Advertisement

Introduction to Active Origami Structures

  • Edwin A. Peraza Hernandez
  • Darren J. Hartl
  • Dimitris C. Lagoudas

Abstract

Origami, the ancient art of paper folding, has inspired the design and functionality of engineering structures for decades. The underlying principles of origami are very general, it takes two-dimensional components that are easy to manufacture (sheets, plates, etc.) into three-dimensional structures. More recently, researchers have become interested in the use of active materials that convert various forms of energy into mechanical work to produce the desired folding behavior in origami structures. Such structures are termed active origami structures and are capable of folding and/or unfolding without the application of external mechanical loads but rather by the stimulus provided by a non-mechanical field (thermal, chemical, electromagnetic). This is advantageous for many areas including aerospace systems, underwater robotics, and small scale devices. In this chapter, we introduce the basic concepts and applications of origami structures in general and then focus on the description and classification of active origami structures. We finalize this chapter by reviewing existing design and simulation efforts applicable to origami structures for engineering applications.

References

  1. 1.
    E.D. Demaine, J. O’Rourke, Geometric Folding Algorithms (Cambridge University Press, Cambridge, 2007)Google Scholar
  2. 2.
    R.J. Lang, The science of origami. Phys. World 20(2), 30–31 (2007)Google Scholar
  3. 3.
    R.J. Lang, Origami: complexity in creases (again). Eng. Sci. 67(1), 5–19 (2004)Google Scholar
  4. 4.
    T. Tachi, Origamizing polyhedral surfaces. IEEE Trans. Vis. Comput. Graph. 16(2), 298–311 (2010)Google Scholar
  5. 5.
    Y. Liu, J.K. Boyles, J. Genzer, M.D. Dickey, Self-folding of polymer sheets using local light absorption. Soft Matter 8(6), 1764–1769 (2012)Google Scholar
  6. 6.
    S.M. Felton, M.T. Tolley, B.H. Shin, C.D. Onal, E.D. Demaine, D. Rus, R. Wood, Self-folding with shape memory composites. Soft Matter 9(32), 7688–7694 (2013)Google Scholar
  7. 7.
    L.J. Fei, D. Sujan, Origami theory and its applications: a literature review. Int. J. Soc. Hum. Sci. Eng. 7(1), 113–117 (2013)Google Scholar
  8. 8.
    B.A. Cipra, In the fold: origami meets mathematics. SIAM News 34(8), 1–4 (2001)Google Scholar
  9. 9.
    T. Tarnai, Origami in structural engineering, in Proceedings of the IASS Symposium 2001: International Symposium on Theory, Design and Realization of Shell and Spatial Structures, Nagoya, Japan, 9–13 Oct 2001, pp. 298–299Google Scholar
  10. 10.
    X. Zhou, H. Wang, Z. You, Design of three-dimensional origami structures based on a vertex approach. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 471(2181), 20150407 (2015)Google Scholar
  11. 11.
    D. Dureisseix, An overview of mechanisms and patterns with origami. Int. J. Space Struct. 27(1), 1–14 (2012)Google Scholar
  12. 12.
    E.D. Demaine, M.L. Demaine, V. Hart, G.N. Price, T. Tachi, (Non)existence of pleated folds: how paper folds between creases. Graphs Comb. 27(3), 377–397 (2011)Google Scholar
  13. 13.
    C. Cromvik, K. Eriksson, Airbag folding based on origami mathematics, in Origami 4: Fourth International Meeting of Origami Science, Mathematics, and Education, 2006, pp. 129–139Google Scholar
  14. 14.
    R. Hoffman, Airbag folding: origami design applied to an engineering problem, in Third International Meeting of Origami Science Math and Education, Asilomar, CA, 2001Google Scholar
  15. 15.
    S. Gray, N. Zeichner, V. Kumar, M. Yim, A simulator for origami-inspired self-reconfigurable robots, in Origami 5: Fifth International Meeting of Origami Science, Mathematics, and Education (CRC Press, Boca Raton, 2011), pp. 323–333Google Scholar
  16. 16.
    W. Gao, K. Ramani, R. J. Cipra, T. Siegmund, Kinetogami: a reconfigurable, combinatorial, and printable sheet folding. J. Mech. Des. 135(11), 111009 (2013)Google Scholar
  17. 17.
    S. Pandey, E. Gultepe, D.H. Gracias. Origami inspired self-assembly of patterned and reconfigurable particles. J. Vis. Exp. (72), e50022 (2013)Google Scholar
  18. 18.
    N.S. Shaar, G. Barbastathis, C. Livermore, Integrated folding, alignment, and latching for reconfigurable origami microelectromechanical systems. J. Microelectromech. Syst. 24(4), 1043–1051 (2015)Google Scholar
  19. 19.
    E.T. Filipov, G.H. Paulino, T. Tachi, Origami tubes with reconfigurable polygonal cross-sections. Proc. R. Soc. A Math. Phys. Eng. Sci. 472(2185), 20150607 (2016)Google Scholar
  20. 20.
    S. Yao, X. Liu, S.V. Georgakopoulos, M.M. Tentzeris, A novel reconfigurable origami spring antenna, in Proceedings of the 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI) (IEEE, Piscataway, 2014), pp. 374–375Google Scholar
  21. 21.
    Z. You, Folding structures out of flat materials. Science 345(6197), 623–624 (2014)Google Scholar
  22. 22.
    C.D. Saintsing, B.S. Cook, M.M. Tentzeris, An origami inspired reconfigurable spiral antenna, in Proceedings of the ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE, Paper No. DETC2014-35353 (American Society of Mechanical Engineers, New York, 2014), p. V05BT08A050Google Scholar
  23. 23.
    N. Bassik, G.M. Stern, D.H. Gracias, Microassembly based on hands free origami with bidirectional curvature. Appl. Phys. Lett. 95(9), 091901 (2009)Google Scholar
  24. 24.
    S. Mueller, B. Kruck, P. Baudisch, LaserOrigami: laser-cutting 3D objects, in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (ACM, New York, 2013), pp. 2585–2592Google Scholar
  25. 25.
    B. Shin, S.M. Felton, M.T. Tolley, R.J. Wood, Self-assembling sensors for printable machines, in Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, Piscataway, 2014), pp. 4417–4422Google Scholar
  26. 26.
    J. Morgan, S.P. Magleby, R.J. Lang, L.L. Howell, A preliminary process for understanding origami-adapted design, in Proceedings of the ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE, Paper No. DETC2015-47559 (American Society of Mechanical Engineers, New York, 2015), p. V05BT08A053Google Scholar
  27. 27.
    B. An, S. Miyashita, M.T. Tolley, D.M. Aukes, L. Meeker, E.D. Demaine, M.L. Demaine, R.J. Wood, D. Rus, An end-to-end approach to making self-folded 3D surface shapes by uniform heating, in Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, Piscataway, 2014), pp. 1466–1473Google Scholar
  28. 28.
    A. Piqué, S.A. Mathews, N.A. Charipar, A.J. Birnbaum, Laser origami: a new technique for assembling 3D microstructures, in Proceedings of SPIE, vol. 8244 (International Society for Optics and Photonics, San Diego, 2012), p. 82440B-82440B-7Google Scholar
  29. 29.
    P.W.K. Rothemund, Folding DNA to create nanoscale shapes and patterns. Nature 440(7082), 297–302 (2006)Google Scholar
  30. 30.
    T. Tørring, N.V. Voigt, J. Nangreave, H. Yan, K.V. Gothelf, DNA origami: a quantum leap for self-assembly of complex structures. Chem. Soc. Rev. 40(12), 5636–5646 (2011)Google Scholar
  31. 31.
    J. Nangreave, D. Han, Y. Liu, H. Yan, DNA origami: a history and current perspective. Curr. Opin. Chem. Biol. 14(5), 608–615 (2010)Google Scholar
  32. 32.
    A. Edwards, H. Yan, DNA origami, in Nucleic Acid Nanotechnology (Springer, Berlin, 2014), pp. 93–133Google Scholar
  33. 33.
    A.E. Marras, L. Zhou, H.-J. Su, C.E. Castro, Programmable motion of DNA origami mechanisms. Proc. Natl. Acad. Sci. 112(3), 713–718 (2015)Google Scholar
  34. 34.
    C. Cao, Y. Feng, J. Zang, G.P. López, X. Zhao, Tunable lotus-leaf and rose-petal effects via graphene paper origami. Extreme Mech. Lett. 4, 18–25 (2015)Google Scholar
  35. 35.
    K. Miura, Map fold a la Miura style, its physical characteristics and application to the space science, in Research of Pattern Formation, ed. by R. Takaki (KTK Scientific Publishers, Tokyo, 1994), pp. 77–90Google Scholar
  36. 36.
    R.J. Lang, Computational origami: from flapping birds to space telescopes, in Proceedings of the Twenty-fifth Annual Symposium on Computational Geometry (ACM, New York, 2009), pp. 159–162Google Scholar
  37. 37.
    L. Wilson, S. Pellegrino, R. Danner, Origami sunshield concepts for space telescopes, in Proceedings of the 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2013, pp. 2013–1594Google Scholar
  38. 38.
    D. Pohl, W.D. Wolpert, Engineered spacecraft deployables influenced by nature. in Proceedings of SPIE, vol. 7424, 2009, p. 742408-742408-9Google Scholar
  39. 39.
    S.A. Zirbel, R.J. Lang, M.W. Thomson, D.A. Sigel, P.E. Walkemeyer, B.P. Trease, S.P. Magleby, L.L. Howell, Accommodating thickness in origami-based deployable arrays. J. Mech. Des. 135(11), 111005 (2013)Google Scholar
  40. 40.
    Y. Jung, J. Kim, Flutter speed estimation for folding wing system, in Proceedings of the 18th International Conference on Composite Materials, 2011Google Scholar
  41. 41.
    M.P. Snyder, B. Sanders, F.E. Eastep, G.J. Frank, Vibration and flutter characteristics of a folding wing. J. Aircr. 46(3), 791–799 (2009)Google Scholar
  42. 42.
    D.H. Lee, T.A. Weisshaar, Aeroelastic studies on a folding wing configuration, in 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, vol. 1996, 2005, pp. 1–13Google Scholar
  43. 43.
    G. Bunget, S. Seelecke, BATMAV: a biologically inspired micro air vehicle for flapping flight: kinematic modeling, in Proceedings of the 15th International Symposium on Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring (International Society for Optics and Photonics, San Diego, 2008), p. 69282FGoogle Scholar
  44. 44.
    G. Bunget, S. Seelecke, BATMAV: a 2-DOF bio-inspired flapping flight platform, in Proceedings of the SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring (International Society for Optics and Photonics, San Diego, 2010), p. 76433BGoogle Scholar
  45. 45.
    P.E.I. Pounds, Paper plane: towards disposable low-cost folded cellulose-substrate UAVs, in 2012 Australasian Conference on Robotics and Automation (Australian Robotics and Automation Association (ARAA), Sydney, 2012)Google Scholar
  46. 46.
    Q.-T. Truong, B.W. Argyoganendro, H.C. Park, Design and demonstration of insect mimicking foldable artificial wing using four-bar linkage systems. J. Bionic Eng. 11(3), 449–458 (2014)Google Scholar
  47. 47.
    S.-M. Baek, D.-Y. Lee, K.-J. Cho, Curved compliant facet origami-based self-deployable gliding wing module for jump-gliding, in Proceedings of the ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Paper No. DETC2016-60543 (American Society of Mechanical Engineers, New York, 2016), p. V05BT07A028Google Scholar
  48. 48.
    S. Miyashita, S. Guitron, M. Ludersdorfer, C.R. Sung, D. Rus, An untethered miniature origami robot that self-folds, walks, swims, and degrades, in Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, Piscataway, 2015), pp. 1490–1496Google Scholar
  49. 49.
    D.-Y. Lee, J.-S. Kim, S.-R. Kim, J.-S. Koh, K.-J. Cho, The deformable wheel robot using magic-ball origami structure, in Proceedings of the ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE, Paper No. DETC2013-13016 (American Society of Mechanical Engineers, New York, 2013), p. V06BT07A040Google Scholar
  50. 50.
    P.J. White, S. Latscha, S. Schlaefer, M. Yim, Dielectric elastomer bender actuator applied to modular robotics, in Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, Piscataway, 2011), pp. 408–413Google Scholar
  51. 51.
    A.M. Hoover, R.S. Fearing, Fast scale prototyping for folded millirobots, in Proceedings of the 2008 IEEE International Conference on Robotics and Automation ICRA 2008 (IEEE, Pitscataway, 2008), pp. 886–892Google Scholar
  52. 52.
    E. Vander Hoff, D. Jeong, K. Lee, OrigamiBot-I: a thread-actuated origami robot for manipulation and locomotion, in Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, Piscataway, 2014), pp. 1421–1426Google Scholar
  53. 53.
    Z. Zhakypov, M. Falahi, M. Shah, J. Paik, The design and control of the multi-modal locomotion origami robot, Tribot, in Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, Piscataway, 2015), pp. 4349–4355Google Scholar
  54. 54.
    C.D. Onal, M.T. Tolley, R.J. Wood, D. Rus, Origami-inspired printed robots. IEEE/ASME Trans. Mechatron. 20(5), 2214–2221 (2015)Google Scholar
  55. 55.
    K. Zhang, C. Qiu, J.S. Dai, An extensible continuum robot with integrated origami parallel modules. J. Mech. Robot. 8(3), 031010 (2016)Google Scholar
  56. 56.
    H. Shigemune, S. Maeda, Y. Hara, N. Hosoya, S. Hashimoto, Origami robot: a self-folding paper robot with an electrothermal actuator created by printing. IEEE/ASME Trans. Mechatron. 21(6), 1–1 (2016)Google Scholar
  57. 57.
    R. Yan, M. Luo, Z. Wan, Y. Qin, J. Santoso, E. Skorina, C. Onal, OriSnake: design, fabrication and experimental analysis of a 3-D origami snake robot. IEEE Robot. Autom. Lett. 3(3), 1993–1999 (2018)Google Scholar
  58. 58.
    A. Pagano, T. Yan, B. Chien, A. Wissa, S. Tawfick, A crawling robot driven by multi-stable origami. Smart Mater. Struct. 26(9), 094007 (2017)Google Scholar
  59. 59.
    S. Felton, M. Tolley, E. Demaine, D. Rus, R. Wood, A method for building self-folding machines. Science 345(6197), 644–646 (2014)Google Scholar
  60. 60.
    D.-Y. Lee, S.-R. Kim, J.-S. Kim, J.-J. Park, K.-J. Cho, Origami wheel transformer: a variable-diameter wheel drive robot using an origami structure. Soft Robot. 4(2), 163–180 (2017)Google Scholar
  61. 61.
    K. Kuribayashi, K. Tsuchiya, Z. You, D. Tomus, M. Umemoto, T. Ito, M. Sasaki, Self-deployable origami stent grafts as a biomedical application of Ni-rich TiNi shape memory alloy foil. Mater. Sci. Eng. A 419(1–2), 131–137 (2006)Google Scholar
  62. 62.
    C.L. Randall, E. Gultepe, D.H. Gracias, Self-folding devices and materials for biomedical applications. Trends Biotechnol. 30(3), 138–146 (2012)Google Scholar
  63. 63.
    R. Fernandes, D.H. Gracias, Self-folding polymeric containers for encapsulation and delivery of drugs. Adv. Drug Deliv. Rev. 64(14), 1579–1589 (2012)Google Scholar
  64. 64.
    Y. Wang, L. Ge, P. Wang, M. Yan, J. Yu, S. Ge, A three-dimensional origami-based immuno-biofuel cell for self-powered, low-cost, and sensitive point-of-care testing. Chem. Commun. 50(16), 1947–1949 (2014)Google Scholar
  65. 65.
    K. Kuribayashi, S. Takeuchi, Foldable Parylene origami sheets covered with cells: toward applications in bio-implantable devices, in Origami 5: Fifth International Meeting of Origami Science, Mathematics, and Education (CRC Press, Boca Raton, 2011), p. 385Google Scholar
  66. 66.
    B.J. Edmondson, L.A. Bowen, C.L. Grames, S.P. Magleby, L.L. Howell, T.C. Bateman, Oriceps: origami-inspired forceps, in Proceedings of the ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems SMASIS, Paper No. SMASIS2013-3299 (American Society of Mechanical Engineers, New York, 2013), p. V001T01A027Google Scholar
  67. 67.
    A. Taylor, T. Slutzky, L. Feuerman, M. Fok, Z.T.H. Tse, Origami endoscope design for MRI-guided therapy, in 2017 Design of Medical Devices Conference, Paper No. DMD2017-3352 (American Society of Mechanical Engineers, New York, 2017), p. V001T08A006Google Scholar
  68. 68.
    D.C. Lagoudas (ed.), Shape Memory Alloys: Modeling and Engineering Applications (Springer, New York, 2008)Google Scholar
  69. 69.
    A.P. Thrall, C.P. Quaglia, Accordion shelters: a historical review of origami-like deployable shelters developed by the US military. Eng. Struct. 59, 686–692 (2014)Google Scholar
  70. 70.
    F.J. Martínez-Martín, A.P. Thrall, Honeycomb core sandwich panels for origami-inspired deployable shelters: multi-objective optimization for minimum weight and maximum energy efficiency. Eng. Struct. 69, 158–167 (2014)Google Scholar
  71. 71.
    C.P. Quagli, Z.C. Ballard, A.P. Thrall, Parametric modelling of an air-liftable origami-inspired deployable shelter with a novel erection strategy. Mobile Rapidly Assembled Struct. IV 136, 23 (2014)Google Scholar
  72. 72.
    C.P. Quaglia, N. Yu, A.P. Thrall, S. Paolucci, Balancing energy efficiency and structural performance through multi-objective shape optimization: case study of a rapidly deployable origami-inspired shelter. Energy Build. 82, 733–745 (2014)Google Scholar
  73. 73.
    C.P. Quaglia, A.J. Dascanio, A.P. Thrall, Bascule shelters: a novel erection strategy for origami-inspired deployable structures. Eng. Struct. 75, 276–287 (2014)Google Scholar
  74. 74.
    M.D. Tumbeva, Y. Wang, M.M. Sowar, A.J. Dascanio, A.P. Thrall, Quilt pattern inspired engineering: efficient manufacturing of shelter topologies. Autom. Constr. 63, 57–65 (2016)Google Scholar
  75. 75.
    T. Tachi, Geometric considerations for the design of rigid origami structures, in Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium, vol. 12, 2010, pp. 458–460Google Scholar
  76. 76.
    T. Hollingshead, BYU engineers built a bulletproof origami shield to protect law enforcement. https://news.byu.edu/news/byu-researchers-built-bullet-proof-origami-shield-protect-law-enforcement
  77. 77.
    Y. Shi, F. Zhang, K. Nan, X. Wang, J. Wang, Y. Zhang, Y. Zhang, H. Luan, K.-C. Hwang, Y. Huang, J.A. Rogers, Y. Zhang, Plasticity-induced origami for assembly of three dimensional metallic structures guided by compressive buckling. Extreme Mech. Lett. 11, 105–110 (2017)Google Scholar
  78. 78.
    Z. Yan, F. Zhang, J. Wang, F. Liu, X. Guo, K. Nan, Q. Lin, M. Gao, D. Xiao, Y. Shi, Y. Qiu, H. Luan, J.H. Kim, Y. Wang, H. Luo, M. Han, Y. Huang, Y. Zhang, J.A. Rogers, Controlled mechanical buckling for origami-inspired construction of 3D microstructures in advanced materials. Adv. Funct. Mater. 26(16), 2629–2639 (2016)Google Scholar
  79. 79.
    Y. Zhang, Z. Yan, K. Nan, D. Xiao, Y. Liu, H. Luan, H. Fu, X. Wang, Q. Yang, J. Wang, W. Ren, H. Si, F. Liu, L. Yang, H. Li, J. Wang, X. Guo, H. Luo, L. Wang, Y. Huang, J.A. Rogers, A mechanically driven form of Kirigami as a route to 3D mesostructures in micro/nanomembranes. Proc. Natl. Acad. Sci. 112(38), 11757–11764 (2015)Google Scholar
  80. 80.
    B. Saccà, C.M. Niemeyer, DNA origami: the art of folding DNA. Angew. Chem. Int. Ed. 51(1), 58–66 (2012)Google Scholar
  81. 81.
    J.T. Early, R. Hyde, R.L. Baron, Twenty-meter space telescope based on diffractive Fresnel lens, in Proceedings of the SPIE’s 48th Annual Meeting, Optical Science and Technology (International Society for Optics and Photonics, San Diego, 2004), pp. 148–156Google Scholar
  82. 82.
    J.M. Zanardi Ocampo, P.O. Vaccaro, K. Kubota, T. Fleischmann, T.-S. Wang, T. Aida, T. Ohnishi, A. Sugimura, R. Izumoto, M. Hosoda, et al. Characterization of GaAs-based micro-origami mirrors by optical actuation. Microelectron. Eng. 73, 429–434 (2004)Google Scholar
  83. 83.
    Q. Cheng, Z. Song, T. Ma, B.B. Smith, R. Tang, H. Yu, H. Jiang, C.K. Chan, Folding paper-based lithium-ion batteries for higher areal energy densities. Nano Lett. 13(10), 4969–4974 (2013)Google Scholar
  84. 84.
    Z. Song, T. Ma, R. Tang, Q. Cheng, X. Wang, D. Krishnaraju, R. Panat, C.K. Chan, H. Yu, H. Jiang, Origami lithium-ion batteries. Nat. Commun. 5, Article no. 3140 (2014)Google Scholar
  85. 85.
    I. Nam, G.-P. Kim, S. Park, J.W. Han, J. Yi, All-solid-state, origami-type foldable supercapacitor chips with integrated series circuit analogues. Energy Environ. Sci. 7(3), 1095–1102 (2014)Google Scholar
  86. 86.
    S. Miyashita, L. Meeker, M.T. Tolley, R.J. Wood, D. Rus, Self-folding miniature elastic electric devices. Smart Mater. Struct. 23(9), 094005 (2014)Google Scholar
  87. 87.
    R. Tang, H. Huang, H. Tu, H. Liang, M. Liang, Z. Song, Y. Xu, H. Jiang, H. Yu, Origami-enabled deformable silicon solar cells. Appl. Phys. Lett. 104(8), 083501 (2014)Google Scholar
  88. 88.
    J.W. Hu, Z.P. Wu, S.W. Zhong, W.B. Zhang, S. Suresh, A. Mehta, N. Koratkar, Folding insensitive, high energy density lithium-ion battery featuring carbon nanotube current collectors. Carbon 87, 292–298 (2015)Google Scholar
  89. 89.
    S. Fischer, K. Drechsler, S. Kilchert, A. Johnson, Mechanical tests for foldcore base material properties. Compos. Part A Appl. Sci. Manuf. 40(12), 1941–1952 (2009)Google Scholar
  90. 90.
    S. Heimbs, J. Cichosz, M. Klaus, S. Kilchert, A.F. Johnson, Sandwich structures with textile-reinforced composite foldcores under impact loads. Compos. Struct. 92(6), 1485 –1497 (2010)Google Scholar
  91. 91.
    S. Heimbs, S. Kilchert, S. Fischer, M. Klaus, E. Baranger, Sandwich structures with folded core: mechanical modeling and impact simulations, in SAMPE Europe International Conference, Paris, 2009, pp. 324–331Google Scholar
  92. 92.
    M. Klaus, H.-G. Reimerdes , Numerical investigation of different strength after impact test procedures, in Proceedings of the IMPLAST 2010 conference, Providence, RI, 2010Google Scholar
  93. 93.
    A.F. Johnson, Novel hybrid structural core sandwich materials for aircraft applications, in Proceedings of the 11th Euro-Japanese Symposium on Composite Materials, Porto, Portugal, 9–11 September 2008Google Scholar
  94. 94.
    M. Grzeschik, Performance of foldcores mechanical properties and testing, in Proceedings of the ASME 2013 International Design Engineering Technical Conference and Computers and Information in Engineering Conference IDETC/CIE, Paper No. DETC2013-13324, Portland, OR, 2013 (American Society of Mechanical Engineers, New York, 2013), p. V06BT07A042Google Scholar
  95. 95.
    J.M. Gattas, Z. You, Quasi-static impact response of alternative origami-core sandwich panels, in Proceedings of the ASME 2013 International Design Engineering Technical Conference and Computers and Information in Engineering Conference IDETC/CIE, Paper No. DETC2013-12681, Portland, OR, 2013 (American Society of Mechanical Engineers, New York, 2013), p. V06BT07A032Google Scholar
  96. 96.
    S. Fischer, Realistic FE simulation of foldcore sandwich structures.Int. J. Mech. Mater. Eng. 10(1), 1–11 (2015)Google Scholar
  97. 97.
    R. Sturm, S. Fischer, Virtual design method for controlled failure in foldcore sandwich panels. Appl. Compos. Mater. 22(6), 791–803 (2015)Google Scholar
  98. 98.
    R.K. Fathers, J.M. Gattas, Z. You, Quasi-static crushing of eggbox, cube, and modified cube foldcore sandwich structures. Int. J. Mech. Sci. 101–102, 421–428 (2015)Google Scholar
  99. 99.
    J.M. Gattas, Z. You, The behaviour of curved-crease foldcores under low-velocity impact loads. Int. J. Solids Struct. 53, 80–91 (2015)Google Scholar
  100. 100.
    J. Ma, Z. You, The origami crash box in Origami 5: Fifth International Meeting of Origami Science, Mathematics, and Education, 2011, pp. 277–290Google Scholar
  101. 101.
    J. Ma, Z. You, A novel origami crash box with varying profiles, in Proceedings of the ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE, Paper No. DETC2013-13495 (American Society of Mechanical Engineers, New York, 2013), p. V06BT07A048Google Scholar
  102. 102.
    S.S. Tolman, I.L. Delimont, L.L. Howell, D.T. Fullwood, Material selection for elastic energy absorption in origami-inspired compliant corrugations. Smart Mater. Struct. 23(9), 094010 (2014)Google Scholar
  103. 103.
    J. Ma, Z. You, Energy absorption of thin-walled square tubes with a prefolded origami pattern–Part I: geometry and numerical simulation. J. Appl. Mech. 81(1), 011003 (2014)Google Scholar
  104. 104.
    J. Ma, J. Song, Y. Chen, An origami-inspired structure with graded stiffness. Int. J. Mech. Sci. 136, 134–142 (2018)Google Scholar
  105. 105.
    K. Yang, S. Xu, S. Zhou, Y.M. Xie, Multi-objective optimization of multi-cell tubes with origami patterns for energy absorption. Thin Walled Struct. 123, 100–113 (2018)Google Scholar
  106. 106.
    M. Schenk, S.D. Guest, Geometry of Miura-folded metamaterials. Proc. Natl. Acad. Sci. 110(9), 3276–3281 (2013)Google Scholar
  107. 107.
    K. Fuchi, A.R. Diaz, E.J. Rothwell, R.O. Ouedraogo, J. Tang, An origami tunable metamaterial. J. Appl. Phys. 111(8), 084905 (2012)Google Scholar
  108. 108.
    J.L. Silverberg, A.A. Evans, L. McLeod, R.C. Hayward, T. Hull, C.D. Santangelo, I. Cohen, Using origami design principles to fold reprogrammable mechanical metamaterials. Science 345(6197), 647–650 (2014)Google Scholar
  109. 109.
    E.T. Filipov, T. Tachi, G.H. Paulino, Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials. Proc. Natl. Acad. Sci. 112(40), 12321–12326 (2015)Google Scholar
  110. 110.
    V. Brunck, F. Lechenault, A. Reid, M. Adda-Bedia, Elastic theory of origami-based metamaterials. Phys. Rev. E 93(3), 033005 (2016)Google Scholar
  111. 111.
    X. Zhou, S. Zang, Z. You, Origami mechanical metamaterials based on the Miura-derivative fold patterns. Proc. R. Soc. A Math. Phys. Eng. Sci. 472(2191), 20160361 (2016)Google Scholar
  112. 112.
    Y. Shen, Y. Pang, J. Wang, H. Ma, Z. Pei, S. Qu, Origami-inspired metamaterial absorbers for improving the larger-incident angle absorption. J. Phys. D Appl. Phys. 48(44), 445008 (2015)Google Scholar
  113. 113.
    W. Jiang, H. Ma, M. Feng, L. Yan, J. Wang, J. Wang, S. Qu, Origami-inspired building block and parametric design for mechanical metamaterials. J. Phys. D Appl. Phys. 49(31), 315302 (2016)Google Scholar
  114. 114.
    M.A.E. Kshad, H.E. Naguib, Characterization of origami shape memory metamaterials (SMMM) made of bio-polymer blends, in Proceedings of SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring (International Society for Optics and Photonics, San Diego, 2016), p. 98000HGoogle Scholar
  115. 115.
    E. Boatti, N. Vasios, K. Bertoldi, Origami metamaterials for tunable thermal expansion. Adv. Mater. 29(26), 1700360 (2017)Google Scholar
  116. 116.
    Z. Wang, L. Jing, K. Yao, Y. Yang, B. Zheng, C.M. Soukoulis, H. Chen, Y. Liu, Origami-based reconfigurable metamaterials for tunable chirality. Adv. Mater. 29(27), 1700412 (2017)Google Scholar
  117. 117.
    Y. Zhao, M.S. Nandra, Y.C. Tai, A MEMS intraocular origami coil, in Proceedings of the 16th International Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS) (IEEE, Piscataway, 2011), pp. 2172–2175Google Scholar
  118. 118.
    C. Yoon, R. Xiao, J. Park, J. Cha, T.D. Nguyen, D.H. Gracias, Functional stimuli responsive hydrogel devices by self-folding. Smart Mater. Struct. 23(9), 094008 (2014)Google Scholar
  119. 119.
    A. Vorob’ev, P. Vaccaro, K. Kubota, S. Saravanan, T. Aida, Array of micromachined components fabricated using “micro-origami” method. Jpn. J. Appl. Phys. 42(6S), 4024 (2003)Google Scholar
  120. 120.
    J.M.Z. Ocampo, P.O. Vaccaro, T. Fleischmann, T.-S. Wang, K. Kubota, T. Aida, T. Ohnishi, A. Sugimura, R. Izumoto, M. Hosoda, S. Nashima, Optical actuation of micromirrors fabricated by the micro-origami technique. Appl. Phys. Lett. 83(18), 3647–3649 (2003)Google Scholar
  121. 121.
    T.G. Leong, A.M. Zarafshar, D.H. Gracias, Three-dimensional fabrication at small size scales. Small 6(7), 792–806 (2010)Google Scholar
  122. 122.
    J. Rogers, Y. Huang, O.G. Schmidt, D.H. Gracias, Origami MEMS and NEMS. MRS Bull. 41(2), 123–129 (2016)Google Scholar
  123. 123.
    A. Efimovskaya, D. Senkal, A.M. Shkel, Miniature origami-like folded MEMS TIMU, in Proceedings of Transducers-2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS) (IEEE, Piscataway, 2015), pp. 584–587Google Scholar
  124. 124.
    Y. Morikawa, S. Yamagiwa, H. Sawahata, M. Ishida, T. Kawano, An origami-inspired ultrastretchable bioprobe film device, in Proceedings of the 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, Piscataway, 2016), pp. 149–152Google Scholar
  125. 125.
    G.J. Hayes, Y. Liu, J. Genzer, G. Lazzi, M.D. Dickey, Self-folding origami microstrip antennas. IEEE Trans. Antennas Propag. 62(10), 5416–5419 (2014)Google Scholar
  126. 126.
    A. Lebée, From folds to structures, a review. Int. J. Space Struct. 30(2), 55–74 (2015)Google Scholar
  127. 127.
    N. Turner, B. Goodwine, M. Sen, A review of origami applications in mechanical engineering. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. (2015). https://doi.org/10.1177/0954406215597713
  128. 128.
    T. Hull (ed.), Origami 3: Third International Meeting of Origami Science, Mathematics, and Education (AK Peters, Natick, 2002)Google Scholar
  129. 129.
    R. Lang (ed.), Origami 4: Fourth International Meeting of Origami Science, Mathematics, and Education (AK Peters, Natick, 2009)Google Scholar
  130. 130.
    P. Wang-Iverson, R. Lang, M. Yim (eds.), Origami 5: Fifth International Meeting of Origami Science, Mathematics, and Education (CRC Press, Boca Raton, 2011)Google Scholar
  131. 131.
    K. Miura, T. Kawasaki, T. Tachi, R. Uehara, R. Lang, P. Wang-Iverson (eds.), Origami 6: Sixth International Meeting of Origami Science, Mathematics, and Education (American Mathematical Society, Providence, 2011)Google Scholar
  132. 132.
    E.A. Peraza Hernandez, D.J. Hartl, R.J. Malak Jr, D.C. Lagoudas, Origami-inspired active structures: a synthesis and review. Smart Mater. Struct. 23(9), 094001 (2014)Google Scholar
  133. 133.
    L. Ionov, Soft microorigami: self-folding polymer films. Soft Matter 7(15), 6786–6791 (2011)Google Scholar
  134. 134.
    C. Lauff, T.W. Simpson, M. Frecker, Z. Ounaies, S. Ahmed, P. von Lockette, R. Strzelec, R. Sheridan, J.-M. Lien, Differentiating bending from folding in origami engineering using active materials, in Proceedings of the ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE, Paper No. DETC2014-34702 (American Society of Mechanical Engineers, New York, 2014), p. V05BT08A040Google Scholar
  135. 135.
    S.M. Felton, K.P. Becker, D.M. Aukes, R.J. Wood, Self-folding with shape memory composites at the millimeter scale. J. Micromech. Microeng. 25(8), 085004 (2015)Google Scholar
  136. 136.
    P.K. Kumar, D.C. Lagoudas, Introduction to shape memory alloys, in Shape Memory Alloys: Modeling and Engineering Applications (Springer, New York, 2008), pp. 1–51Google Scholar
  137. 137.
    K. Otsuka, C.M. Wayman, Shape Memory Materials (Cambridge University Press, Cambridge, 1999)Google Scholar
  138. 138.
    M.V. Gandhi, B.D. Thompson, Smart Materials and Structures (Springer, London, 1992)Google Scholar
  139. 139.
    R.C. Smith, Smart Material Systems: Model Development (SIAM, Philadelphia, 2005)Google Scholar
  140. 140.
    D.J. Leo, Engineering Analysis of Smart Material Systems (Wiley, Hoboken, 2007)Google Scholar
  141. 141.
    Y. Liu, K. Gall, M.L. Dunn, A.R. Greenberg, J. Diani, Thermomechanics of shape memory polymers: uniaxial experiments and constitutive modeling. Int. J. Plast. 22(2), 279–313 (2006)Google Scholar
  142. 142.
    A. Lendlein, S. Kelch, Shape-memory polymers. Angew. Chem. Int. Ed. 41(12), 2034–2057 (2002)Google Scholar
  143. 143.
    H. Tobushi, T. Hashimoto, S. Hayashi, E. Yamada, Thermomechanical constitutive modeling in shape memory polymer of polyurethane series. J. Intell. Mater. Syst. Struct. 8(8), 711–718 (1997)Google Scholar
  144. 144.
    C. Liu, H. Qin, P.T. Mather, Review of progress in shape-memory polymers. J. Mater. Chem. 17(16), 1543–1558 (2007)Google Scholar
  145. 145.
    L. Ionov, Hydrogel-based actuators: possibilities and limitations. Mater. Today 17(10), 494–503 (2014)Google Scholar
  146. 146.
    K. Deligkaris, T.S. Tadele, W. Olthuis, A. van den Berg, Hydrogel-based devices for biomedical applications. Sens. Actuators B Chem. 147(2), 765–774 (2010)Google Scholar
  147. 147.
    A. O’Halloran, F. O’malley, P. McHugh, A review on dielectric elastomer actuators, technology, applications, and challenges. J. Appl. Phys. 104(7), 9 (2008)Google Scholar
  148. 148.
    M. Farshad, A. Benine, Magnetoactive elastomer composites. Polym. Test. 23(3), 347–353 (2004)Google Scholar
  149. 149.
    L. Bowen, K. Springsteen, H. Feldstein, M. Frecker, T.W. Simpson, P. von Lockette, Development and validation of a dynamic model of magneto-active elastomer actuation of the origami waterbomb base. J. Mech. Robot. 7(1), 011010 (2015)Google Scholar
  150. 150.
    E. Hawkes, B. An, N.M. Benbernou, H. Tanaka, S. Kim, E.D. Demaine, D. Rus, R.J. Wood, Programmable matter by folding. Proc. Natl. Acad. Sci. 107(28), 12441–12445 (2010)Google Scholar
  151. 151.
    J. Paik, B. An, D. Rus, R.J. Wood, Robotic origamis: self-morphing modular robots, in Proceedings of the 2nd International Conference on Morphological Computation ICMC, EPFL-CONF-206919, Venice, 2012Google Scholar
  152. 152.
    Z. You, K. Kuribayashi, A novel origami stent, in Proceedings of Summer Bioengineering Conference, Key Biscayne, 2003, pp. 0257–0258Google Scholar
  153. 153.
    K. Kuribayashi, A novel foldable stent graft. Thesis, University of Oxford, 2004Google Scholar
  154. 154.
    C.D. Onal, R.J. Wood, D. Rus, An origami-inspired approach to worm robots. IEEE/ASME Trans. Mechatron. 18(2), 430–438 (2013)Google Scholar
  155. 155.
    C.D. Onal, R.J. Wood, D. Rus, Towards printable robotics: origami-inspired planar fabrication of three-dimensional mechanisms, in Proceedings of the 2011 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, Piscataway, 2011), pp. 4608–4613Google Scholar
  156. 156.
    D.-Y. Lee, J.-S. Kim, S.-R. Kim, J.-J. Park, K.-J. Cho, Design of deformable-wheeled robot based on origami structure with shape memory alloy coil spring, in Proceedings of the 10th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI) (IEEE, Piscataway, 2013), p. 120Google Scholar
  157. 157.
    M.T. Tolley, S.M. Felton, S. Miyashita, D. Aukes, D. Rus, R.J. Wood, Self-folding origami: shape memory composites activated by uniform heating. Smart Mater. Struct. 23(9), 094006 (2014)Google Scholar
  158. 158.
    M.T. Tolley, S.M. Felton, S. Miyashita, L. Xu, B. Shin, M. Zhou, D. Rus, R.J. Wood, Self-folding shape memory laminates for automated fabrication, in Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, Piscataway, 2013), pp. 4931–4936Google Scholar
  159. 159.
    S.M. Felton, M.T. Tolley, C.D. Onal, D. Rus, R.J. Wood, Robot self-assembly by folding: a printed inchworm robot, in Proceedings of the 2013 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, Piscataway, 2013), pp. 277–282Google Scholar
  160. 160.
    L.J. Wood, J. Rendon, R.J. Malak, D. Hartl, An origami-inspired, SMA actuated lifting structure, in Proceedings of the ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Paper No. DETC2016-60261 (American Society of Mechanical Engineers, New York, 2016), p. V05BT07A024Google Scholar
  161. 161.
    A. Roudaut, A. Karnik, M. Löchtefeld, S. Subramanian, Morphees: toward high shape resolution in self-actuated flexible mobile devices, in Proceedings of the 2013 SIGCHI Conference on Human Factors in Computing Systems (ACM, New York, 2013), pp. 593–602Google Scholar
  162. 162.
    Q. Ge, C.K. Dunn, H. J. Qi, M.L. Dunn, Active origami by 4D printing. Smart Mater. Struct. 23(9), 094007 (2014)Google Scholar
  163. 163.
    E.A. Peraza Hernandez, D.J. Hartl, R.J. Malak Jr, Design and numerical analysis of an SMA mesh-based self-folding sheet. Smart Mater. Struct. 22(9), 094008 (2013)Google Scholar
  164. 164.
    E.A. Peraza Hernandez, S. Hu, H.W. Kung, D. Hartl, E. Akleman, Towards building smart self-folding structures. Comput. Graph. 37(6), 730–742 (2013)Google Scholar
  165. 165.
    D. Hartl, K. Lane, R. Malak, Computational design of a reconfigurable origami space structure incorporating shape memory alloy thin films, in Proceedings of the ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems SMASIS (American Society of Mechanical Engineers, New York, 2012), pp. 277–285Google Scholar
  166. 166.
    T. Halbert, P. Moghadas, R. Malak, D. Hartl, Control of a shape memory alloy based self-folding sheet, in Proceedings of the ASME 2014 International Design Engineering Technical Conference & Computers and Information in Engineering Conference IDETC/CIE, Paper No. DETC2014-34703 (American Society of Mechanical Engineers, New York, 2014), p. V05BT08A041Google Scholar
  167. 167.
    A. Gomes, A. Nesbitt, R. Vertegaal, MorePhone: a study of actuated shape deformations for flexible thin-film smartphone notifications, in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (ACM, New York, 2013), pp. 583–592Google Scholar
  168. 168.
    J. Qi, L. Buechley, Animating paper using shape memory alloys, in Proceedings of the 2012 SIGCHI Conference on Human Factors in Computing Systems (ACM, New York, 2012), pp. 749–752Google Scholar
  169. 169.
    J. Qi, L. Buechley, Electronic popables: exploring paper-based computing through an interactive pop-up book, in Proceedings of the Fourth International Conference on Tangible, Embedded, and Embodied Interaction (ACM, New York, 2010), pp. 121–128Google Scholar
  170. 170.
    N. Koizumi, K. Yasu, A. Liu, M. Sugimoto, M. Inami, Animated paper: a toolkit for building moving toys. Comput. Entertain. 8(2), 7 (2010)Google Scholar
  171. 171.
    A.P. Lee, D.R. Ciarlo, P.A. Krulevitch, S. Lehew, J. Trevino, M.A. Northrup, A practical microgripper by fine alignment, eutectic bonding and SMA actuation. Sens. Actuators A Phys. 54(1), 755–759 (1996)Google Scholar
  172. 172.
    P. Krulevitch, A.P. Lee, P.B. Ramsey, J.C. Trevino, J. Hamilton, M.A. Northrup, Thin film shape memory alloy microactuators. J. Microelectromech. Syst. 5(4), 270–282 (1996)Google Scholar
  173. 173.
    Y. Liu, M. Miskiewicz, M.J. Escuti, J. Genzer, M.D. Dickey, Three-dimensional folding of pre-strained polymer sheets via absorption of laser light. J. Appl. Phys. 115(20), 204911 (2014)Google Scholar
  174. 174.
    Y. Liu, R. Mailen, Y. Zhu, M.D. Dickey, J. Genzer, Simple geometric model to describe self-folding of polymer sheets. Phys. Rev. E 89(4), 042601 (2014)Google Scholar
  175. 175.
    R. Saunders, D. Hartl, R. Malak, D. Lagoudas, Design and analysis of a self-folding SMA-SMP composite laminate, in Proceedings of the ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE, Paper No. DETC2014-35151 (American Society of Mechanical Engineers, New York, 2014), p. V05BT08A048Google Scholar
  176. 176.
    K.E. Laflin, C.J. Morris, T. Muqeem, D.H. Gracias, Laser triggered sequential folding of microstructures. Appl. Phys. Lett. 101(13), 131901 (2012)Google Scholar
  177. 177.
    K. Kalaitzidou, A.J. Crosby, Adaptive polymer particles. Appl. Phys. Lett. 93(4), 041910 (2008)Google Scholar
  178. 178.
    B. Simpson, G. Nunnery, R. Tannenbaum, K. Kalaitzidou, Capture/release ability of thermo-responsive polymer particles. J. Mater. Chem. 20(17), 3496–3501 (2010)Google Scholar
  179. 179.
    C. Sung, R. Lin, S. Miyashita, S. Yim, S. Kim, D. Rus, Self-folded soft robotic structures with controllable joints, in Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2017)Google Scholar
  180. 180.
    K. Fuchi, T.H. Ware, P.R. Buskohl, G.W. Reich, R.A. Vaia, T.J. White, J.J. Joo, Topology optimization for the design of folding liquid crystal elastomer actuators. Soft Matter 11(37), 7288–7295 (2015)Google Scholar
  181. 181.
    K. Fuchi, P.R. Buskohl, T. Ware, R.A. Vaia, T.J. White, G.W. Reich, J.J. Joo, Inverse design of LCN films for origami applications using topology optimization, in Proceedings of the ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems SMASIS, Paper No. SMASIS2014-7497 (American Society of Mechanical Engineers, New York, 2014), p. V001T01A011Google Scholar
  182. 182.
    L.T. de Haan, V. Gimenez-Pinto, A. Konya, T.-S. Nguyen, J. Verjans, C. Sánchez-Somolinos, J.V. Selinger, R.L.B. Selinger, D.J. Broer, A.P.H.J. Schenning, Accordion-like actuators of multiple 3D patterned liquid crystal polymer films. Adv. Funct. Mater. 24(9), 1251–1258 (2014)Google Scholar
  183. 183.
    K.-U. Jeong, J.-H. Jang, D.-Y. Kim, C. Nah, J.H. Lee, M.-H. Lee, H.-J. Sun, C.-L. Wang, S.Z.D. Cheng, E.L. Thomas, Three-dimensional actuators transformed from the programmed two-dimensional structures via bending, twisting and folding mechanisms. J. Mater. Chem. 21(19), 6824–6830 (2011)Google Scholar
  184. 184.
    S. Zakharchenko, N. Puretskiy, G. Stoychev, M. Stamm, L. Ionov, Temperature controlled encapsulation and release using partially biodegradable thermo-magneto-sensitive self-rolling tubes. Soft Matter 6(12), 2633–2636 (2010)Google Scholar
  185. 185.
    G. Stoychev, N. Puretskiy, L. Ionov, Self-folding all-polymer thermoresponsive microcapsules. Soft Matter 7(7), 3277–3279 (2011)Google Scholar
  186. 186.
    G. Stoychev, S. Zakharchenko, S. Turcaud, J.W.C. Dunlop, L. Ionov, Shape-programmed folding of stimuli-responsive polymer bilayers. ACS Nano 6(5), 3925–3934 (2012)Google Scholar
  187. 187.
    K. Kumar, B. Nandan, V. Luchnikov, F. Simon, A. Vyalikh, U. Scheler, M. Stamm, A novel approach for the fabrication of silica and silica/metal hybrid microtubes. Chem. Mater. 21(18), 4282–4287 (2009)Google Scholar
  188. 188.
    K. Kumar, B. Nandan, V. Luchnikov, E.B. Gowd, M. Stamm, Fabrication of metallic microtubes using self-rolled polymer tubes as templates. Langmuir 25(13), 7667–7674 (2009)Google Scholar
  189. 189.
    K. Kumar, V. Luchnikov, V. Nandan, V. Senkovskyy, M. Stamm, Formation of self-rolled polymer microtubes studied by combinatorial approach. Eur. Polym. J. 44(12), 4115–4121 (2008)Google Scholar
  190. 190.
    V. Luchnikov, K. Kumar, M. Stamm, Toroidal hollow-core microcavities produced by self-rolling of strained polymer bilayer films. J. Micromech. Microeng. 18(3), 035041 (2008)Google Scholar
  191. 191.
    W. Guo, M. Li, J. Zhou, Modeling programmable deformation of self-folding all-polymer structures with temperature-sensitive hydrogels. Smart Mater. Struct. 22(11), 115028 (2013)Google Scholar
  192. 192.
    H. He, J. Guan, J.L. Lee, An oral delivery device based on self-folding hydrogels. J. Control. Release 110(2), 339–346 (2006)Google Scholar
  193. 193.
    H. He, X. Cao, L.J. Lee, Design of a novel hydrogel-based intelligent system for controlled drug release. J. Control. Release 95(3), 391–402 (2004)Google Scholar
  194. 194.
    T.S. Shim, S.-H. Kim, C.-J. Heo, H.C. Jeon, S.-M. Yang, Controlled origami folding of hydrogel bilayers with sustained reversibility for robust microcarriers. Angew. Chem. 124(6), 1449–1452 (2012)Google Scholar
  195. 195.
    J. Guan, H. He, D.J. Hansford, L.J. Lee, Self-folding of three-dimensional hydrogel microstructures. J. Phys. Chem. B 109(49), 23134–23137 (2005)Google Scholar
  196. 196.
    S. Zakharchenko, E. Sperling, L. Ionov, Fully biodegradable self-rolled polymer tubes: a candidate for tissue engineering scaffolds. Biomacromolecules 12(6), 2211–2215 (2011)Google Scholar
  197. 197.
    N. Bassik, A. Brafman, A.M. Zarafshar, M. Jamal, D. Luvsanjav, F.M. Selaru, D.H. Gracias, Enzymatically triggered actuation of miniaturized tools. J. Am. Chem. Soc. 132(46), 16314–16317 (2010)Google Scholar
  198. 198.
    J.S. Randhawa, T.G. Leong, N. Bassik, B.R. Benson, M.T. Jochmans, D.H. Gracias, Pick-and-place using chemically actuated microgrippers. J. Am. Chem. Soc. 130(51), 17238–17239 (2008)Google Scholar
  199. 199.
    W. Sun, F. Liu, Z. Ma, C. Li, J. Zhou, Soft mobile robots driven by foldable dielectric elastomer actuators. J. Appl. Phys. 120(8), 084901 (2016)Google Scholar
  200. 200.
    H. Okuzaki, T. Saido, H. Suzuki, Y. Hara, H. Yan, A biomorphic origami actuator fabricated by folding a conducting paper. J. Phys. Conf. Ser. 127(1), 012001 (2008)Google Scholar
  201. 201.
    H. Okuzaki, T. Kuwabara, K. Funasaka, T. Saido, Humidity-sensitive polypyrrole films for electro-active polymer actuators. Adv. Funct. Mater. 23(36), 4400–4407 (2013)Google Scholar
  202. 202.
    P. von Lockette, R. Sheridan, Folding actuation and locomotion of novel magneto-active elastomer (MAE) composites, in Proceedings of the ASME 2013 Conference on Smart Materials, Adaptive Structures, and Intelligent Systems SMASIS, Paper No. SMASIS2013-3222, 16–18 September 2013, p. V001T01A020Google Scholar
  203. 203.
    P. von Lockette, Fabrication and performance of magneto-active elastomer composite structures, in Proceedings of the ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems SMASIS, Paper No. SMASIS2014-7590 (American Society of Mechanical Engineers, New York, 2014), p. V001T01A019Google Scholar
  204. 204.
    S. Ahmed, C. Lauff, A. Crivaro, K. McGough, R. Sheridan, M. Frecker, P. von Lockette, Z. Ounaies, T. Simpson, J.-M. Lien, R. Strzelec, Multi-field responsive origami structures: preliminary modeling and experiments, in Proceedings of the ASME 2013 International Design Engineering Technical Conference and Computers and Information in Engineering Conference IDETC/CIE, Paper No. DETC2013-12405, Portland, OR, 4–7 August 2013, p. V06BT07A028Google Scholar
  205. 205.
    A. Crivaro, R. Sheridan, M. Frecker, T.W. Simpson, P. Von Lockette, Bistable compliant mechanism using magneto active elastomer actuation. J. Intell. Mater. Syst. Struct. (2015). https://doi.org/1045389X15620037
  206. 206.
    L. Bowen, K. Springsteen, M. Frecker, T. Simpson, Optimization of a dynamic model of magnetic actuation of an origami mechanism, in ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE, Paper No. DETC2015-47458 (American Society of Mechanical Engineers, New York, 2015), p. V05BT08A05Google Scholar
  207. 207.
    L. Bowen, K. Springsteen, M. Frecker, T. Simpson, Trade space exploration of magnetically actuated origami mechanisms. J. Mech. Robot. 8(3), 031012 (2016)Google Scholar
  208. 208.
    K. McGough, S. Ahmed, M. Frecker, Z. Ounaies, Finite element analysis and validation of dielectric elastomer actuators used for active origami. Smart Mater. Struct. 23(9), 094002 (2014)Google Scholar
  209. 209.
    S. Ahmed, Z. Ounaies, M. Frecker, Investigating the performance and properties of dielectric elastomer actuators as a potential means to actuate origami structures. Smart Mater. Struct. 23(9), 094003 (2014)Google Scholar
  210. 210.
    R.N. Saunders, D.J. Hartl, J.G. Boyd, D.C. Lagoudas, Modeling and development of a twisting wing using inductively heated shape memory alloy actuators, in Proceedings of SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring (International Society for Optics and Photonics, San Diego, 2015), p. 94310U–94310U–8Google Scholar
  211. 211.
    R.N. Saunders, J.G. Boyd, D.J. Hartl, J.K. Brown, F.T. Calkins, D.C. Lagoudas, A validated model for induction heating of shape memory alloy actuators. Smart Mater. Struct. 25(4), 045022 (2016)Google Scholar
  212. 212.
    T.J. Cognata, D. Hartl, R. Sheth, C. Dinsmore, A morphing radiator for high-turndown thermal control of crewed space exploration vehicles, in Proceedings of 23rd AIAA/AHS Adaptive Structures Conference, AIAA 2015-1509, 2015Google Scholar
  213. 213.
    C.L. Bertagne, R.B. Sheth, D.J. Hartl, J.D. Whitcomb, Simulating coupled thermal-mechanical interactions in morphing radiators, in Proceedings of SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring (International Society for Optics and Photonics, San Diego, 2015), p. 94312F–94312F–10Google Scholar
  214. 214.
    B. An, N. Benbernou, E.D. Demaine, D. Rus, Planning to fold multiple objects from a single self-folding sheet. Robotica 29(1), 87–102 (2011)Google Scholar
  215. 215.
    B. An, D. Rus, Designing and programming self-folding sheets. Robot. Auton. Syst. 62(7), 976–1001 (2014)Google Scholar
  216. 216.
    E.A. Peraza Hernandez, D.J. Hartl, K.R. Frei, E. Akleman, Connectivity of shape memory alloy-based self-folding structures, in Proceedings of the 22nd AIAA/ASME/AHS Adaptive Structures Conference, in AIAA SciTech (National Harbor, Maryland, 2014), p. 1415Google Scholar
  217. 217.
    E. Peraza Hernandez, D. Hartl, R. Malak, E. Akleman, O. Gonen, H. Kung, Design tools for patterned self-folding reconfigurable structures based on programmable active laminates. J. Mech. Robot. 8(3), 031015 (2016)Google Scholar
  218. 218.
    P. Moghadas, R. Malak, D. Hartl, Reinforcement learning for control of a shape memory alloy based self-folding sheet, in Proceedings of the ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE, Paper No. DETC2015-46980 (American Society of Mechanical Engineers, New York, 2015), p. V05BT08A044Google Scholar
  219. 219.
    T.R. Halbert, An improved algorithm for sequential information-gathering decisions in design under uncertainty. Master’s thesis, Texas A&M University, College Station, TX, USA, 2015Google Scholar
  220. 220.
    D. Hartl, K. Lane, R. Malak, Design of a massively reconfigurable origami space structure incorporating shape memory alloys, in Proceedings of the ASME 2012 International Mechanical Engineering Congress and Exposition IMECE, Paper No. IMECE2012-86391 (American Society of Mechanical Engineers, New York, 2012), p. 115–122Google Scholar
  221. 221.
    T. Halbert, E. Peraza Hernandez, R. Malak, D. Hartl, Numerically validated reduced-order model for laminates containing shape memory alloy wire meshes. J. Intell. Mater. Syst. Struct. (2015). https://doi.org/1045389X15595295
  222. 222.
    E.A. Peraza Hernandez, B. Kiefer, D.J. Hartl, A. Menzel, D.C. Lagoudas, Analytical investigation of structurally stable configurations in shape memory alloy-actuated plates. Int. J. Solids Struct. 69, 442–458 (2015)Google Scholar
  223. 223.
    E. Peraza Hernandez, D. Hartl, D. Lagoudas, Modeling of shape memory alloy wire meshes using effective lamina properties for improved analysis efficiency, in Proceedings of the ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems SMASIS 2013, Paper No. SMASIS2013-3094 (American Society of Mechanical Engineers, New York, 2013), p. V001T01A009Google Scholar
  224. 224.
    V. Brailovski, S. Prokoshkin, P. Terriault, F. Trochu, Shape Memory Alloys: Fundamentals, Modeling and Applications (Université du Québec. École de technologie supérieure, Québec, 2003)Google Scholar
  225. 225.
    L.G. Machado, M.A. Savi, Medical applications of shape memory alloys. Braz. J. Med. Biol. Res. 36(6), 683–691 (2003)Google Scholar
  226. 226.
    N.B. Morgan, Medical shape memory alloy applications—the market and its products. Mater. Sci. Eng. A 378(1), 16–23 (2004)Google Scholar
  227. 227.
    J.M. Jani, M. Leary, A. Subic, M.A. Gibson, A review of shape memory alloy research, applications and opportunities. Mater. Des. 56, 1078–1113 (2014)Google Scholar
  228. 228.
    G. Esquivel, D. Weiser, D. Hartl, D. Whitten, POP-OP: a shape memory-based morphing wall. Int. J. Archit. Comput. 11(3), 347–362 (2013)Google Scholar
  229. 229.
    J. Berry, J.H. Seo, Incorporation of shape memory polymers in interactive design, in Proceedings of the 21st International Symposium of Electronic Art ISEA, 2015Google Scholar
  230. 230.
    C. Schwesig, I. Poupyrev, E. Mori, Gummi: a bendable computer, in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (ACM, New York, 2004), pp. 263–270Google Scholar
  231. 231.
    J.-S. Park, T.-W. Kim, D. Stryakhilev, J.-S. Lee, S.-G. An, Y.-S. Pyo, D.-B. Lee, Y.G. Mo, D.-U. Jin, H.K. Chung, Flexible full color organic light-emitting diode display on polyimide plastic substrate driven by amorphous indium gallium zinc oxide thin-film transistors. Appl. Phys. Lett. 95(1), 013503–013503 (2009)Google Scholar
  232. 232.
    B. Lahey, A. Girouard, W. Burleson, R. Vertegaal, PaperPhone: understanding the use of bend gestures in mobile devices with flexible electronic paper displays, in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (ACM, New York, 2011), pp. 1303–1312Google Scholar
  233. 233.
    A. Minuto, A. Nijholt, Smart material interfaces as a methodology for interaction: a survey of SMIs’ state of the art and development, in Proceedings of the Second International Workshop on Smart Material Interfaces: Another Step to a Material Future (ACM, New York, 2013), pp. 1–6Google Scholar
  234. 234.
    A. Gomes, R. Vertegaal, PaperFold: evaluating shape changes for viewport transformations in foldable thin-film display devices, in Proceedings of the Ninth International Conference on Tangible, Embedded, and Embodied Interaction (ACM, New York, 2015), pp. 153–160Google Scholar
  235. 235.
    D. Tan, M. Kumorek, A.A. Garcia, A. Mooney, D. Bekoe, Projectagami: a foldable mobile device with shape interactive applications, in Proceedings of the 33rd Annual ACM Conference Extended Abstracts on Human Factors in Computing Systems (ACM, New York, 2015), pp. 1555–1560Google Scholar
  236. 236.
    L.-W. Kang, M.-F. Weng, C.-L. Jheng, C.-Y. Tseng, S.K. Ramesh, A. Gureja, H.-C. Hsu, C.-H. Yeh, Content-aware image retargeting for image display on foldable mobile devices. Procedia Comput. Sci. 56, 104–110 (2015)Google Scholar
  237. 237.
    H. Meng, G. Li, A review of stimuli-responsive shape memory polymer composites. Polymer 54(9), 2199–2221 (2013)Google Scholar
  238. 238.
    Q. Li, Intelligent Stimuli-Responsive Materials: From Well-Defined Nanostructures to Applications (Wiley, Hoboken, 2013)Google Scholar
  239. 239.
    A. Mata, A.J. Fleischman, S. Roy, Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems. Biomed. Microdevices 7(4), 281–293 (2005)Google Scholar
  240. 240.
    F. Schneider, J. Draheim, R. Kamberger, U. Wallrabe, Process and material properties of polydimethylsiloxane (PDMS) for optical MEMS. Sens. Actuators A Phys. 151(2), 95–99 (2009)Google Scholar
  241. 241.
    V. Luchnikov, L. Ionov, M. Stamm, Self-rolled polymer tubes: novel tools for microfluidics, microbiology, and drug-delivery systems. Macromol. Rapid Commun. 32(24), 1943–1952 (2011)Google Scholar
  242. 242.
    L. Ionov, Nature-inspired stimuli-responsive self-folding materials, in Intelligent Stimuli-responsive Materials: From Well-defined Nanostructures to Applications (Wiley, Hoboken, 2013), pp. 1–16Google Scholar
  243. 243.
    A.V. Prinz, V.Y. Prinz, Application of semiconductor micro-and nanotubes in biology. Surf. Sci. 532, 911–915 (2003)Google Scholar
  244. 244.
    S. Ahmed, Z. Ounaies, E.A.F. Arrojado, Electric field-induced bending and folding of polymer sheets. Sens. Actuators A Phys. 260, 68–80 (2017)Google Scholar
  245. 245.
    A. Diaz, J.I. Castillo, J.A. Logan, W.-Y. Lee, Electrochemistry of conducting polypyrrole films. J. Electroanal. Chem. Interfacial Electrochem. 129(1), 115–132 (1981)Google Scholar
  246. 246.
    A.F. Diaz, B. Hall, Mechanical properties of electrochemically prepared polypyrrole films. IBM J. Res. Dev. 27(4), 342–347 (1983)Google Scholar
  247. 247.
    M. Farshad, A. Benine, Magnetoactive elastomer composites. Polym. Test. 23(3), 347–353 (2004)Google Scholar
  248. 248.
    B.M. Cowan, Magnetically induced actuation and optimization of the Miura-ori structure. Master’s thesis, The Pennsylvania State University, 2015Google Scholar
  249. 249.
    R.J. Lang, A computational algorithm for origami design, in Proceedings of the Twelfth Annual Symposium on Computational Geometry (ACM, New York, 1996), pp. 98–105Google Scholar
  250. 250.
    T.A. Evans, R.J. Lang, S.P. Magleby, L.L. Howell, Rigidly foldable origami gadgets and tessellations. R. Soc. Open Sci. 2(9), 150067 (2015)Google Scholar
  251. 251.
    R.J. Lang, The tree method of origami design, in The Second International Meeting of Origami Science and Scientific Origami, ed. by K. Miura (Seian University of Art of Design, Otsu, 1994), pp. 72–82Google Scholar
  252. 252.
    R. Lang, Trees and circles: an efficient algorithm for origami design, in Proceedings of the 3rd International Meeting of Origami Science, Math, and Education, 2001Google Scholar
  253. 253.
    R.J. Lang, Origami Design Secrets: Mathematical Methods for an Ancient Art (CRC Press, Boca Raton, 2011)Google Scholar
  254. 254.
    R. Lang, Treemaker, available at http://www.langorigami.com/article/treemaker, 1998
  255. 255.
    E.D. Demaine, M.L. Demaine, Recent results in computational origami, in Origami 3: Third International Meeting of Origami Mathematics, Science, and Education, 2002, pp. 3–16Google Scholar
  256. 256.
    E.D. Demaine, M.L. Demaine, J.S.B. Mitchell, Folding flat silhouettes and wrapping polyhedral packages: new results in computational origami. Comput. Geom. 16(1), 3–21 (2000)Google Scholar
  257. 257.
    K. Fuchi, A.R. Diaz, Origami design by topology optimization. J. Mech. Des. 135(11), 111003 (2013)Google Scholar
  258. 258.
    M.P. Bendsoe, Topology Optimization: Theory, Methods and Applications (Springer, Berlin, 2003)Google Scholar
  259. 259.
    W. Liu, K. Tai, Optimal design of flat patterns for 3D folded structures by unfolding with topological validation. Comput. Aided Des. 39(10), 898–913 (2007)Google Scholar
  260. 260.
    W. Schlickenrieder, Nets of polyhedra. Master’s thesis, Technische Universität Berlin, 1997Google Scholar
  261. 261.
    M. Bern, E.D. Demaine, D. Eppstein, E. Kuo, A. Mantler, J. Snoeyink, Ununfoldable polyhedra with convex faces. Comput. Geom. 24(2), 51–62 (2003)Google Scholar
  262. 262.
    T. Tachi, 3D origami design based on tucking molecule, in Origami 4, Fourth International Meeting of Origami Science, Mathematics, and Education, 2009, pp. 259–272Google Scholar
  263. 263.
    T. Tachi, Origamizer, available at http://www.tsg.ne.jp/TT/software/, 2008
  264. 264.
    B.J. Edmondson, R.J. Lang, M.R. Morgan, S.P. Magleby, L.L. Howell, Thick rigidly foldable structures realized by an offset panel technique, in Origami 6: I. Mathematics, 2015, p. 149Google Scholar
  265. 265.
    T. Tachi, Rigid-foldable thick origami, in Origami 5: Fifth International Meeting of Origami Science, Mathematics, and Education, 2011, pp. 253–264Google Scholar
  266. 266.
    Y. Chen, R. Peng, Z. You, Origami of thick panels. Science 349(6246), 396–400 (2015)Google Scholar
  267. 267.
    S.A. Zirbel, M.E. Wilson, S.P. Magleby, L.L. Howell, An origami-inspired self-deployable array, in Proceedings of the ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems SMASIS, Paper No. SMASIS2013-3296, Snowbird, UT, 2013 (American Society of Mechanical Engineers, New York, 2013), p. V001T01A026Google Scholar
  268. 268.
    S.A. Zirbel, B.P. Trease, M.W. Thomson, R.J. Lang, S.P. Magleby, L.H. Howell, HanaFlex: a large solar array for space applications, in Proceedings of SPIE, vol. 9467, 2015, p. 94671C–94671C–9Google Scholar
  269. 269.
    J.S. Ku, E.D. Demaine, Folding flat crease patterns with thick materials, in Proceedings of the ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE, Paper No. DETC2015-48039 (American Society of Mechanical Engineers, New York, 2015), p. V05BT08A056Google Scholar
  270. 270.
    J.S. Ku, E.D. Demaine, Folding flat crease patterns with thick materials. J. Mech. Robot. 8(3), 031003 (2016)Google Scholar
  271. 271.
    K. Fuchi, P.R. Buskohl, G. Bazzan, M.F. Durstock, G.W. Reich, R.A. Vaia, J.J. Joo, Origami actuator design and networking through crease topology optimization. J. Mech. Des. 137(9), 091401 (2015)Google Scholar
  272. 272.
    K. Saito, A. Tsukahara, Y. Okabe, Designing of self-deploying origami structures using geometrically misaligned crease patterns. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 472(2185), 20150235 (2016)Google Scholar
  273. 273.
    D.A. McAdams, W. Li, A novel method to design and optimize flat-foldable origami structures through a genetic algorithm. J. Comput. Inf. Sci. Eng. 14(3), 031008 (2014)Google Scholar
  274. 274.
    S. Ishida, T. Nojima, I. Hagiwara, Application of conformal maps to origami-based structures: New method to design deployable circular membranes, in Proceedings of the ASME 2013 International Design Engineering Technical Conference and Computers and Information in Engineering Conference IDETC/CIE, Paper No. DETC2013-12725, Portland, OR, 2013 (American Society of Mechanical Engineers, New York, 2013), p. V06BT07A035Google Scholar
  275. 275.
    K. Zhu, C. Deshan, O.N.N. Fernando, Snap-n-Fold: origami pattern generation based real-life object structure, in CHI’12 Extended Abstracts on Human Factors in Computing Systems (ACM, New York, 2012), pp. 2345–2350Google Scholar
  276. 276.
    T. Tachi, Designing rigidly foldable horns using Bricard’s octahedron. J. Mech. Robot. 8(3), 031008 (2016)Google Scholar
  277. 277.
    R.J. Lang, S. Magleby, L. Howell, Single degree-of-freedom rigidly foldable cut origami flashers. J. Mech. Robot. 8(3), 031005 (2016)Google Scholar
  278. 278.
    T. Tachi, Simulation of rigid origami. Origami 4, Fourth International Meeting of Origami Science, Mathematics, and Education, 2009, pp. 175–187Google Scholar
  279. 279.
    T. Ida, H. Takahashi, M. Marin, A. Kasem, F. Ghourabi, Computational origami system Eos, in Origami 4: Proceedings of 4th International Conference on Origami, Science, Mathematics and Education, 2009, pp. 285–293Google Scholar
  280. 280.
    H. Huzita, Axiomatic development of origami geometry, in Proceedings of the First International Meeting of Origami Science and Technology, 1989, pp. 143–158Google Scholar
  281. 281.
    R.C. Alperin, R.J. Lang, One-, two-, and multi-fold origami axioms, in Origami 4: Proceedings of 4th International Conference on Origami, Science, Mathematics and Education, 2009, pp. 371–393Google Scholar
  282. 282.
    T. Hull, Project origami: Activities for Exploring Mathematics (CRC Press, Boca Raton, 2012)Google Scholar
  283. 283.
    A. Kasem, F. Ghourabi, T. Ida, Origami axioms and circle extension, in Proceedings of the 2011 ACM Symposium on Applied Computing (ACM, New York, 2011), pp. 1106–1111Google Scholar
  284. 284.
    F. Ghourabi, T. Ida, H. Takahashi, M. Marin, A. Kasem, Logical and algebraic view of Huzita’s origami axioms with applications to computational origami, in Proceedings of the 2007 ACM Symposium on Applied Computing (ACM, New York, 2007), pp. 767–772Google Scholar
  285. 285.
    W. Wu, Z. You, Modelling rigid origami with quaternions and dual quaternions. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 466(2119), 2155–2174 (2010)Google Scholar
  286. 286.
    E.A. Peraza Hernandez, D.J. Hartl, D.C. Lagoudas, Kinematics of origami structures with smooth folds. J. Mech. Robot. 8(6), 061019 (2016)Google Scholar
  287. 287.
    E.D. Demaine, M.L. Demaine, Recent results in computational origami, in Proceedings of the 3rd International Meeting of Origami Science, Math, and Education Citeseer, 2001, pp. 3–16Google Scholar
  288. 288.
    M.S. Moses, M.K. Ackerman, G.S. Chirikjian, Origami rotors: imparting continuous rotation to a moving platform using compliant flexure hinges, in Proceedings of the ASME 2013 International Design Engineering Technical Conference and Computers and Information in Engineering Conference IDETC/CIE, paper No. DETC2013-12753, Portland, OR, 2013 (American Society of Mechanical Engineers, New York, 2013), p. V06BT07A037Google Scholar
  289. 289.
    S.-M. Belcastro, T.C. Hull, A mathematical model for non-flat origami, in Origami 3: Third International Meeting of Origami Mathematics, Science, and Education, 2002, pp. 39–51Google Scholar
  290. 290.
    S.-M. Belcastro, T.C. Hull, Modelling the folding of paper into three dimensions using affine transformations. Linear Algebra Appl. 348(1–3), 273–282 (2002)Google Scholar
  291. 291.
    T. Tachi, Rigid origami simulator, available at http://www.tsg.ne.jp/TT/software/, 2007
  292. 292.
    T. Tachi, Freeform origami, available at http://www.tsg.ne.jp/TT/software/, 2013
  293. 293.
    T. Tachi, Freeform variations of origami. J. Geom. Graph. 14(2), 203–215 (2010)Google Scholar
  294. 294.
    A. Kasem, T. Ida, H. Takahashi, M. Marin, F. Ghourabi, E-origami system Eos, in Proceedings of the Annual Symposium of Japan Society for Software Science and Technology, JSSST, Tokyo, Japan (September 2006)Google Scholar
  295. 295.
    T. Ida, H. Takahashi, M. Marin, F. Ghourabi, Modeling origami for computational construction and beyond, in Computational Science and Its Applications–ICCSA 2007 (Springer, 2007), pp. 653–665Google Scholar
  296. 296.
    A. Kasem, T. Ida, Computational origami environment on the web. Front. Comput. Sci. China 2(1), 39–54 (2008)CrossRefGoogle Scholar
  297. 297.
    M. Schenk, S.D. Guest, Origami folding: a structural engineering approach, in Origami 5: Fifth International Meeting of Origami Science, Mathematics, and Education, 2011, pp. 291–304Google Scholar
  298. 298.
    A.R. Diaz, Origami folding and bar frameworks, in Proceedings of the ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE, Paper No. DETC2014-34149 (American Society of Mechanical Engineers, New York, 2014), p. V05BT08A031Google Scholar
  299. 299.
    A.A. Evans, J.L. Silverberg, C.D. Santangelo, Lattice mechanics of origami tessellations. Phys. Rev. E 92(1), 013205 (2015)Google Scholar
  300. 300.
    K. Fuchi, P.R. Buskohl, G. Bazzan, M.F. Durstock, G.W. Reich, R.A. Vaia, J.J. Joo, Design optimization challenges of origami-based mechanisms with sequenced folding. J. Mech. Robot. 8(5), 051011 (2016)Google Scholar
  301. 301.
    K. Saito, A. Tsukahara, Y. Okabe, New deployable structures based on an elastic origami model. J. Mech. Des. 137(2), 021402 (2015)Google Scholar
  302. 302.
    Y. Nakada, Y. Fujieda, T. Mori, H. Iwai, K. Nakaya, R. Uehara, M. Yamabe, On a stiffness model for origami folding, in Proceedings of the ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE, Paper No. DETC2015-46731 (American Society of Mechanical Engineers, New York, 2015), p. V05BT08A039Google Scholar
  303. 303.
    S. Heimbs, Virtual testing of sandwich core structures using dynamic finite element simulations. Comput. Mater. Sci. 45(2), 205–216 (2009)CrossRefGoogle Scholar
  304. 304.
    J. Ma, Z. You, Energy absorption of thin-walled beams with a pre-folded origami pattern. Thin Walled Struct. 73, 198–206 (2013)CrossRefGoogle Scholar
  305. 305.
    J. Song, Y. Chen, G. Lu, Axial crushing of thin-walled structures with origami patterns. Thin Walled Struct. 54, 65–71 (2012)CrossRefGoogle Scholar
  306. 306.
    Y. Li, Z. You, Thin-walled open-section origami beams for energy absorption, in Proceedings of the ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE, Paper No. DETC2014-35204 (American Society of Mechanical Engineers, New York, 2014), p. V003T01A014Google Scholar
  307. 307.
    C. Qiu, V. Aminzadeh, J.S. Dai, Kinematic analysis and stiffness validation of origami cartons. J. Mech. Des. 135(11), 111004 (2013)Google Scholar
  308. 308.
    C. Qiu, V. Aminzadeh, J.S. Dai, Kinematic and stiffness analysis of an origami-type carton, in Proceedings of the ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE, Paper No. DETC2013-12343, Portland, OR, 2013 (American Society of Mechanical Engineers, New York, 2013), p. V06BT07A026Google Scholar
  309. 309.
    J.T. Oden, J.N. Reddy, An Introduction to the Mathematical Theory of Finite Elements (Dover Publications, Mineola, 2012)MATHGoogle Scholar
  310. 310.
    J.N. Reddy, An Introduction to the Finite Element Method, vol. 2 (McGraw-Hill, New York, 1993)Google Scholar
  311. 311.
    J.N. Reddy, Mechanics of Laminated Composite Plates: Theory and Analysis (CRC Press, Boca Raton, 1997)MATHGoogle Scholar
  312. 312.
    E. Carrera, Theories and finite elements for multilayered, anisotropic, composite plates and shells. Arch. Comput. Methods Eng. 9(2), 87–140 (2002)MathSciNetCrossRefGoogle Scholar
  313. 313.
    H.T.Y. Yang, S. Saigal, A. Masud, R.K. Kapania, A survey of recent shell finite elements. Int. J. Numer. Methods Eng. 47(1–3), 101–127 (2000)MathSciNetCrossRefGoogle Scholar
  314. 314.
    J. Ma, D. Hou, Y. Chen, Z. You, Quasi-static axial crushing of thin-walled tubes with a kite-shape rigid origami pattern: Numerical simulation. Thin Walled Struct. 100, 38–47 (2016)CrossRefGoogle Scholar
  315. 315.
    D. Hou, Y. Chen, J. Ma, Z. You, Axial crushing of thin-walled tubes with kite-shape pattern, in Proceedings of the ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE, Paper No. DETC2015-46671 (American Society of Mechanical Engineers, New York, 2015), p. V05BT08A037Google Scholar
  316. 316.
    K. Yang, S. Xu, J. Shen, S. Zhou, Y.M. Xie, Energy absorption of thin-walled tubes with pre-folded origami patterns: numerical simulation and experimental verification. Thin Walled Struct. 103, 33–44 (2016)CrossRefGoogle Scholar
  317. 317.
    S. Heimbs, P. Middendorf, S. Kilchert, A.F. Johnson, M. Maier, Experimental and numerical analysis of composite folded sandwich core structures under compression. Appl. Compos. Mater. 14(5–6), 363–377 (2007)CrossRefGoogle Scholar
  318. 318.
    R.W. Mailen, M.D. Dickey, J. Genzer, M.A. Zikry, A fully coupled thermo-viscoelastic finite element model for self-folding shape memory polymer sheets. J. Polym. Sci. Part B Polym. Phys. 55(16), 1207–1219 (2017)CrossRefGoogle Scholar
  319. 319.
    E. Peraza Hernandez, D. Hartl, E. Galvan, R. Malak, Design and optimization of a shape memory alloy-based self-folding sheet. J. Mech. Des. 135(11), 111007 (2013)Google Scholar
  320. 320.
    E. Peraza Hernandez, K. Frei, D. Hartl, D. Lagoudas, Folding patterns and shape optimization using SMA-based self-folding laminates. Proc. SPIE 9057, 90571G–90571G–13 (2014)Google Scholar
  321. 321.
    G. Turk, M. Levoy, The Stanford Bunny. The Stanford 3D Scanning Repository, http://graphics.stanford.edu/data/3Dscanrep/, 1994
  322. 322.
    M. Behl, M.Y. Razzaq, A. Lendlein, Multifunctional shape-memory polymers. Adv. Mater. 22(31), 3388–3410 (2010)CrossRefGoogle Scholar
  323. 323.
    A. Firouzeh, Y. Sun, H. Lee, J. Paik, Sensor and actuator integrated low profile robotic origami, in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013, pp. 4937–4944Google Scholar
  324. 324.
    J.C. Athas, C.P. Nguyen, B.C. Zarket, A. Gargava, Z. Nie, S.R. Raghavan, Enzyme-triggered folding of hydrogels: Toward a mimic of the Venus Flytrap. ACS Appl. Mater. Interfaces 8(29), 19066–19074 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Edwin A. Peraza Hernandez
    • 1
  • Darren J. Hartl
    • 1
  • Dimitris C. Lagoudas
    • 1
  1. 1.Department of Aerospace EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations