Advertisement

Active Origami pp 157-199 | Cite as

Tuck-Folding Method for the Design of Origami Structures with Creased Folds

  • Edwin A. Peraza Hernandez
  • Darren J. Hartl
  • Dimitris C. Lagoudas
Chapter

Abstract

Following the description of the unfolding polyhedra method for origami design in the previous chapter, here the focus switches to an origami design method applicable to a much wider spectrum of three-dimensional goal shapes. This chapter presents the tuck-folding method to solve the following origami design problem: given a goal shape represented as a polygonal mesh (termed as the goal mesh), find the shape and fold pattern of a planar sheet that can be folded to match the goal mesh, and a history of folding motion from the planar configuration of the sheet to the configuration that matches the goal mesh. The method generates a sheet comprised of the faces of the goal mesh in addition to introduced regions having two rigid faces and three creased folds. The creased folds are used to tuck-fold the added regions to form the shape of the goal mesh. We also address the implementation of the tuck-folding method in a computational environment.

References

  1. 1.
    R.J. Lang, A computational algorithm for origami design, in Proceedings of the Twelfth Annual Symposium on Computational Geometry (ACM, New York, 1996), pp. 98–105Google Scholar
  2. 2.
    T. Tachi, Origamizing polyhedral surfaces. IEEE Trans. Vis. Comput. Graph. 16(2), 298–311 (2010)MathSciNetCrossRefGoogle Scholar
  3. 3.
    E.D. Demaine, J. O’Rourke, Geometric Folding Algorithms (Cambridge University Press, Cambridge, 2007)CrossRefGoogle Scholar
  4. 4.
    E.A. Peraza Hernandez, D.J. Hartl, R.J. Malak Jr, D.C. Lagoudas, Origami-inspired active structures: a synthesis and review. Smart Mater. Struct. 23(9), 094001 (2014)CrossRefGoogle Scholar
  5. 5.
    C.C. Chu, C.K. Keong, The review on tessellation origami inspired folded structure, in AIP Conference Proceedings, vol. 1892 (AIP Publishing, 2017), p. 020025. https://doi.org/10.1063/1.5005665
  6. 6.
    W. Schlickenrieder, Nets of polyhedra. Master’s thesis, Technische Universität Berlin (1997)Google Scholar
  7. 7.
    M. Bern, E.D. Demaine, D. Eppstein, E. Kuo, A. Mantler, J. Snoeyink, Ununfoldable polyhedra with convex faces. Comput. Geom. 24(2), 51–62 (2003)MathSciNetCrossRefGoogle Scholar
  8. 8.
    T. Tachi, 3D origami design based on tucking molecule, in Origami 4, Fourth International Meeting of Origami Science, Mathematics, and Education (2009), pp. 259–272CrossRefGoogle Scholar
  9. 9.
    E.D. Demaine, T. Tachi, Origamizer: a practical algorithm for folding any polyhedron, in 33rd International Symposium on Computational Geometry (SoCG 2017). Leibniz International Proceedings in Informatics (LIPIcs), vol. 77 (Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, 2017), pp. 34:1–34:16Google Scholar
  10. 10.
    T. Tachi, Designing freeform origami tessellations by generalizing Resch’s patterns. J. Mech. Des. 135(11), 111006 (2013)CrossRefGoogle Scholar
  11. 11.
    R. Engelking, General Topology (Heldermann Verlag, Berlin, 1989)MATHGoogle Scholar
  12. 12.
    J. Erickson, S. Har-Peled. Optimally cutting a surface into a disk. Discret. Comput. Geom. 31(1), 37–59 (2004)MathSciNetCrossRefGoogle Scholar
  13. 13.
    T.K. Dey, H. Schipper, A new technique to compute polygonal schema for 2-manifolds with application to null-homotopy detection. Discret. Comput. Geom. 14(1), 93–110 (1995)MathSciNetCrossRefGoogle Scholar
  14. 14.
    F. Lazarus, M. Pocchiola, G. Vegter, A. Verroust, Computing a canonical polygonal schema of an orientable triangulated surface, in Proceedings of the Seventeenth Annual Symposium on Computational Geometry (ACM, New York, 2001), pp. 80–89MATHGoogle Scholar
  15. 15.
    E. C. de Verdiere, F. Lazarus, Optimal polygonal schema on an orientable surface, in 18th European Workshop on Computational Geometry (2002), pp. 627–636Google Scholar
  16. 16.
    J.M. Sullivan, Curvatures of smooth and discrete surfaces, in Discrete Differential Geometry (Springer, Berlin, 2008), pp. 175–188MATHGoogle Scholar
  17. 17.
    E. Akleman, J. Chen, Insight for practical subdivision modeling with discrete gauss-bonnet theorem, in International Conference on Geometric Modeling and Processing (Springer, Berlin, 2006), pp. 287–298MATHGoogle Scholar
  18. 18.
    G. Song, N.M. Amato, A motion-planning approach to folding: from paper craft to protein folding. IEEE Trans. Rob. Autom. 20(1), 60–71 (2004)CrossRefGoogle Scholar
  19. 19.
    Z. Xi, J.-M. Lien, Continuous unfolding of polyhedra – a motion planning approach, in Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, New York, 2015), pp. 3249–3254Google Scholar
  20. 20.
    N.M. Amato, K.A. Dill, G. Song, Using motion planning to map protein folding landscapes and analyze folding kinetics of known native structures. J. Comput. Biol. 10(3–4), 239–255 (2003)CrossRefGoogle Scholar
  21. 21.
    Z. Xi, J.-M. Lien, Plan folding motion for rigid self-folding machine via discrete domain sampling, in Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, New York, 2015), pp. 2938–2943Google Scholar
  22. 22.
    Z. Xi, J.-M. Lien, Folding and unfolding origami tessellation by reusing folding path, in Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, New York, 2015), pp. 4155–4160Google Scholar
  23. 23.
    Z. Xi, J.-M. Lien, Folding rigid origami with closure constraints, in Proceedings of the ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE (American Society of Mechanical Engineers, New York, 2014), pages No. DETC2014–35556, pp. V05BT08A052Google Scholar
  24. 24.
    C.R. Calladine, Theory of Shell Structures (Cambridge University Press, Cambridge, 1989)MATHGoogle Scholar
  25. 25.
    B. Grünbaum, Regular polyhedra–old and new. Aequationes Math. 16(1), 1–20 (1977)MathSciNetCrossRefGoogle Scholar
  26. 26.
    D. Sutton, Platonic & Archimedean Solids (Walker & Company, New York, 2002)Google Scholar
  27. 27.
    G. Turk, M. Levoy, The Stanford Bunny. The Stanford 3D Scanning Repository (1994). http://graphics.stanford.edu/data/3Dscanrep/

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Edwin A. Peraza Hernandez
    • 1
  • Darren J. Hartl
    • 1
  • Dimitris C. Lagoudas
    • 1
  1. 1.Department of Aerospace EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations