Corrosion of Composites

  • Antonio Contreras Cuevas
  • Egberto Bedolla Becerril
  • Melchor Salazar Martínez
  • José Lemus Ruiz


This chapter describes the main research performed in corrosion of composites using TiC and SiC like reinforcement and Al, Ni, and some Al-Cux, Al-Mgx, and Al-Cu-Li alloys like matrix. The corrosion behavior of MMC is of great importance to predict its behavior in corrosive environments that can be exposed during service. The corrosion resistance of commercial aluminum alloy (2024) and binary Al-Cux and Al-Mgx alloys reinforced with TiC particles using a pressureless infiltration method has been evaluated in 3.5% NaCl solution. In addition, the corrosion behavior of some heat-treated composites, either artificially or naturally, was analyzed. Additionally, electrochemical study of nickel and Ni/TiC composite immersed in synthetic seawater was carried out. Effect of TiC as reinforcement into the Ni matrix was evaluated. The mechanism of corrosion was cells of differential aeration (pits and crevice). Finally, the corrosion behavior of Al-Cu-Li/SiC and Al-Cu/SiC composites in NaCl solutions with different pH values was studied. The addition of lithium and copper on the corrosion behavior of the composites was evaluated.


  1. 1.
    Albiter A, Contreras A, Salazar M, Gonzalez JG (2006) Corrosion behaviour of aluminium metal matrix composites reinforced with TiC processed by pressureless melt infiltration. J Appl Electrochem 36:303–308CrossRefGoogle Scholar
  2. 2.
    Hihara LH, Latanision RM (1994) Corrosion of metal matrix composites. J Int Mater Rev 39(6):245–264CrossRefGoogle Scholar
  3. 3.
    Turnbull A (1992) Review of corrosion studies on aluminium metal matrix composites. Br Corros J 27(1):27–35CrossRefGoogle Scholar
  4. 4.
    Makar GL, Kruger J (1993) Corrosion of magnesium. Int Mater Rev 38:138–153CrossRefGoogle Scholar
  5. 5.
    Gusieva K, Davies CHJ, Scully JR, Birbilis N (2015) Corrosion of magnesium alloys: the role of alloying. Int Mater Rev 38:138–153Google Scholar
  6. 6.
    Melchers RE (2015) Bi-modal trends in the long-term corrosion of copper and high copper alloys. Corros Sci 95:51–61CrossRefGoogle Scholar
  7. 7.
    Leon CA, Lopez VH, Bedolla E, Drew RAL (2002) Wettability of TiC by commercial aluminum alloys. J Mater Sci 37:3509–3514CrossRefGoogle Scholar
  8. 8.
    Contreras A, Leon CA, Drew RAL, Bedolla E (2003) Wettability and spreading kinetics of Al and Mg on TiC. Scr Mater 48:1625–1630CrossRefGoogle Scholar
  9. 9.
    Contreras A, Albiter A, Perez R (2004) Microstructural properties of the Al-Mgx/TiC composites obtained by infiltration techniques. J Phys 16:S2241–S2249Google Scholar
  10. 10.
    Contreras A, Angeles-Chávez C, Flores O, Perez R (2007) Structural, morphological and interfacial characterization of Al–Mg/TiC composites. Mater Charact 58:685–693CrossRefGoogle Scholar
  11. 11.
    Contreras A, Bedolla E, Perez R (2004) Interfacial phenomena in wettability of TiC by Al–Mg alloys. Acta Mater 52:985–994CrossRefGoogle Scholar
  12. 12.
    Deuis RL, Green L, Subramanian C, Yellup JM (1997) Influence of the reinforcement phase on the corrosion of aluminium composite coatings. Corrosion 16:440–444Google Scholar
  13. 13.
    Deuis RL, Green L, Subramanian C, Yellup JM (1997) Corrosion behavior of aluminum composite coatings. Corrosion 53(11):880–890CrossRefGoogle Scholar
  14. 14.
    Nunes PCR, Ramanathan LV (1995) Corrosion behavior of alumina-aluminum and silicon carbide-aluminum metal-matrix composites. Corrosion 51(8):610–617CrossRefGoogle Scholar
  15. 15.
    Shimizu Y, Nishimura T, Matsushima I (1995) Corrosion resistance of Al-based metal matrix composites. Mater Sci Eng A 198:113–118CrossRefGoogle Scholar
  16. 16.
    Yao HY, Zhu RZ (1998) Interfacial preferential dissolution on silicon carbide particulate/aluminum composites. Corrosion 54(7):499–507CrossRefGoogle Scholar
  17. 17.
    Paciej RC, Agarwala VS (1988) Influence of processing variables on the corrosion susceptibility of metal-matrix composites. Corrosion 44(10):680–684CrossRefGoogle Scholar
  18. 18.
    Sun H, Koo EY, Wheat HG (1991) Corrosion behavior of SiCp/6061 Al metal matrix composites. Corrosion 47(10):741–753CrossRefGoogle Scholar
  19. 19.
    Trzaskoma P (1990) Pit morphology of aluminum alloy and silicon carbide/aluminum alloy metal matrix composites. Corrosion 46(5):402–409CrossRefGoogle Scholar
  20. 20.
    Hihara LH, Latanision RM (1992) Galvanic corrosion of aluminum-matrix composites. Corrosion 48:546–552CrossRefGoogle Scholar
  21. 21.
    Modi OP, Saxena M, Prasad BK, Jha AK, Das S, Yegneswaran AH (1998) Role of alloy matrix and dispersoid on corrosion behavior of cast aluminum alloy composites. Corrosion 54(2):129–134CrossRefGoogle Scholar
  22. 22.
    Contreras A, Salazar M, León CA, Drew RAL, Bedolla E (2000) The kinetic study of the infiltration of aluminum alloys into TiC. Mater Manuf Process 15(2):163–182CrossRefGoogle Scholar
  23. 23.
    Stearn M, Geary AL (1958) The mechanism of passivating type inhibitors. J Electrochem Soc 105:638–647CrossRefGoogle Scholar
  24. 24.
    Albiter A, Contreras A, Bedolla E, Perez R (2003) Structural and chemical characterization of precipitates in Al2024/TiC composites. Compos Part A 34:17–24CrossRefGoogle Scholar
  25. 25.
    Candan S (2009) An investigation on corrosion behaviour of pressure infiltrated Al-Mg alloy/SiC composites. Corros Sci 51(6):1392–1398CrossRefGoogle Scholar
  26. 26.
    Candan S (2004) Effect of SiC particle size on corrosion behavior of pressure infiltrated Al matrix composites in a NaCl solution. Mater Lett 58:3601–3605CrossRefGoogle Scholar
  27. 27.
    Ahmad Z, Abdul Aleem BJ (2002) Degradation of aluminum metal matrix composites in salt water and its control. Mater Des 23(2):173–180CrossRefGoogle Scholar
  28. 28.
    Chen C, Mansfeld F (1997) Corrosion protection of an Al 6092/SiC metal matrix composite. Corros Sci 39(6):1075–1082CrossRefGoogle Scholar
  29. 29.
    Kiourtsidis GE, Skolianos SM, Pavlidou EG (1999) A study on pitting behaviour of AA2024/SiC(p) composites using the double cycle polarization technique. Corros Sci 41(6):1185–1203CrossRefGoogle Scholar
  30. 30.
    Bedolla E, Lemus-Ruiz J, Contreras A (2012) Synthesis and characterization of Mg-AZ91/AlN composites. Mater Des 38:91–98CrossRefGoogle Scholar
  31. 31.
    Reyes A, Bedolla E, Perez R, Contreras A (2012) Effect of heat treatment on the mechanical and microstructural characterization of Mg-AZ91E/TiC composites. Compos Interfaces 24:1–17Google Scholar
  32. 32.
    Falcon LA, Bedolla E, Lemus J, Leon CA, Rosales I, Gonzalez-Rodriguez JG (2011) Corrosion behavior of Mg-Al/TiC composites in NaCl solution. Int J Corros 2011:1–7CrossRefGoogle Scholar
  33. 33.
    Pardo A, Merino MC, Coy AE, Arrabal R, Viejo F, Matykina E (2008) Corrosion behaviour of magnesium/aluminium alloys in 3.5 wt.% NaCl. Corros Sci 50(3):823–834CrossRefGoogle Scholar
  34. 34.
    Nunez-Lopez CA, Skeldon P, Thompson GE, Lyon P, Karimzadeh H, Wilks TE (1995) The corrosion behaviour of Mg alloy ZC71/SiCp metal matrix composite. Corros Sci 37(5):689–708CrossRefGoogle Scholar
  35. 35.
    Suqiu J, Shusheng J, Guangping S, Jun Y (2005) The corrosion behaviour of Mg alloy AZ91D/TiCp metal matrix composite. Mater Sci Forum 488–489:705–708Google Scholar
  36. 36.
    Tiwari S, Balasubramaniam R, Gupta M (2007) Corrosion behavior of SiC reinforced magnesium composites. Corros Sci 49(2):711–725CrossRefGoogle Scholar
  37. 37.
    Salman SA, Ichino R, Okido M (2010) A comparative electrochemical study of AZ31 and AZ91 magnesium alloys. Int J Corros 2010:1–7CrossRefGoogle Scholar
  38. 38.
    Singh IB, Singh M, Das S (2015) A comparative corrosion behavior of Mg, AZ31 and AZ91 alloys in 3.5% NaCl solution. J Magnes Alloys 3:142–148CrossRefGoogle Scholar
  39. 39.
    Budruk AS, Balasubramaniam R, Gupta M (2008) Corrosion behaviour of Mg-Cu and Mg-Mo composites in 3.5% NaCl. Corros Sci 50(9):2423–2428CrossRefGoogle Scholar
  40. 40.
    Huang HH, Tsai WT, Lee JT (1996) Electrochemical behavior of A516 carbon steel in solutions containing hydrogen sulfide. Corrosion 52(9):708–716CrossRefGoogle Scholar
  41. 41.
    Ungaro ML, Carranza RM, Rodriguez MA (2012) Crevice corrosion study on alloy 22 by electrochemical noise technique. Proc Mater Sci 1:222–229CrossRefGoogle Scholar
  42. 42.
    Cottis RA (2001) Interpretation of electrochemical noise data. Corrosion 57:265–285CrossRefGoogle Scholar
  43. 43.
    Cowan KG, Harrison JA (1980) The automation of electrode kinetics—III. The dissolution of Mg in Cl, F and OH containing aqueous solutions. Electrochim Acta 25(7):899–912CrossRefGoogle Scholar
  44. 44.
    Harris SJ, Noble B, Trowsdale AJ (1996) Corrosion behaviour of aluminium matrix composites containing silicon carbide particles. Mater Sci Forum 217–222:1571–1579CrossRefGoogle Scholar
  45. 45.
    Duran-Olvera JM (2017) Análisis electroquímico del proceso de corrosión del composito TiC-Ni en agua de mar sintética. Thesis, Universidad Veracruzana, MéxicoGoogle Scholar
  46. 46.
    Duran-Olvera JM, Orozco-Cruz R, Galván-Martínez R, León CA, Contreras A (2017) Characterization of TiC/Ni composite immersed in synthetic seawater. MRS Adv 2(50):2865–2873CrossRefGoogle Scholar
  47. 47.
    Bhattacharyya JJ, Mitra R (2012) Effect of hot rolling temperature and thermal cycling on creep and damage behavior of powder metallurgy processed Al–SiC particulate composite. Mater Sci Eng 557:92–105CrossRefGoogle Scholar
  48. 48.
    Kala H, Mer KKS, Kumar S (2014) A review on mechanical and tribological behaviors of stir cast aluminum matrix composites. Proc Mater Sci 6:1951–1960CrossRefGoogle Scholar
  49. 49.
    Karbalaei-Akbari M, Rajabi S, Shirvanimoghaddam K, Baharvandi HR (2015) Wear and friction behavior of nanosized TiB2 and TiO2 particle-reinforced casting A356 aluminum nanocomposites: a comparative study focusing on particle capture in matrix. J Compos Mater 49(29):3665–3681CrossRefGoogle Scholar
  50. 50.
    Leon CA, Arroyo Y, Bedolla E (2006) Properties of AlN-based magnesium-matrix composites produced by pressureless infiltration. Mater Sci Forum 502:105–110CrossRefGoogle Scholar
  51. 51.
    Silverman DC (2003) Aqueous corrosion, corrosion: fundamentals, testing and protection. In: ASM handbook, vol 13A. ASM International, Materials Park, OhioGoogle Scholar
  52. 52.
    ASTM D1141 Standard practice for the preparation of substitute ocean water (2013)Google Scholar
  53. 53.
    ASTM G5 Standard reference test method for making potentiostatic and potentiodynamic anodic polarization measurements (2014)Google Scholar
  54. 54.
    Bastos Segura JA (2000) Comportamiento electroquímico del níquel en una matriz de resina epoxidica. Doctoral dissertation, Universitat de ValenciaGoogle Scholar
  55. 55.
    Zamin M, Ivés MB (1973) Effect of chloride ion concentration on the anodic dissolution behavior of nickel. Corrosion 29:319–324CrossRefGoogle Scholar
  56. 56.
    Real SG, Barbosa MR, Vilche JR, Arvía AJ (1990) Influence of chloride concentration on the active dissolution and passivation of nickel electrodes in acid sulfate solutions. J Electrochem Soc 137:1696–1702CrossRefGoogle Scholar
  57. 57.
    Jones DA (1996) Principles and prevention of corrosion, 2nd edn. Prentice-Hall, Upper Saddle River, pp 1–108, 146–150, 368–370Google Scholar
  58. 58.
    ASTM G1 standard practice for preparing, cleaning, and evaluation corrosion test specimens (2011)Google Scholar
  59. 59.
    Alvarez-Lemus N, Leon CA, Contreras A, Orozco-Cruz R, Galvan-Martinez R (2015) Chapter 15: electrochemical characterization of the aluminum–copper composite material reinforced with titanium carbide immersed in seawater. In: Perez R, Contreras A, Esparza R (eds) Materials characterization. Springer, Cham, pp 147–156Google Scholar
  60. 60.
    Galvan-Martinez R, Cabrera D, Galicia G, Orozco R, Contreras A (2013) Electrochemical characterization of the structural metals immersed in natural seawater: “in situ” measures. Mater Sci Forum 755:119–124CrossRefGoogle Scholar
  61. 61.
    Lugo-Quintal J, Díaz-Ballote L, Veleva L, Contreras A (2009) Effect of Li on the corrosion behavior of Al-Cu/SiCp composites. Adv Mater Res 68:133–144CrossRefGoogle Scholar
  62. 62.
    Abdallah M, Omar AA, Kandil A (2003) Production and corrosion behaviour of A7475 and Sicp. Bull Electrochem 19:405–412Google Scholar
  63. 63.
    Singh N, Vadera KK, Kumar AVR, Singh RS, Monga SS, Mathur GN (1999) Corrosion behaviour of 2124 aluminium alloy-silicon carbide metal matrix composites in sodium chloride environment. Bull Electrochem 15:120–123Google Scholar
  64. 64.
    Bhat MSN, Surappa MK, Nayak HVS (1991) Corrosion behaviour of silicon carbide particle reinforced 6061/Al alloy composites. J Mater Sci 26(18):4991–4996CrossRefGoogle Scholar
  65. 65.
    Sun H, Koo EY, Wheat HG (1991) Interfacial preferential dissolution on silicon carbide particulate/aluminum composites. Corrosion 47(9):741–749CrossRefGoogle Scholar
  66. 66.
    Rohatgi PK, Xiang CH, Gupta N (2018) Aqueous corrosion of metal matrix composites. Mater Sci Eng 4:287–312Google Scholar
  67. 67.
    Contreras A, Lopez VH, Bedolla E (2004) Mg/TiC composites manufactured by pressureless melt infiltration. Scr Mater 51:249–253CrossRefGoogle Scholar
  68. 68.
    Kolman DG, Butt DP (1997) Corrosion behavior of a novel SiC/Al2O3/Al composite exposed to chloride environments. J Electrochem Soc 144:3785–3791CrossRefGoogle Scholar
  69. 69.
    Hwang WS, Kim HW (2002) Galvanic coupling effect on corrosion behavior of Al alloy-matrix composites. Met Mater Int 8:571–575CrossRefGoogle Scholar
  70. 70.
    Pardo A, Merino MC, Arrabal R, Feliu S, Viejo F, Carboneras M (2005) Enhanced corrosion resistance of A3xx.x/SiCp composites in chloride media by La surface treatments. Electrochim Acta 51:4367–4378CrossRefGoogle Scholar
  71. 71.
    Pardo A, Merino MC, Arrabal R, Merino S, Viejo F, Carboneras M (2006) Effect of Ce surface treatments on corrosion resistance of A3xx.x/SiCp composites in salt fog. Surf Coat Technol 200:2938–2947CrossRefGoogle Scholar
  72. 72.
    Pardo A, Merino S, Merino MC, Barroso I, Mohedano M, Arrabal R, Viejo F (2009) Corrosion behaviour of silicon carbide particle reinforced AZ92 magnesium alloy. Corros Sci 51:841–849CrossRefGoogle Scholar
  73. 73.
    Pardo A, Merino MC, Arrabal R, Feliu S (2007) Effect of La surface coatings on oxidation behavior of aluminum alloy/SiCp composites. Oxid Met 67:6786CrossRefGoogle Scholar
  74. 74.
    Datta J, Datta S, Banerjee MK, Bandyopadhyay S (2004) Beneficial effect of scandium addition on the corrosion behavior of Al–Si–Mg–SiCp metal matrix composites. Compos Part A 35:1003–1008CrossRefGoogle Scholar
  75. 75.
    Staley JT, Lege DJ (1993) Advances in aluminium alloy products for structural applications in transportation. J Phys Colloq 3:C7-179–C7-190Google Scholar
  76. 76.
    Rao KTV, Ritchie RO (1998) High-temperature fracture and fatigue resistance of a ductile β-TiNb reinforced γ-TiAl intermetallic composite. Acta Mater 46(12):4167–4180CrossRefGoogle Scholar
  77. 77.
    Roper GW, Attwood PA (1995) Corrosion behaviour of aluminium matrix composites. J Mater Sci 30:898–903CrossRefGoogle Scholar
  78. 78.
    Murthy KSN, Dwarakadasa ES (1995) Role of Li+ ions in corrosion behaviour of 8090 Al–Li alloy and aluminium in pH 12 aqueous solutions. Br Corros J 30:111–115Google Scholar
  79. 79.
    Salghi R, Bazzi L, Zaafrani M (2003) Effet d’ínhibition de la corrosión de deux alliages d’aluminium 6063 et 3003 par quelques cations metallique en milieu chlorure. Acta Chim Slov 50:491–495Google Scholar
  80. 80.
    Ambat R, Dwarakadasa ED (1992) The influence of pH on the corrosion of medium strength aerospace alloys 8090, 2091 and 2014. Corros Sci 33:681–690CrossRefGoogle Scholar
  81. 81.
    Damborenea JJ, Conde A (2000) Intergranular corrosion of 8090 Al–Li: interpretation by electrochemical impedance spectroscopy. Br Corros J 35:48–53CrossRefGoogle Scholar
  82. 82.
    Davo B, Damborenea JJ (2004) Corrosión e inhibición en aleaciones de aluminio de media resistencia. Rev Metal 40:442–446CrossRefGoogle Scholar
  83. 83.
    Davo B, Damborenea JJ (2004) Use of rare earth salts as electrochemical corrosion inhibitors for an Al–Li–Cu (8090) alloy in 3.56% NaCl. Electrochim Acta 49:4957–4965CrossRefGoogle Scholar
  84. 84.
    Davo B, Conde A, Damborenea JJ (2005) Inhibition of stress corrosion cracking of alloy AA8090 T-8171 by addition of rare earth salts. Corros Sci 47:1227–1237CrossRefGoogle Scholar
  85. 85.
    Diaz-Ballote L, Veleva L, Pech-Canul MA, Pech-Canul MI, Wipf DO (2004) Activity of SiC particles in Al-based metal matrix composites revealed by SECM. J Electrochem Soc 151:B299–B303CrossRefGoogle Scholar
  86. 86.
    Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New YorkGoogle Scholar
  87. 87.
    Baldwin KR, Bates RI, Arnell RD, Smith CJE (1996) Aluminium-magnesium alloys as corrosion resistant coatings for steel. Corros Sci 38:155–170CrossRefGoogle Scholar
  88. 88.
    Kim Y, Buchheit RG (2007) A characterization of the inhibiting effect of Cu on metastable pitting in dilute Al–Cu solid solution alloys. Electrochim Acta 52:2437–2446CrossRefGoogle Scholar
  89. 89.
    Ralston KD, Birbilis N, Cavanaugh MK, Weyland M, Muddle BC, Marceau RKW (2010) Role of nanostructure in pitting of Al–Cu–Mg alloys. Electrochim Acta 55:7834–7842CrossRefGoogle Scholar
  90. 90.
    Sankaran KK, Grant NJ (1980) The structure and properties of splat-quenched aluminum alloy 2024 containing lithium additions. Mater Sci Eng 44:213–227CrossRefGoogle Scholar
  91. 91.
    Hatch JE (1984) Aluminum properties and physical metallurgy. American Society for Metals, Materials Park, OhioGoogle Scholar
  92. 92.
    Garrard WN (1994) Corrosion behavior of aluminum-lithium alloys. Corrosion 50(3):215–225CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Antonio Contreras Cuevas
    • 1
  • Egberto Bedolla Becerril
    • 2
  • Melchor Salazar Martínez
    • 3
  • José Lemus Ruiz
    • 2
  1. 1.Instituto Mexicano del PetróleoCiudad de MéxicoMéxico
  2. 2.Universidad Michoacana de San Nicolás de HidalgoInstituto de Investigación en Metalurgia y MaterialesMoreliaMéxico
  3. 3.Clúster Politécnico Veracruz - IPNPapantla de OlarteMéxico

Personalised recommendations