Akleman, Towards building smart self-folding structures. Comput. Graph. 37(6), 730–742 (2013)CrossRefGoogle Scholar
  36. 36.
    E.A. Peraza Hernandez, D.J. Hartl, R.J. Malak Jr., Design and numerical analysis of an SMA mesh-based self-folding sheet. Smart Mater. Struct. 22(9), 094008 (2013)Google Scholar
  37. 37.
    E. Peraza Hernandez, D. Hartl, E. Galvan, R. Malak, Design and optimization of a shape memory alloy-based self-folding sheet. J. Mech. Des. 135(11), 111007 (2013)Google Scholar
  38. 38.
    E. Peraza Hernandez, D. Hartl, R. Malak, D. Lagoudas, Analysis and optimization of a shape memory alloy-based self-folding sheet considering material uncertainties, in Proceedings of the ASME 2015 Conference on Smart Materials, Adaptive Structures and Intelligent Systems SMASIS, No. SMASIS2015–9001, pp. V001T01A013 (American Society of Mechanical Engineers, New York, 2015)Google Scholar
  39. 39.
    S. Ahmed, Z. Ounaies, M. Frecker, Investigating the performance and properties of dielectric elastomer actuators as a potential means to actuate origami structures. Smart Mater. Struct. 23(9), 094003 (2014)Google Scholar
  40. 40.
    K. McGough, S. Ahmed, M. Frecker, Z. Ounaies, Finite element analysis and validation of dielectric elastomer actuators used for active origami. Smart Mater. Struct. 23(9), 094002 (2014)Google Scholar
  41. 41.
    L. Ionov, Nature-inspired stimuli-responsive self-folding materials, in Intelligent Stimuli-Responsive Materials: From Well-Defined Nanostructures to Applications, pp. 1–16 (2013)Google Scholar
  42. 42.
    C. Danielson, A. Mehrnezhad, A. YekrangSafakar, K. Park, Fabrication and characterization of self-folding thermoplastic sheets using unbalanced thermal shrinkage. Soft Matter 13, 4224–4230 (2017)CrossRefGoogle Scholar
  43. 43.
    Y. Liu, B. Shaw, M.D. Dickey, J. Genzer, Sequential self-folding of polymer sheets. Sci. Adv. 3(3), e1602417 (2017)Google Scholar
  44. 44.
    A.N. Pressley, Elementary Differential Geometry (Springer, London, 2010)CrossRefGoogle Scholar
  45. 45.
    N.J. Pagano, Exact solutions for composite laminates in cylindrical bending, J. Compos. Mater. 3(3), 398–411 (1969)CrossRefGoogle Scholar
  46. 46.
    P. Heyliger, S. Brooks, Exact solutions for laminated piezoelectric plates in cylindrical bending. J. Appl. Mech. 63(4), 903–910 (1996)CrossRefGoogle Scholar
  47. 47.
    P.V. Nimbolkar, I.M. Jain, Cylindrical bending of elastic plates. Procedia Mater. Sci. 10, 793–802 (2015)CrossRefGoogle Scholar
  48. 48.
    E.A. Peraza Hernandez, D.J. Hartl, D.C. Lagoudas, Kinematics of origami structures with smooth folds. J. Mech. Robot. 8(6), 061019 (2016)Google Scholar
  49. 49.
    B.A. Barsky, T.D. DeRose, Geometric Continuity of Parametric Curves (Computer Science Division, University of California, 1984)MATHGoogle Scholar
  50. 50.
    B.A. Barsky, R.H. Bartels, J.C. Beatty, An Introduction to Splines for Use in Computer Graphics and Geometric Modeling (M. Kaufmann Publishers, Los Altos, 1987)MATHGoogle Scholar
  51. 51.
    W. Cheney, D. Kincaid, Numerical Analysis. Mathematics of Scientific Computing (Brooks & Cole Publishing Company, Pacific Grove, 1996)Google Scholar
  52. 52.
    T. Tachi, Freeform variations of origami. J. Geom. Graph. 14(2), 203–215 (2010)MathSciNetMATHGoogle Scholar
  53. 53.
    S.-M. Belcastro, T.C. Hull, A mathematical model for non-flat origami, in Origami 3: Third International Meeting of Origami Mathematics, Science, and Education, pp. 39–51 (2002)Google Scholar
  54. 54.
    S.-M. Belcastro, T.C. Hull, Modelling the folding of paper into three dimensions using affine transformations. Linear Algebra Appl. 348(1–3), 273–282 (2002)MathSciNetCrossRefGoogle Scholar
  55. 55.
  56. 56.
    MathWorks, Filled 3-D polygons in MATLAB (fill3). http://www.mathworks.com/help/matlab/ref/fill3.html
  57. 57.
    MathWorks, Surface plot in MATLAB (surf). http://www.mathworks.com/help/matlab/ref/surf.html
  58. 58.
    T. Hull, Project Origami: Activities for Exploring Mathematics (CRC Press, Boca Raton, 2012)MATHGoogle Scholar
  59. 59.
    Y. Chen, R. Peng, Z. You, Origami of thick panels. Science 349(6246), 396–400 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Edwin A. Peraza Hernandez
    • 1
  • Darren J. Hartl
    • 1
  • Dimitris C. Lagoudas
    • 1
  1. 1.Department of Aerospace EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations