Fabrication and Characterization of Composites

  • Antonio Contreras Cuevas
  • Egberto Bedolla Becerril
  • Melchor Salazar Martínez
  • José Lemus Ruiz


This chapter describes the fabrication process and characterization of MMC in the following systems: Mg/TiC, MgAZ91/AlN, Mg/AlN, Al-Cux/TiC, Al-Mgx/TiC, Al(1010/2024/6061/7075)/TiC, MgAZ91/SiC, Ni/Al2O3, and MgAZ91/TiC. Currently, the most widely used materials as reinforcement are TiC, SiC, AlN, Al2O3, and graphite, which have been used in Al, Mg, Cu, Ni, and its alloys with the purpose of improving its mechanical properties such as the module of elasticity, hardness, corrosion, and wear resistance, among others. In this chapter, the research work performed by the authors includes TiC, AlN, SiC, and Al2O3 used like reinforcement. The composites fabricated have a high content of reinforcement, and most of them were fabricated by infiltration. Some results of the processing, sintering preforms, kinetic infiltration, and characterization of these composite systems obtained by the authors were addressed. This chapter contains the main results about characterization of different composite systems in which the group had worked for more than 25 years. Characterization of the composites includes microstructural, mechanical, thermal, and electrical mainly.


  1. 1.
    Dey A, Pandey KM (2015) Magnesium metal matrix composites – a review. Rev Adv Mater Sci 42:58–67Google Scholar
  2. 2.
    Luo A (1995) Processing, microstructure, and mechanical behavior of cast magnesium metal matrix composites. Metall Mater Trans A 26:2445–2455CrossRefGoogle Scholar
  3. 3.
    Lopez VH, Truelove S, Kennedy AR (2003) Fabrication of Al–TiC master composites and their dispersion in Al, Cu and Mg melts. Mater Sci Technol 19:925–930CrossRefGoogle Scholar
  4. 4.
    Sun XF, Wang CJ, Deng KK, Kang JW, Bai Y, Nie K, Shang SJ (2017) Aging behavior of AZ91 matrix influenced by 5 μm SiCp: investigation on the microstructure and mechanical properties. J Alloys Compd 727:1263–1272CrossRefGoogle Scholar
  5. 5.
    Wang XJ, Xu L, Hu XS, Nie KB, Deng KK, Wu K, Zheng M (2011) Influences of extrusion parameters on microstructure and mechanical properties of particulate reinforced magnesium matrix composites. Mater Sci Eng A Struct Mater 528:6387–6392CrossRefGoogle Scholar
  6. 6.
    Shen MJ, Ying T, Chen FY, Hou JM (2017) Microstructural analysis and mechanical properties of the AZ31B matrix cast composites containing micron SiC particles. Int J Met Cast 11(2):287–293Google Scholar
  7. 7.
    Chen L, Yao Y (2014) Processing, microstructures, and mechanical properties of magnesium matrix composites: a review. Acta Metall Sin 27:762–774CrossRefGoogle Scholar
  8. 8.
    Contreras A, Lopez VH, Bedolla E (2004) Mg/TiC composites manufactured by pressureless melt infiltration. Scr Mater 51:249–253CrossRefGoogle Scholar
  9. 9.
    Dong Q, Chen LQ, Zhao MJ, Bi J (2004) Synthesis of TiCp reinforced magnesium matrix composites by in situ reactive infiltration process. Mater Lett 58:920–926CrossRefGoogle Scholar
  10. 10.
    Cao W, Zhang C, Fan T, Zhang D (2008) In situ synthesis and damping capacities of TiC reinforced magnesium matrix composites. Mater Sci Eng A 496:242–246CrossRefGoogle Scholar
  11. 11.
    Jo I, Jeon S, Lee E, Cho S, Lee H (2015) Phase formation and interfacial phenomena of the in-situ combustion reaction of Al-Ti-C in TiC/Mg composites. Mater Trans 56:661–664CrossRefGoogle Scholar
  12. 12.
    Chen L, Guo J, Yu B, Ma Z (2007) Compressive creep behavior of TiC/AZ91D magnesium-matrix composites with interpenetrating networks. J Mater Sci Technol 23(02):207–212Google Scholar
  13. 13.
    Lim CYH, Leo DK, Ang JJS, Gupta M (2005) Wear of magnesium composites reinforced with nanosized alumina particulates. Wear 259:620–625CrossRefGoogle Scholar
  14. 14.
    Contreras A, Leon CA, Drew RAL, Bedolla E (2003) Wettability and spreading kinetics of Al and Mg on TiC. Scr Mater 48:1625–1630CrossRefGoogle Scholar
  15. 15.
    Xiuqing Z, Haowei W, Lihua L, Naiheng M (2007) In situ synthesis method and damping characterization of magnesium matrix composites. Compos Sci Technol 67:720–727CrossRefGoogle Scholar
  16. 16.
    Jiang QC, Li XL, Wang HY (2003) Fabrication of TiC particulate reinforced magnesium matrix composites. Scr Mater 48:713–717CrossRefGoogle Scholar
  17. 17.
    Balakrishnan M, Dinaharan I, Palanivel R, Sivaprakasam R (2015) Synthesize of AZ31/TiC magnesium matrix composites using friction stir processing. J Magnes Alloys 3:76–78. Scholar
  18. 18.
    Gu XY, Sun DQ, Liu L (2008) Transient liquid phase bonding of TiC reinforced magnesium metal matrix composites (TiCP/AZ91D) using aluminum interlayer. Mater Sci Eng A 487:86–92CrossRefGoogle Scholar
  19. 19.
    Anasori B, Caspi N, Barsoum MW (2014) Fabrication and mechanical properties of pressureless melt infiltrated magnesium alloy composites reinforced with TiC and Ti2AlC particles. Mater Sci Eng A 618:511–522CrossRefGoogle Scholar
  20. 20.
    Kaneda H, Choh T (1997) Fabrication of particulate reinforced magnesium composites by applying a spontaneous infiltration phenomenon. J Mater Sci 32:47–56CrossRefGoogle Scholar
  21. 21.
    Ye HZ, Liu XY (2004) Review of recent studies in magnesium matrix composites. J Mater Sci 39:6153–6171CrossRefGoogle Scholar
  22. 22.
    Contreras A, Salazar M, León CA, Drew RAL, Bedolla E (2000) The kinetic study of the infiltration of aluminum alloys into TiC. Mater Manuf Process 15(2):163–182CrossRefGoogle Scholar
  23. 23.
    Muscat D, Drew RAL (1994) Modeling the infiltration kinetics of molten aluminum into porous titanium carbide. Metall Mater Trans 25A(11):2357–2370CrossRefGoogle Scholar
  24. 24.
    Massalski TB (ed) (1990) Binary alloy phase diagrams, vol 3, 2nd edn. American Society for Metals, Metals ParkGoogle Scholar
  25. 25.
    Shimada S, Kozeki M (1992) Oxidation of TiC at low temperatures. J Mater Sci 27:1869CrossRefGoogle Scholar
  26. 26.
    Hashin Z, Shtrikman S (1962) On some variational principles in anisotropic and non-homogeneous elasticity. J Mech Phys Solids 10:335–342CrossRefGoogle Scholar
  27. 27.
    Halpin-Tsai JC (1992) Primer on composite materials analysis, 2nd edn. Technomic, Lancaster, pp 165–191Google Scholar
  28. 28.
    Boccaccini AR, Fan Z (1997) A new approach for the Young’s modulus-porosity correlation of ceramic materials. Ceram Int 23:239–245CrossRefGoogle Scholar
  29. 29.
    Elsayed A, Kondoh K, Imai H, Umeda J (2010) Microstructure and mechanical properties of hot extruded Mg–Al–Mn–Ca alloy produced by rapid solidification powder metallurgy. Mater Des 31:2444–2453CrossRefGoogle Scholar
  30. 30.
    Tian J, Shobu K (2004) Hot-pressed AlN–Cu metal matrix composites and their thermal properties. J Mater Sci 39:1309–1313CrossRefGoogle Scholar
  31. 31.
    Ye HZ, Liu XY, Luan B (2005) In situ synthesis of AlN in Mg–Al alloy by liquid nitridation. J Mater Process Technol 166:79–85CrossRefGoogle Scholar
  32. 32.
    Mirshahi F, Meratian M (2012) High temperature tensile properties of modified Mg/Mg2Si in situ composite. Mater Des 33:557–562CrossRefGoogle Scholar
  33. 33.
    Huang Z, Yu S, Liu J, Zhu X (2011) Microstructure and mechanical properties of in situ Mg2Si/AZ91D composites through incorporating fly ash cenospheres. Mater Des 32:4714–4719CrossRefGoogle Scholar
  34. 34.
    Swaminathan S, Srinivasa RB, Jayaram V (2002) The production of AlN-rich matrix composites by the reactive infiltration of Al alloys in nitrogen. Acta Mater 50:3093–30104CrossRefGoogle Scholar
  35. 35.
    León CA, Arrollo Y, Bedolla E, Drew RAL (2006) Properties of AlN-based magnesium-matrix composite produced by pressureless infiltration. Mater Sci Forum 502:105–110CrossRefGoogle Scholar
  36. 36.
    Contreras A, López VH, León CA, Drew RAL, Bedolla E (2001) The relation between wetting and infiltration behavior in the Al-1010/TiC and Al-2024/TiC systems. Adv Technol Mater Mater Process 3(1):33–40Google Scholar
  37. 37.
    Xiu Z, Yang W, Chen G, Jiang L, Ma K, Wu G (2012) Microstructure and tensile properties of Si3N4p/Al-2024 composite fabricated by pressure infiltration method. Mater Des 33:350–355CrossRefGoogle Scholar
  38. 38.
    Ding-Fwu L, Jow-Lay H, Shao-Ting C (2002) The mechanical properties of AlN/Al composite fabricated by squeeze casting. J Eur Ceram Soc 22:253–261CrossRefGoogle Scholar
  39. 39.
    Zhang Q, Chen G, Wu G, Xiu Z, Luan B (2003) Property characteristics of AlN/Al composite fabricated by squeeze casting technology. Mater Lett 57:1453–1458CrossRefGoogle Scholar
  40. 40.
    Goh CS, Soh KS, Oon PH, Chua BW (2010) Effect of squeeze casting parameters on the mechanical properties of AZ91-Ca Mg alloys. Mater Des 31(suppl. 1):S50–S53CrossRefGoogle Scholar
  41. 41.
    Chedru M, Vicens J, Chermant L, Mordike BL (1999) Aluminium–aluminium nitride composites fabricated by melt infiltration under pressure. J Microsc 196:103–112CrossRefGoogle Scholar
  42. 42.
    Contreras A, Angeles-Chavez C, Flores O, Perez R (2007) Structural, morphological and interfacial characterization of Al-Mg/TiC composites. Mater Charact 58(8–9):685–693CrossRefGoogle Scholar
  43. 43.
    Couturier R, Ducret D, Merle P, Disson JP, Jouvert P (1997) Elaboration and characterization of metal matrix composite: Al/AlN. J Eur Ceram Soc 17:1861–1866CrossRefGoogle Scholar
  44. 44.
    Lai SW, Chung DD (1994) Fabrication of particulate aluminum matrix composites by liquid metal infiltration. J Mater Sci 29(12):3128–3150CrossRefGoogle Scholar
  45. 45.
    Taheri-Nassaj E, Kobashi M, Chou T (1995) Fabrication of an AlN particulate aluminum matrix by a melt stirring method. Scr Mater 32:1923–1927CrossRefGoogle Scholar
  46. 46.
    Wang L, Zhang BP, Shinohara T (2010) Corrosion behavior of AZ91 magnesium alloy in dilute NaCl solutions. Mater Des 31(2):857–863CrossRefGoogle Scholar
  47. 47.
    Bedolla E, Lemus-Ruiz J, Contreras A (2012) Synthesis and characterization of Mg-AZ91/AlN composites. Mater Des 38:91–98CrossRefGoogle Scholar
  48. 48.
    ASTM C20–00 (2000) Standard test method for apparent porosity, water absorption, apparent specific gravity and bulk density by boiling water. American Society for Testing and MaterialsGoogle Scholar
  49. 49.
    Lloyd DJ (1994) Particle reinforcement aluminum and magnesium matrix composites. Int Mater Rev 39:1–23CrossRefGoogle Scholar
  50. 50.
    McLeod AD, Gabryel CM (1992) Kinetics of growth of spinel MgAl2O4 on alumina particulate in aluminum alloys containing magnesium. Metall Mater Trans 23A:1279–1283CrossRefGoogle Scholar
  51. 51.
    Lloyd DJ, Lagacé HP, McLeod AD (1990) Interfacial phenomena in metal matrix composites. In: Ishida H (ed) Controlled interfaces in composites materials. Elsevier Science, New YorkGoogle Scholar
  52. 52.
    Contreras A, Bedolla E, Pérez R (2004) Interfacial phenomena in wettability of TiC by Al–Mg alloys. Acta Mater 52:985–994CrossRefGoogle Scholar
  53. 53.
    Zheng M, Wu K, Yao C (2001) Characterization of interfacial reaction in squeeze cast SiCw/Mg composites. Mater Lett 47:118–124CrossRefGoogle Scholar
  54. 54.
    Zheng MY, Wu K, Kamado S, Kojima Y (2003) Aging behavior of squeeze cast SiCw/AZ91 magnesium matrix composite. Mater Sci Eng A 348:67–75CrossRefGoogle Scholar
  55. 55.
    Taheri-Nassaj E, Kobashi M, Choh T (1995) Fabrication of an AlN particulate aluminium matrix composite by a melt stirring method. Scr Mater 32:1923–1929CrossRefGoogle Scholar
  56. 56.
    Chedru M, Boitier G, Vicens J, Chermant JL, Mordike BL (1997) Al/AlN composites elaborated by squeeze casting. Key Eng Mater 132–136:1006–1009CrossRefGoogle Scholar
  57. 57.
    Baik Y, Drew RAL (1996) Aluminum nitride: processing and applications. Key Eng Mater 122–124:553–570CrossRefGoogle Scholar
  58. 58.
    León CA, Drew RAL (2002) Small punch testing for assessing the tensile strength of gradient Al-Ni/SiC composites. Mater Lett 56:812–816CrossRefGoogle Scholar
  59. 59.
    FactSage 5.0, Bale CW, Pelton AD, Thompson WT. Ecole Polytechnique de Montréal/Royal Military College, Canada (
  60. 60.
    Chedru M, Vicens J, Chermant JL, Mordike BL (2001) Transmission electron microscopy studies of squeeze cast Al–AlN composites. J Microsc 201:299–315CrossRefGoogle Scholar
  61. 61.
    Lai SW, Chung DDL (1994) Superior high-temperature resistance of aluminium nitride particle-reinforced aluminium compared to silicon carbide or alumina particle-reinforced aluminium. J Mater Sci 29:6181–6198CrossRefGoogle Scholar
  62. 62.
    Kennedy AR, Wyatt SM (2000) The effect of processing on the mechanical properties and interfacial strength of aluminum/TiC MMC’s. Compos Sci Technol 60:307–314CrossRefGoogle Scholar
  63. 63.
    Muscat D, Shanker K, Drew RAL (1992) Al/TiC composites produced by melt infiltration. Mater Sci Technol 8(11):971–976CrossRefGoogle Scholar
  64. 64.
    Frage N, Froumin N, Dariel MP (2002) Wetting of TiC by non-reactive liquid metals. Acta Mater 50(2):237–245CrossRefGoogle Scholar
  65. 65.
    Rambo CR, Travitzky N, Zimmermann K, Greil P (2005) Synthesis of TiC/Ti–Cu composites by pressureless reactive infiltration of TiCu alloy into carbon preforms fabricated by 3D-printing. Mater Lett 59:1028–1031CrossRefGoogle Scholar
  66. 66.
    Albiter A, Contreras A, Bedolla E, Pérez R (2003) Structural and chemical characterization of precipitates in Al-2024/TiC composites. Compos Part A 34:17–24CrossRefGoogle Scholar
  67. 67.
    Albiter A, León CA, Drew RAL, Bedolla E (2000) Microstructure and heat-treatment response of Al-2024/TiC composites. Mater Sci Eng A289(1):109–115CrossRefGoogle Scholar
  68. 68.
    Contreras A, Albiter A, Bedolla E, Perez R (2004) Processing and characterization of Al-cu and Al-Mg base composites reinforced with TiC. Adv Eng Mater 6(9):767–775CrossRefGoogle Scholar
  69. 69.
    Goicoechea J, García-Cordovilla C, Louis E, Pamies A (1992) Surface tension of binary and ternary aluminum alloys of the systems Al-Si-Mg and Al-Zn-Mg. J Mater Sci 27:5247–5252CrossRefGoogle Scholar
  70. 70.
    Pai BC, Ramani G, Pillai RM, Satyanarayana KG (1995) Review: role of magnesium in cast aluminum alloy matrix composites. J Mater Sci 30:1903–1911CrossRefGoogle Scholar
  71. 71.
    Shoutens JE (1992) Some theoretical considerations of the surface tension of liquid metals for metal matrix composites. J Mater Sci 24:2681–2686CrossRefGoogle Scholar
  72. 72.
    Contreras A (2007) Wetting of TiC by Al–Cu alloys and interfacial characterization. J Colloid Interface Sci 311:159–170CrossRefGoogle Scholar
  73. 73.
    Lloyd DJ (1991) Aspects of fracture in particulate reinforced metal matrix composites. Acta Metall Mater 39:59–71CrossRefGoogle Scholar
  74. 74.
    Ravi-Kumar NV, Dwarakadasa ES (2000) Effect of matrix strength on the mechanical properties of Al-Zn-Mg/SiCp composites. Compos Part A 31:1139–1145CrossRefGoogle Scholar
  75. 75.
    Fine ME, Conley JG (1990) On the free energy of formation of TiC and Al4C3. Metall Trans 21A:2609–2610CrossRefGoogle Scholar
  76. 76.
    Yokokawa H, Sakai N, Kawada T, Dakiya M (1991) Chemical potential diagram of Al-Ti-C system: Al4C3 formation on TiC formed in Al-Ti liquids containing carbon. Metall Trans 22A:3075–3076CrossRefGoogle Scholar
  77. 77.
    Kennedy AR, Weston DP, Jones MI (2001) Reaction in Al-TiC metal matrix composites. Mater Sci Eng A 316:32–38CrossRefGoogle Scholar
  78. 78.
    Frage N, Frumin N, Levin L, Polak M, Dariel MP (1998) High-temperature phase equilibria in the Al-rich corner of the Al-Ti-C system. Metall Mater Trans A 29:1341–1345CrossRefGoogle Scholar
  79. 79.
    Samuel AM, Gauthier J, Samuel FH (1996) Microstructural aspects of the dissolution and melting of Al2Cu phase in Al-Si alloys during solution heat treatment. Metall Mater Trans A 27:1785–1798CrossRefGoogle Scholar
  80. 80.
    Aguilar EA, Leon CA, Contreras A, Lopez VH, Drew RAL, Bedolla E (2002) Wettability and phase formation in TiC/Al-alloys assemblies. Compos Part A 33:1425–1428CrossRefGoogle Scholar
  81. 81.
    López VH, Leon CA, Kennedy A et al (2003) Spreading mechanism of molten Al-alloys on TiC substrates. Mater Sci Forum 416–418(3):395–400CrossRefGoogle Scholar
  82. 82.
    Leon CA, Lopez VH, Bedolla E, Drew RAL (2002) Wettability of TiC by commercial aluminum alloys. J Mater Sci 37:3509–3514CrossRefGoogle Scholar
  83. 83.
    Albiter A, Contreras A, Salazar M, Gonzalez JG (2006) Corrosion behaviour of aluminium metal matrix composites reinforced with TiC processed by pressureless melt infiltration. J Appl Electrochem 36:303–308CrossRefGoogle Scholar
  84. 84.
    Duran-Olvera JM, Orozco-Cruz R, Galván-Martínez R, León CA, Contreras A (2017) Characterization of TiC/Ni composite immersed in synthetic seawater. MRS Adv 2(50):2865–2873CrossRefGoogle Scholar
  85. 85.
    Alvarez-Lemus N, Leon CA, Contreras A, Orozco-Cruz R, Galvan-Martinez R (2015) Chapter 15: Electrochemical characterization of the aluminum–copper composite material reinforced with titanium carbide immersed in seawater. In: Perez R, Contreras A, Esparza R (eds) Materials characterization. Springer, Cham, pp 147–156Google Scholar
  86. 86.
    Lugo-Quintal J, Díaz-Ballote L, Veleva L, Contreras A (2009) Effect of Li on the corrosion behavior of Al-Cu/SiCp composites. Adv Mater Res 68:133–144CrossRefGoogle Scholar
  87. 87.
    Santamaria D (2001) Efecto del tratamiento térmico de solución y precipitación a un material compuesto de matriz metálica TiC/Al-6061. Dissertation of Master Thesis, Instituto de Investigación en Metalurgia y Materiales, UMSNH, Morelia, MéxicoGoogle Scholar
  88. 88.
    Harris GL (1995) Properties of silicon carbide. Materials Science Research Center of Excellence. Howard University, Washington DC, p 304Google Scholar
  89. 89.
    Snead LL (2004) Limits on irradiation-induced thermal conductivity and electrical resistivity in silicon carbide materials. J Nucl Mater 329–333:524–529CrossRefGoogle Scholar
  90. 90.
    Wang H, Zhang R, Hu X et al (2008) Characterization of a powder metallurgy SiC/Cu–Al composite. J Mater Process Technol 197:43–48CrossRefGoogle Scholar
  91. 91.
    Kocjak M et al (1993) Fundamentals of metal matrix composites. Blutterworth-Heinemann, Waltham, pp 3–42Google Scholar
  92. 92.
    Chu K, Jia C, Tian W et al (2010) Thermal conductivity of spark plasma sintering consolidated SiCp/Al composites containing pores: numerical study and experimental validation. Compos Part A 41:161–167CrossRefGoogle Scholar
  93. 93.
    Chen Q, Yang W, Dong R et al (2014) Interfacial microstructure and its effect on thermal conductivity of SiCp/Cu composites. Mater Des 63:109–114CrossRefGoogle Scholar
  94. 94.
    Hasselman DPH, Johnson LF (1987) Effective thermal conductivity of composites with interfacial thermal barrier resistance. J Compos Mater 21:508–515CrossRefGoogle Scholar
  95. 95.
    Beffort O, Long S, Cayron C et al (2007) Alloying effects on microstructure and mechanical properties of high volume fraction SiC-particle reinforced Al-MMCs made by squeeze casting infiltration. Compos Sci Technol 67:737–745CrossRefGoogle Scholar
  96. 96.
    Jae-Chu L, Ji-Young B, Sung-Bae P et al (1998) Prediction of Si contents to suppress the formation of Al4C3 in the SiCp/Al composite. Acta Mater 46(5):1771–1780CrossRefGoogle Scholar
  97. 97.
    Ren S, He X, Qu X et al (2007) Effect of Mg and Si in the aluminum on the thermo-mechanical properties of pressureless infiltrated SiCp/Al composites. Compos Sci Technol 67(10):2103–2113CrossRefGoogle Scholar
  98. 98.
    Rajan T, Pillai R, Pai B (1998) Reinforcement coatings and interfaces in aluminium metal matrix composites. J Mater Sci 3:3491–3503CrossRefGoogle Scholar
  99. 99.
    Kim Y, Lee J (2006) Processing and interfacial bonding strength of 2014 Al matrix composites reinforced with oxidized SiC particles. Mater Sci Eng A 420:8–12CrossRefGoogle Scholar
  100. 100.
    Xue C, Yu J (2014) Enhanced thermal transfer and bending strength of SiC/Al composite with controlled interfacial reaction. Mater Des 53:74–78CrossRefGoogle Scholar
  101. 101.
    Zalapa O (2016) Síntesis y evaluación de propiedades termofísicas de compuestos de matriz de Mg-AZ91E reforzados con partículas de SiC. Dissertation of Master Thesis, Instituto de Investigación en Metalurgia y Materiales, UMSNH, MéxicoGoogle Scholar
  102. 102.
    Ureña A et al (2004) Oxidation treatments for SiC particles used as reinforcement in aluminium matrix composites. Compos Sci Technol 64(12):1843–1854CrossRefGoogle Scholar
  103. 103.
    Kerner EH (1956) The elastic and thermo-elastic properties of composite media. Proc Phys Soc 69:808CrossRefGoogle Scholar
  104. 104.
    Basavarajappa S, Chandramohan G, Mahadevan A (2007) Influence of speed on the dry sliding wear behavior and subsurface deformation on hybrid metal matrix composite. Wear 262:1007–1012CrossRefGoogle Scholar
  105. 105.
    Prakash K, Balasundar P, Nagaraja S et al (2016) Mechanical and wear behaviour of Mg-SiC-Gr hybrid composites. J Magnes Alloys 4:197–206CrossRefGoogle Scholar
  106. 106.
    Sozhamannan G, Balasivanandha S, Venkatagalapathy V (2012) Effect of processing parameters on metal matrix composites: stir casting process. J Surf Eng Mater Adv Technol 2:11–15Google Scholar
  107. 107.
    Arreola C (2017) Evaluación de propiedades mecánicas y comportamiento al desgaste de compuestos AZ91E/AlN fabricados por fundición con agitación. Dissertation of Master Thesis, Instituto de Investigación en Metalurgia y Materiales, UMSNH, MéxicoGoogle Scholar
  108. 108.
    Grabowski G, Pedzich Z (2007) Residual stresses in particulate composites with alumina and zirconia matrices. J Eur Ceram Soc 27:1287–1292CrossRefGoogle Scholar
  109. 109.
    Gutknecht D, Chevalier J, Garnier V et al (2007) Key role of processing zirconia composites for orthopedic application. J Eur Ceram Soc 27:1547–1552CrossRefGoogle Scholar
  110. 110.
    Nakao E, Ono M, Lee SK et al (2005) Critical crack-healing condition for SiC whisker reinforced alumina under stress. J Eur Ceram Soc 25:3649–3655CrossRefGoogle Scholar
  111. 111.
    Yang JF, Ohji T, Sekino T et al (2001) Phase transformation, microstructure and mechanical properties of Si3N4/SiC composite. J Eur Ceram Soc 21(12):2185–2192CrossRefGoogle Scholar
  112. 112.
    Sekino T, Nakajima T, Ueda S et al (1997) Reduction and sintering of a nickel-dispersed-alumina composite and its properties. J Am Ceram Soc 80:1139–1148CrossRefGoogle Scholar
  113. 113.
    Wada S, Suganuma M, Kitagawa Y et al (1999) Comparison between pulse electric current sintering and hot pressing of silicon nitride ceramics. J Ceram Soc Jpn 107(10):887–890CrossRefGoogle Scholar
  114. 114.
    Xie G, Ohashi O, Sato T et al (2004) Effect of Mg on the sintering of Al-Mg alloy powders by pulse electric current sintering process. Mater Trans 45(3):904–909CrossRefGoogle Scholar
  115. 115.
    Dang KQ, Nanko M, Kawahara M et al (2009) Densification of alumina powder by using PECS process with different pulse electric current wave forms. Mater Sci Forum 620–622:101–104CrossRefGoogle Scholar
  116. 116.
    Suk MJ, Choi SI, Kim JS et al (2003) Fabrication of a porous material with a porosity gradient by a pulsed electric current sintering process. Met Mater Intern 9(6):599–603CrossRefGoogle Scholar
  117. 117.
    Xie G, Ohashi O, Yamaguchi N (2004) Reduction of surface oxide films in Al–Mg alloy powders by pulse electric current sintering. J Mater Res 19(3):815–819CrossRefGoogle Scholar
  118. 118.
    Matsubara T, Shibutani T, Uenishi K et al (2000) Fabrication of a thick surface layer of Al3Ti on Ti substrate by reactive-pulsed electric current sintering. Intermetallics 8:815–822CrossRefGoogle Scholar
  119. 119.
    Salas-Villaseñor AL, Lemus-Ruiz J, Nanko M et al (2009) Crack disappearance by high-temperature oxidation of alumina toughened by Ni nano-particles. Adv Mater Res 68:34–43CrossRefGoogle Scholar
  120. 120.
    Salas-Villaseñor AL (2008) Auto-eliminación de grietas por oxidación a elevada temperatura de alúmina reforzada con níquel. Dissertation of Master Thesis, Instituto de Investigación en Metalurgia y Materiales, UMSNH, Morelia, MéxicoGoogle Scholar
  121. 121.
    Niihara K, Kim BS, Nakayama T et al (2004) Fabrication of complex-shaped alumina/nickel nanocomposites by gel casting process. J Eur Ceram Soc 24:3419–3425CrossRefGoogle Scholar
  122. 122.
    Lu J, Gao L, Sun J et al (2000) Effect of nickel content on the sintering behavior, mechanical and dielectric properties of Al2O3/Ni composites from coated powders. Mater Sci Eng A 293:223–228CrossRefGoogle Scholar
  123. 123.
    Lieberthal M, Kaplan WD (2001) Processing and properties of Al2O3 nanocomposites reinforced with sub-micron Ni and NiAl2O4. Mater Sci Eng A 302:83–91CrossRefGoogle Scholar
  124. 124.
    Tuan WH (2005) Design of multiphase materials. Key Eng Mater 280–283:963–966Google Scholar
  125. 125.
    JIS R-1607 Japanese Industrial Standard (1990) Testing methods for fracture toughness of high performance ceramics. Japanese Standards Association, TokyoGoogle Scholar
  126. 126.
    Miyoshi T, Sagawa N, Sassa T (1985) Study on fracture toughness evaluation for structural ceramics. Trans Jpn Soc Mech Eng 51A(471):2487–2489CrossRefGoogle Scholar
  127. 127.
    Casellas D, Nagl MM, Llanes L et al (2003) Fracture toughness of alumina and ZTA ceramics: microstructural coarsening effects. J Mater Process Technol 143–144:148–152CrossRefGoogle Scholar
  128. 128.
    Reyes A, Bedolla E, Perez R, Contreras A (2016) Effect of heat treatment on the mechanical and microstructural characterization of Mg-AZ91E/TiC composites. Compos Interfaces:1–17Google Scholar
  129. 129.
    Reyes A (2012) Caracterización interfacial del compuesto MgAZ91E/TiC con y sin tratamiento térmico. Dissertation of Master Thesis, Instituto de Investigación en Metalurgia y Materiales, UMSNH, Morelia, MéxicoGoogle Scholar
  130. 130.
    Munitz A, Jo I, Nuechterlein J, Garrett W, Moore JJ, Kaufman MJ (2012) Microstructural characterization of cast Mg-TiC MMC’s. Int J Mater Sci 2:15–19Google Scholar
  131. 131.
    Contreras A, Albiter A, Pérez R (2004) Microstructural properties of the Al-Mg/TiC composites obtained by infiltration techniques. J Phys Condens Matter 16(22):S2241–S2249CrossRefGoogle Scholar
  132. 132.
    Halpin JC, Kardos JL (1976) The Halpin-Tsai equations: a review. Polym Eng Sci 16(5):344–352CrossRefGoogle Scholar
  133. 133.
    Xiuqing Z, Lihua L, Naiheng M, Haowei W (2006) Effect of aging hardening on in situ synthesis magnesium matrix composites. Mater Chem Phys 96(1):9–15CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Antonio Contreras Cuevas
    • 1
  • Egberto Bedolla Becerril
    • 2
  • Melchor Salazar Martínez
    • 3
  • José Lemus Ruiz
    • 2
  1. 1.Instituto Mexicano del PetróleoCiudad de MéxicoMéxico
  2. 2.Universidad Michoacana de San Nicolás de HidalgoInstituto de Investigación en Metalurgia y MaterialesMoreliaMéxico
  3. 3.Clúster Politécnico Veracruz - IPNPapantla de OlarteMéxico

Personalised recommendations