Advertisement

Wettability

  • Antonio Contreras Cuevas
  • Egberto Bedolla Becerril
  • Melchor Salazar Martínez
  • José Lemus Ruiz
Chapter

Abstract

This chapter describes the main fundamental aspects considered during the wetting process. The wettability behavior of molten metals on a solid substrate has become the fundamental aspect in the manufacture of metal-ceramic composites, since in many stages of the process, liquid metal is in contact with a solid ceramic. The degree of wettability is measured from the contact angle (θ) between the molten metal and the ceramic. There are two different types: (1) reactive systems and (2) nonreactive systems. In addition, the main methods to measure wettability of a solid by a liquid metal at high temperature are described, as well as the suitable engineering methods used to improve wettability are addressed. An efficient approach is to apply coatings to the ceramic reinforcement. Another method is the addition of alloying elements that reduce the surface tension and improve wettability. In this chapter the authors analyzed wetting of TiC by pure Al, Mg, and Cu, as well as some binary Al-Mg and Al-Cu alloys. Additionally, some commercial Al alloys (1010, 2024, 6061, and 7075) were studied.

References

  1. 1.
    Gibbs JW (1878) On the equilibrium of heterogeneous substances. Trans Conn Acad 3:343–524Google Scholar
  2. 2.
    Jhonson RE (1959) Conflicts between Gibbsian thermodynamics and recent treatments of interfacial energies in solid-liquid-vapor. J Phys Chem 63:1655–1658CrossRefGoogle Scholar
  3. 3.
    Naidich JV (1981) In: Cadenhead DA, Danielli JF (eds) Progress in surface and membrane science, vol 14. Academic Press, Cambridge, pp 353–484Google Scholar
  4. 4.
    Gallois BM (1997) Overview: wetting in nonreactive liquid metal-oxide systems. JOM 49(6):48–51CrossRefGoogle Scholar
  5. 5.
    Kaptay G (1996) Interfacial phenomena during melt processing of ceramic particle-reinforced metal matrix composites. Mater Sci Forum 215–216:459–466CrossRefGoogle Scholar
  6. 6.
    Ruhle M (1996) Structure and composition of metal/ceramic interfaces. J Eur Ceram Soc 16(3):353–365CrossRefGoogle Scholar
  7. 7.
    Savov L, Heller HP, Janke D (1997) Wettability of solids by molten metals and alloys. Metall 51(9):475–486Google Scholar
  8. 8.
    Dalgleish BJ, Saiz E, Tomsia AP, Cannon RM, Ritchie RO (1994) Interface formation and strength in ceramic/metal systems. Scr Metall Mater 31(8):1109–1114CrossRefGoogle Scholar
  9. 9.
    Delannay F, Froyen L, Deruyttere A (1987) The wetting of solids by molten metals and its relation to the preparation of metal-matrix composites. J Mater Sci 22(1):1–16CrossRefGoogle Scholar
  10. 10.
    Nowok JW (1994) Analysis of atomic diffusion in liquid metals at melting temperatures in capillary like Media-2. Acta Metall Mater 42(12):4025–4028CrossRefGoogle Scholar
  11. 11.
    Eustathopoulus N (1998) Dynamics of wetting in reactive metal/ceramic systems. Mater Sci Eng 249A(1):176–183CrossRefGoogle Scholar
  12. 12.
    Li JG (1994) Wetting of ceramic materials by liquid Si, Al and other metallic melts containing Ti and other reactive elements. Rev Ceram Int 20(6):391–412CrossRefGoogle Scholar
  13. 13.
    Aksay IA, Hoge CE, Pask JA (1974) Wetting under chemical equilibrium and non-equilibrium conditions. J Phys Chem 78(12):1178–1183CrossRefGoogle Scholar
  14. 14.
    Naidich YV, Taranets NY (1988) Wettability of aluminum nitride by tin-aluminum melts. J Mater Sci 33:393–397Google Scholar
  15. 15.
    Samsonov GV, Panasyuk AD, Kozina GK (1968) Wetting of refractory carbides with liquid metals. Porosk Metall 71(11):42–48Google Scholar
  16. 16.
    Muscat D, Drew RAL (1994) Modeling the infiltration kinetics of molten aluminum into porous titanium carbide. Metall Mater Trans 25A(11):2357–2370CrossRefGoogle Scholar
  17. 17.
    Muscat D, Harris RL, Drew RAL (1994) The effect of pore size on the infiltration kinetics of aluminum in TiC preforms. Acta Metall Mater 42(12):4155–4163CrossRefGoogle Scholar
  18. 18.
    Banerji A, Rohatgi PK, Reif W (1984) Role of the wettability in the preparation of metal-matrix composites (a review). Metall 38:656–661Google Scholar
  19. 19.
    León CA, Drew RAL (2000) Preparation of nickel-coated powders as precursors to reinforce MMC’s. J Mater Sci 35(19):4763–4768CrossRefGoogle Scholar
  20. 20.
    León CA, Bourassa AM, Drew RAL (2000) Processing of aluminum matrix composites by electroless plating and melt infiltration. Adv Technol Mater Mater Process J 2(2):96–106Google Scholar
  21. 21.
    Hatch JE (1984) ALUMINUM properties and physical metallurgy. ASM International, GeaugaGoogle Scholar
  22. 22.
    Pai BC, Ramani G, Pillai RM, Satyanarayana KG (1995) Review: Role of magnesium in cast aluminum alloy matrix composites. J Mater Sci 30:1903–1911CrossRefGoogle Scholar
  23. 23.
    Mcevoy AJ, Williams RH, Higginbotham IG (1976) Metal/non-metal interfaces. The wetting of magnesium oxide by aluminum and other metals. J Mater Sci 11:297–302CrossRefGoogle Scholar
  24. 24.
    Brewer L, Searcy AW (1951) The gaseous species of the Al-Al2O3 system. J Am Chem Soc 73:5308–5314CrossRefGoogle Scholar
  25. 25.
    Brennan JJ, Pask JA (1968) Effect of nature of surfaces on wetting of saphire by liquid aluminum. J Am Ceram Soc 51(10):569–573CrossRefGoogle Scholar
  26. 26.
    Porter RF, Schissel P, Inghram MG (1955) A mass spectrometric study of gaseous species in the Al-Al2O3 system. J Chem Phys 23(2):339–342CrossRefGoogle Scholar
  27. 27.
    Rao YK (1985) Stoichiometry and thermodynamics of metallurgical processes. CBLS Publishers, MariettaGoogle Scholar
  28. 28.
    López Morelos VH (2000) Mojabilidad del TiC por el Aluminio y sus Aleaciones. Thesis of Master degree, IIM-UMSNH, Morelia Mich., MéxicoGoogle Scholar
  29. 29.
    Madeleno U, Liu H, Shinoda T, Mishima Y, Suzuki T (1990) Compatibility between alumina fibres and aluminum. J Mater Sci 25:3273–3280CrossRefGoogle Scholar
  30. 30.
    Lijun Z, Jimbo W, Jiting Q, Qiu N (1989) An investigation on wetting behavior and interfacial reactions of aluminum α-Alumina system. In: Lin RY et al (eds) Proceeding of interfaces in metal-ceramics composites. TMS, Warrendale, pp 213–226Google Scholar
  31. 31.
    Pech-Canul MI, Katz RN, Makhlouf MM (2000) Optimum parameters for wetting silicon carbide by aluminum alloys. Metall Mater Trans 31A:565–573CrossRefGoogle Scholar
  32. 32.
    Pech-Canul MI, Katz RN, Makhlouf MM (2000) The combined role of nitrogen and magnesium in wetting SiC by aluminum alloys. In: Memoria XXII Congreso Internacional de Metalurgia y Materiales, Saltillo Coah., México, pp 232–241Google Scholar
  33. 33.
    García-Cordovilla C, Louis E, Pamies A (1986) The surface tension of liquid pure aluminium and aluminium-magnesium alloy. J Mater Sci 31(21):2787–2792CrossRefGoogle Scholar
  34. 34.
    Goicoechea J, García-Cordovilla C, Louis E, Pamies A (1992) Surface tension of binary and ternary aluminum alloys of the systems Al-Si-Mg and Al-Zn-Mg. J Mater Sci 27:5247–5252CrossRefGoogle Scholar
  35. 35.
    Narciso J, Alonso A, Pamies A, García-Cordovilla C, Louis E (1994) Wettability of binary and ternary alloys of the system Al-Si-Mg with SiC particulates. Scr Metall Mater 31(11):1495–1500CrossRefGoogle Scholar
  36. 36.
    Manning CR, Gurganus TB (1969) Wetting of binary aluminum alloys in contact with Be, B4C, and graphite. J Am Ceram Soc 52(3):115–118CrossRefGoogle Scholar
  37. 37.
    Pai BC, Ray S, Prabhakar KV, Rohatgi PK (1976) Fabrication of aluminum-alumina/magnesia/particulate composites in foundries using magnesium additions to the melts. Mater Sci Eng 24:31–44CrossRefGoogle Scholar
  38. 38.
    Dean WA (1967) In: Horn V (ed) Aluminum, vol 1. ASM Pub, Metals Park, Ohio, p 163Google Scholar
  39. 39.
    Suresh S, Mortensen A, Needleman A (1993) Fundamentals of metal matrix composites. Butterworth-Heinemann, BostonGoogle Scholar
  40. 40.
    Banerji A, Rohatgi K (1982) Cast aluminum alloy containing dispersions of TiO2 and ZrO2 particles. J Mater Sci 17(2):335–342CrossRefGoogle Scholar
  41. 41.
    Laurent V, Chatain D, Eustathopoulos N (1991) Wettability of SiO2 and oxidized SiC by aluminum. Mater Sci Eng 135:89–94CrossRefGoogle Scholar
  42. 42.
    Bardal A (1992) Wettability and interfacial reaction products in the AlSiMg surface-oxidized SiC system. Mater Sci Eng 159A:119–125CrossRefGoogle Scholar
  43. 43.
    Eustathopoulos N, Drevet B (1998) Determination of the nature of metal-oxide interfacial interactions from Sessile drop data. Mater Sci Eng A 249(1):176–183CrossRefGoogle Scholar
  44. 44.
    Eustathopoulos N, Joud JC, Desre P, Hicter JM (1974) The wetting of carbon by aluminum and aluminum alloys. J Mater Sci 9(8):1233–1242CrossRefGoogle Scholar
  45. 45.
    Pique D, Coudurier L, Eustathopoulos N (1981) Adsorption du cuivre a l'interface entre Fe solide et Ag liquide a 1100 °C. Scr Metall 15(2):165–170CrossRefGoogle Scholar
  46. 46.
    Humenik M, Kingery WD (1954) Metal-ceramic interactions III: surface tension and wettability of metal-ceramic systems. J Am Ceram Soc 37(1):18–23CrossRefGoogle Scholar
  47. 47.
    Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28(8):988–994CrossRefGoogle Scholar
  48. 48.
    Nakae H, Inui R, Hirata Y, Saito H (1998) Effects of surface roughness on wettability. Acta Metall Mater 46(7):2313–2318CrossRefGoogle Scholar
  49. 49.
    Eustathopoulos N (1998) Dynamics of wetting in reactive metal/ceramics systems. Acta Mater 46(7):2319–2327Google Scholar
  50. 50.
    Dezellus O, Eustathopoulos N (2010) Fundamental issues of reactive wetting by liquid metals. J Mater Sci 45:4256–4264CrossRefGoogle Scholar
  51. 51.
    Dezellus O, Eustathopoulos N (1999) The role of Van der Waals interactions on wetting and adhesion in metal/carbon systems. Scr Mater 40(11):1283–1288CrossRefGoogle Scholar
  52. 52.
    Dezellus O, Hodaj F, Eustathopoulos N (2002) Chemical reaction-limited spreading: the triple line velocity versus contact angle relation. Acta Mater 50:4741–4753CrossRefGoogle Scholar
  53. 53.
    Dezellus O, Hodaj F, Eustathopoulos N (2003) Progress in modelling of chemical-reaction limited wetting. J Eur Ceram Soc 23(15):2797–2803CrossRefGoogle Scholar
  54. 54.
    Dezellus O, Hodaj F, Mortensen A, Eustathopoulos N (2001) Diffusion-limited reactive wetting. Spreading of Cu-Sn-Ti alloys on vitreous carbon. Scr Mater 44:2543–2549CrossRefGoogle Scholar
  55. 55.
    Mortensen A, Drevet B, Eustathopoulos N (1997) Kinetic of diffusion-limited spreading of sessile drops in reactive wetting. Scr Mater 36(6):645–651CrossRefGoogle Scholar
  56. 56.
    Frage N, Froumin N, Dariel MP (2002) Wetting of TiC by non-reactive liquid metals. Acta Mater 50(2):237–245CrossRefGoogle Scholar
  57. 57.
    Asthana R, Sobezak N (2000) Wettability, spreading and interfacial phenomena in high temperature coatings. JOM 52(1):1–19CrossRefGoogle Scholar
  58. 58.
    Starov VM, Velarde MG, Radke CJ (2007) Wetting and spreading dynamics, vol 138. CRC Press, Boca RatonGoogle Scholar
  59. 59.
    Saiz E, Tomsia AP, Cannon RM (1998) Ridging effects on wetting and spreading of liquids on solids. Acta Mater 46(7):2349–2361CrossRefGoogle Scholar
  60. 60.
    Lam CNC, Wu R, Lia D, Hair ML, Neumann AW (2002) Study of the advancing and receding contact angles: liquid sorption as a cause of contact angle hysteresis. Adv Colloid Interface Sci 96:169–191CrossRefGoogle Scholar
  61. 61.
    Eick JD, Good RJ, Neumann AW (1975) Thermodynamics of contact angles. II. Rough solid surfaces. J Colloid Interface Sci 53(2):235–248CrossRefGoogle Scholar
  62. 62.
    Oliver JF, Huh C, Mason SG (1980) An experimental study of some effects of solid surface roughness on wetting. Colloids Surf 1:79CrossRefGoogle Scholar
  63. 63.
    Oliver JF, Mason SG (1980) Liquid spreading on rough metal surfaces. J Mater Sci 15(2):431–437CrossRefGoogle Scholar
  64. 64.
    Neumann AW, Good RJ (1972) Thermodynamics of contact angles. I. Heterogeneous solid surfaces. J Colloid Interface Sci 38:341–358CrossRefGoogle Scholar
  65. 65.
    Marmur A (1997) Line tension and the intrinsic contact angle in solid–liquid–fluid systems. J Colloid Interface Sci 186(2):462–466CrossRefGoogle Scholar
  66. 66.
    Decker EL, Garoff S (1997) Contact line structure and dynamics on surfaces with contact angle hysteresis. Langmuir 13(23):6321–6332CrossRefGoogle Scholar
  67. 67.
    Fadeev AY, McCarthy TJ (1999) Binary monolayer mixtures: modification of nanopores in silicon supported tris (trimethylsiloxy) silyl monolayers. Langmuir 15:7238–7243CrossRefGoogle Scholar
  68. 68.
    Fadeev AY, McCarthy TJ (1999) Trialkylsilane monolayers covalently attached to silicon surfaces: wettability studies indicating that molecular topography contributes to contact angle hysteresis. Langmuir 15:3759–3766CrossRefGoogle Scholar
  69. 69.
    Youngblood JP, McCarthy TJ (1999) Ultrahydrophobic polymer surfaces prepared by simultaneous ablation of polypropylene and sputtering of poly (tetrafluoroethylene) using radio frequency plasma. Macromolecules 32:6800–6806CrossRefGoogle Scholar
  70. 70.
    Sedev RV, Petrov JG, Neumann AW (1996) Effect of swelling of a polymer surface on advancing and receding contact angles. J Colloid Interface Sci 180:36–42CrossRefGoogle Scholar
  71. 71.
    Lam CNC, Wu R, Li D, Hair ML, Neumann AW (2002) Study of the advancing and receding contact angles: liquid sorption as a cause of contact angle hysteresis. J Colloid Interface Sci 96:169–191CrossRefGoogle Scholar
  72. 72.
    Jha AK, Prasad SV, Upadhyaya GS (1990) In: Bhagat RB (ed) Metal & ceramic matrix composites. CRC Press, Boca Raton, pp 127–135Google Scholar
  73. 73.
    Rhee SK (1970) Wetting of ceramics by liquid aluminum. J Am Ceram Soc 53(7):386–389CrossRefGoogle Scholar
  74. 74.
    Kononenko VY, Shvejkin GP, Sukhman AL, Lomovtsev VI, Mitrofanov BV (1976) Chemical compatibility of titanium carbide with aluminum, gallium, and indium melts. Poroshk Metall 9:48–52Google Scholar
  75. 75.
    Frumin N, Frage N, Polak M, Dariel MP (1997) Wettability and phase formation in the TiCx/Al system. Scr Mater 37(8):1263–1267CrossRefGoogle Scholar
  76. 76.
    Asthana R, Tewari SN (1993) Interfacial and capillary phenomena in solidification processing of metal-matrix composites. Compos Manuf 4(1):3–25CrossRefGoogle Scholar
  77. 77.
    Kaptay G, Bader E, Bolyan L (2000) Interfacial forces and energies relevant to production of metal matrix composites. Mater Sci Forum 329–330:151–156CrossRefGoogle Scholar
  78. 78.
    Contreras A, López VH, León CA, Drew RAL, Bedolla E (2001) The relation between wetting and infiltration behavior in the Al-1010/TiC and Al-2024/TiC systems. Adv Technol Mater Mater Process 3(1):33–40Google Scholar
  79. 79.
    Ferro AC, Derby B (1995) Wetting behavior in the Al-Si/SiC system: interface reactions and solubility effects. Acta Metall Mater 43(8):3061–3073CrossRefGoogle Scholar
  80. 80.
    Lin Q, Shen P, Yang L, Jin S, Jiang Q (2011) Wetting of TiC by molten Al at 1123–1323 K. Acta Mater 59:1898–1911CrossRefGoogle Scholar
  81. 81.
    Xiao P, Derby B (1996) Wetting of titanium nitride and titanium carbide by liquid metals. Acta Mater 44(1):307–314CrossRefGoogle Scholar
  82. 82.
    Schuster CJ, Nowotny H, Vaccaro C (1980) The ternary systems: Cr-Al-C, V-Al-C, and Ti-C-Al and the behavior of H-phases (M2AlC). J Solid State Chem 32:213–219CrossRefGoogle Scholar
  83. 83.
    Iseki T, Kameda T, Maruyama T (1983) Some properties of sintered Al4C3. J Mater Sci Lett 2:675–676CrossRefGoogle Scholar
  84. 84.
    Banerji A, Reif W (1986) Development of Al-Ti-C grain refiners containing TiC. Metall Trans 17A:2127–2137CrossRefGoogle Scholar
  85. 85.
    Fine ME, Conley JG (1990) On the free energy of formation of TiC and Al4C3. Metall Trans 21A:2609–2610CrossRefGoogle Scholar
  86. 86.
    Yokokawa H, Sakai N, Kawada T, Dakiya M (1991) Chemical potential diagram of Al-Ti-C System: Al4C3 formation on TiC formed in Al-Ti liquids containing carbon. Metall Trans 22A:3075–3076CrossRefGoogle Scholar
  87. 87.
    Contreras A, Leon CA, Drew RAL, Bedolla E (2003) Wettability and spreading kinetics of Al and Mg on TiC. Scr Mater 48:1625–1630CrossRefGoogle Scholar
  88. 88.
    Contreras A (2002) Fabricación y estudio cinético de materiales compuestos de matriz metálica Al-Cux y Al-Mgx reforzados con TiC: Mojabilidad e infiltración. Thesis, Universidad Nacional Autónoma de MéxicoGoogle Scholar
  89. 89.
    Laurent V, Chatain D, Chatillon C, Eustathopoulos N (1998) Wettability of monocrystalline alumina by aluminum between its melting point and 1273K. Acta Metall 36(7):1797–1803CrossRefGoogle Scholar
  90. 90.
    Brennan JJ, Pask JA (1968) Effect of composition on glass-metal interface reactions and adherence. J Am Ceram Soc 56(2):58–62CrossRefGoogle Scholar
  91. 91.
    Keene BJ (1993) Review of data for the surface tension of pure metals. Int Mater Rev 38(4):157–192CrossRefGoogle Scholar
  92. 92.
    Muscat D (1993) Titanium carbide/Aluminum composites by melt infiltration. Thesis, Department of Mining and Metallurgical Engineering, McGill University, pp 48–51Google Scholar
  93. 93.
    Kumar G, Narayan K (2007) Review of non-reactive and reactive wetting of liquids on surfaces. Adv Colloid Interface Sci 133:61–89CrossRefGoogle Scholar
  94. 94.
    Toy C, Scott WD (1997) Wetting and spreading of molten aluminium against AlN surfaces. J Mater Sci 32:3243–3248CrossRefGoogle Scholar
  95. 95.
    Narayan K, Fernandes P (2007) Determination of wetting behavior, spread activation energy, and quench severity of bioquenchants. Metall Mater Trans B 38:631–640CrossRefGoogle Scholar
  96. 96.
    Contreras A (2007) Wetting of TiC by Al–Cu alloys and interfacial characterization. J Colloid Interface Sci 311:159–170CrossRefGoogle Scholar
  97. 97.
    Li L, Wong YS, Fuh JYH, Lu L (2001) Effect of TiC in copper–tungsten electrodes on EDM performance. J Mater Process Technol 113:563–567CrossRefGoogle Scholar
  98. 98.
    Leong CC, Lu L, Fuh JYH, Wong YS (2002) In-situ formation of copper matrix composites by laser sintering. Mater Sci Eng A 338:81–88CrossRefGoogle Scholar
  99. 99.
    Akhtar F, Javid-Askari S, Ali-Shah K, Du X, Guo S (2009) Microstructure, mechanical properties, electrical conductivity and wear behavior of high volume TiC reinforced Cu-matrix composites. Mater Charact 60:327–336CrossRefGoogle Scholar
  100. 100.
    Froumin N, Frage N, Polak M, Dariel MP (2000) Wetting phenomena in the TiC/(Cu-Al) system. Acta Mater 48:1435–1441CrossRefGoogle Scholar
  101. 101.
    Mortimer DA, Nicholas M (1973) The wetting of carbon and carbides by copper alloys. J Mater Sci 8:640–648CrossRefGoogle Scholar
  102. 102.
    Zarrinfar N, Kennedy AR, Shipway PH (2004) Reaction synthesis of Cu-TiCx master-alloys for the production of copper-based composites. Scr Mater 50:949–952CrossRefGoogle Scholar
  103. 103.
    Zarrinfar N, Shipway PH, Kennedy AR, Saidi A (2002) Carbide stoichiometry in TiCx and Cu-TiCx produced by self-propagating high-temperature synthesis. Scr Mater 46:121–126CrossRefGoogle Scholar
  104. 104.
    Contreras A, Albiter A, Bedolla E, Perez R (2004) Processing and characterization of Al-Cu and Al-Mg base composites reinforced with TiC. Adv Eng Mater 6:767–775CrossRefGoogle Scholar
  105. 105.
    Shoutens JE (1992) Some theoretical considerations of the surface tension of liquid metals for metal matrix composites. J Mater Sci 24:2681–2686CrossRefGoogle Scholar
  106. 106.
    Aguilar EA, Leon CA, Contreras A, Lopez VH, Drew RAL, Bedolla E (2002) Wettability and phase formation in TiC/Al-alloys assemblies. Compos Part A 33:1425–1428CrossRefGoogle Scholar
  107. 107.
    Lloyd DJ (1994) Particle reinforced aluminium and magnesium matrix composites. Int Mater Rev 39:1–24CrossRefGoogle Scholar
  108. 108.
    McLeod AD, Gabryel CM (1992) Kinetic of the grow spinel MgAl2O4 on alumina particulate in aluminum alloys containing magnesium. Metall Trans A 23:1279–1283CrossRefGoogle Scholar
  109. 109.
    Saiz E, Tomsia AP (1998) Kinetics of metal-ceramic composite formation by reactive penetration of silicates with molten aluminum. J Am Ceram Soc 81(9):2381–2393CrossRefGoogle Scholar
  110. 110.
    Yosomiya R, Morimoto K, Nakajima A, Ikada Y, Suzuki T (eds) (1990) Adhesion and bonding in composites. Marcel Dekker, New York, p 23Google Scholar
  111. 111.
    Eustathopoulos N, Nicholas MG, Drevet B (1999) In: Cahn RW (ed) Wettability at high temperatures, Pergamon materials series, vol 3. Elsevier Science & Technology, Oxford, p 45Google Scholar
  112. 112.
    Contreras A, Bedolla E, Perez R (2004) Interfacial phenomena in wettability of TiC by Al–Mg alloys. Acta Mater 52:985–994CrossRefGoogle Scholar
  113. 113.
    Yoshimi N, Nakae H, Fujii H (1990) A new approach to estimating wetting in reaction system. Mater Trans JIM 31(2):141–147CrossRefGoogle Scholar
  114. 114.
    Nakae H, Fujii H, Sato K (1992) Reactive wetting of ceramics by liquid metals. Mater Trans JIM 33:400–406CrossRefGoogle Scholar
  115. 115.
    Fujii H, Nakae H (1990) Three wetting phases in the chemically reactive MgO/Al system. ISIJ Int 30(12):1114–1118CrossRefGoogle Scholar
  116. 116.
    Contreras A, Salazar M, León CA, Drew RAL, Bedolla E (2000) Kinetic study of the infiltration of aluminum alloys into TiC. Mater Manuf Process 15(2):163–182CrossRefGoogle Scholar
  117. 117.
    Contreras A, Albiter A, Perez R (2004) Microstructural properties of the Al–Mgx/TiC composites obtained by infiltration techniques. J Phys Condens Matter 16:S2241–S2249CrossRefGoogle Scholar
  118. 118.
    Nukami T, Flemings M (1995) In situ synthesis of TiC particulate-reinforced aluminum matrix composites. Metall Mater Trans 26A:1877–1884CrossRefGoogle Scholar
  119. 119.
    Yang B, Chen G, Zhang J (2001) Effect of Ti/C additions on the formation of Al3Ti of in situ TiC/Al composites. Mater Des 22:645–650CrossRefGoogle Scholar
  120. 120.
    Rajan TPD, Pillai RM, Pai BC (1998) Review: Reinforcement coatings and interfaces in aluminium metal matrix composites. J Mater Sci 33:3491–3503CrossRefGoogle Scholar
  121. 121.
    Asthana R (1998) Reinforced cast metal part II evolution of the interface. J Mater Sci 33(8):1959–1980CrossRefGoogle Scholar
  122. 122.
    Leon CA, Lopez VH, Bedolla E, Drew RAL (2002) Wettability of TiC by commercial aluminum alloys. J Mater Sci 37:3509–3514CrossRefGoogle Scholar
  123. 123.
    Lumley RN, Sercombe TB, Schaffer GB (1999) Surface oxide and the role of magnesium during the sintering of aluminum. Metall Mater Trans 30A:457–463CrossRefGoogle Scholar
  124. 124.
    Orkasov TA, Ponezhev MK, Sozaev VA, Shidov KT (1996) An investigation of the temperature dependence of the surface tension of aluminum alloys. High Temp 34:490–492Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Antonio Contreras Cuevas
    • 1
  • Egberto Bedolla Becerril
    • 2
  • Melchor Salazar Martínez
    • 3
  • José Lemus Ruiz
    • 2
  1. 1.Instituto Mexicano del PetróleoCiudad de MéxicoMéxico
  2. 2.Universidad Michoacana de San Nicolás de HidalgoInstituto de Investigación en Metalurgia y MaterialesMoreliaMéxico
  3. 3.Clúster Politécnico Veracruz - IPNPapantla de OlarteMéxico

Personalised recommendations