Advertisement

The History of Slope Evolution – Primary Cause of its Modern Instability (by Example of the “Vorobyovy Gory” Landslide, Moscow)

  • Olga S. Barykina
  • Oleg V. Zerkal
  • Eugene N. Samarin
  • Irina P. Gvozdeva
Chapter
Part of the Innovation and Discovery in Russian Science and Engineering book series (IDRSE)

Abstract

Landslide processes on the Moscow city territory have been studied more than a hundred years. The study area is located in the central part of the Vorobyovy Gory, covering the area from the Moscow observation deck to the Moscow metro bridge. The length of the visually defined landslides is up to several hundred meters, and the visible width along the axial part of the landslide is more than 300 m. The volume of soil involved in the landslide deformation is estimated as 2 million m3. The surface slope, the elevation of which reaches 60–70 m, has a typical landslide terrain. The deposits of Carboniferous, Jurassic, Cretaceous, and Quaternary systems are presented in structure section.

This paper deals with the nature, mechanism, and spatial distribution of landslide processes on the Vorobyovy Gory in Moscow, based on new factual data with the consideration of the regional geological history.

This material made it possible to draw the following conclusions. Firstly, the area involved in landslide processes on the Vorobyovy Gory is characterized by larger values in terms of area and depth than it previously assumed. In the head part, where the displacement zone is located at the depths of 80–100 m, the deformations, confined to the lower part of the Jurassic deposits, have a block character. Secondly, we can talk about a combined mechanism of the development of large-scale landslide massif “Vorobyovy Gory”, including plastic flow with the forming of shaft bulging, crash with throwing, block offsets, and other types of deformations. Both primary and secondary displacements can be distinguished in this landslide massif.

Keywords

Landslides Slope Stability Deformation Evolution 

References

  1. 1.
    Barykina O. S., Zerkal O. V., Samarin E. N., & Gvozdeva I. P. (2017). K voprosu o razvitii opolznevykh protsessov na Vorobyevykh gorakh (Moskva) [On the development of landslide processes on Vorobyovy gory hills (Moscow)]. Inzhenerno-geologicheskiye zadachi sovremennosti I metody ikh resheniya [Engineering-geological problems of the present and methods for their solution]: Proc. conf. – Geomarketing. Moscow. 111–117 (in Russian).Google Scholar
  2. 2.
    Churinov M. V. (1957). Kharakteristika opolzney pravogo berega r.Moskvy na uchastke Leninskikh gor i vozmozhnost stroitelnogo osvoyeniya etoy territorii [Description of landslides of the right bank of the Moskva River on the site of the Lenin Mountains and the possibility of building development of this territory]. Voprosy gidrogeologii i inzhenernoy geologii [Questions of hydrogeology and engineering geology]: Proc. VSEGINGEO. – Gosgeoltekhizdat. Moscow. 15. 62–78 (in Russian).Google Scholar
  3. 3.
    Danshin, B. M. (1937). Geologicheskoye stroyeniye Leninskikh gor v svyazi s nekotorymi voprosami stratigrafii otlozheniy melovoy sistemyi opolznevymi yavleniyami po beregu r. Moskvy [The geological structure of the Leninskie Hills in connection with some issues of the stratigraphy of deposits of the Cretaceous system and landslide phenomena along the banks of the Moskva River]. Izvestiya Moskovskogo geologicheskogo tresta [News of the Moscow Geological Trust]. (4). 3–23 (in Russian).Google Scholar
  4. 4.
    Danshin, B.M. (1947). Geologicheskoe stronye i poleznye iskopaemye Moskvy i eyo okrestnostey [Geological aspects and mineral deposits of Moscow and its outskirts]. Mosc. Soc. Nat. Мoscow. 307 (in Russian).Google Scholar
  5. 5.
    Golodkovskaya, G. A., & Lebedeva, N. I. (1984). Inzhenerno-geologicheskoye rayonirovaniye territorii Moskvy [Engineering-geological zoning of the territory of Moscow]. Inzhenernaya geologiya [Engineeringgeology]. (3). 87–102 (in Russian).Google Scholar
  6. 6.
    Gulakyan, K. A., & Kuntzel, V. V. (1970). Klassifikatsiya opolzney po mekhanizmu ikh razvitiya [Classification of landslides by the mechanism of their development]. Proc. VSEGINGEO. 29. 58–64 (in Russian).Google Scholar
  7. 7.
    International Geotechnical Society’s UNESCO Working Party on World Landslide Inventory (WP/WLI). (1993). A multi-lingual landslide glossary (Vol. 59). Vancouver: Bitech Publ.Google Scholar
  8. 8.
    Korcheobokov, N. A., Romanov, A. V., & Yakovlev, S. Y. (1938). Opolzni Leninskikh gor. Geologiya v rekonstruktsii goroda Moskvy [Landslides of the Leninskie Gory hills. Geology in the reconstruction of Moscow] (pp. 377–390). Moscow-Leningrad: Academy of Sciences of the USSR (in Russian).Google Scholar
  9. 9.
    Kuntzel, V. V. (1965). O vozraste glubokikh opolzney Moskvy i Podmoskovia. svyazannykh s yurskimi glinistymi otlozheniyami [On the age of deep landslides in Moscow and the Moscow region, associated with Jurassic clay deposits]. Bull. Moscow. of the Isp. nature. Subdiv. geol., XL (8), 93–100 (in Russian).Google Scholar
  10. 10.
    Moskva. Gorod i geologiya [Moscow. Geology and the city]. (1997). Editors Medvedev O.P., Osipov V.I. Moscow textbooks and Kartolitographia. Moscow. 399 (in Russian).Google Scholar
  11. 11.
    Nikitin, S. N. (1897a). Geologicheskaya karta okrestnostey Moskvy [Geological map of the environs of Moscow]. St. Petersburg: Geological Committee (in Russian).Google Scholar
  12. 12.
    Nikitin, S. N. (1897b). Les environs de Moscou. Guide des excursions du VII Congres Geologique International. St-Petersbourg. 1–16.Google Scholar
  13. 13.
    Olferiev, A. G. (2012). Stratigraficheskye podrazdelenija urskikh otlojeniy Podmoscovija [Jurassic stratigraphic subdivisions of Moscow basin]. Bull. Moscow. of the Isp. nature. Subdiv. geol., 87(4) 32–55 (in Russian).Google Scholar
  14. 14.
    Paretskaya, M. N. (1975). Zavisimost morfologii opolzney vydavlivaniya Podmoskovia ot prochnostiy urskikh glin [Dependence of the morphology of landslides extrusion of the Moscow suburbs on the strength of Jurassic clays]. Proc. VSEGINGEO. 81. 94–97 (in Russian).Google Scholar
  15. 15.
    Pavlov, A. P. (1890). Novyye dannyye po geologii Vorobyevykh gor [New data on the geology of the Vorobyovy Hills]. Bulletin of Natural Science. (7). 301–304 (in Russian).Google Scholar
  16. 16.
    Pavlov, A. P. (1910). Zametka ob obrazovanii opolzney v glinistykh i glinisto-peschanykh porodakh [A note on the formation of landslides in clayey and clayey-sandy rocks]. Bull. Soc. Nat. Moscou. 4. 29–30 (in Russian).Google Scholar
  17. 17.
    Pavlov A. V. (1911). Dokladnaya zapiska Moskovskoy Gorodskoy uprave o stroyenii mestnosti po linii napornyy rezervuar – Yakht-klub – Moskva-reka i o prichinakh spolzaniya nagornogo otkosa mezhdu napornym rezervuarom i vostochnym krayem s. Vorobyeva [Memorandum to the Moscow City council on the structure of the area along the pressure tank line – yacht Club - Moscow River and the reasons for the slope of the uphill slope between the pressure tank and the eastern edge of the village Vorobyov]. City Printing House. Moscow (in Russian).Google Scholar
  18. 18.
    Shkolin A. A., & Malenkina S. Y. (2015). Sravneniye tipov razrezov verkhneyy ury (Volzhskiy yarus) – nizhnego mela yugo-vostoka Moskovskogo regiona [Comparison of the types of sections of the Upper Jurassic (Volga level) -a lower chalk of the southeast of the Moscow region]. Jurassic system of Russia: problems of stratigraphy and paleogeography: Proc. VI Russian Workshop. ALEF. Makhachkala. 304–308 (in Russian).Google Scholar
  19. 19.
    Mitta, V. V., Alexeev, A. S., & Shik, S. M. (Eds.). (2012). Unified regional stratigraphic scheme of the Jurassic sediments of the East European Platform. Explanatory letter (p. 64). Moscow: GINRAS - FGUPVNIGNI (in Russian).Google Scholar
  20. 20.
    Zerkal, O., Barykina, O., Samarin, E., Gvozdeva, I. (2017). The influence of paleo-landslide activity on the modern slope stability. Proc. of 2017 IPL Symposium, UNESCO-ICL, Paris. 89–92.Google Scholar
  21. 21.
    Shubert F. F. (1860). Topograficheskaya karta Moskovskoj gubernii, gravirovannaya v Voenno-Topograficheskom depo v 1860 godu na 40 listah. Masshtab 2 versty v anglijskom dyujme 1:84000. Moskva. [Topographic map of Moscow province, engraved in 1860 on 40 sheets of military Topographic depot. A scale of 2 miles in English inches, 1:84000. Moscow] (in Russian).Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Olga S. Barykina
    • 1
  • Oleg V. Zerkal
    • 1
  • Eugene N. Samarin
    • 1
  • Irina P. Gvozdeva
    • 1
  1. 1.Laboratory of Engineering Geodynamics and Substantiation of Engineering Protection of Territories, Department of Engineering and Ecological Geology, Geology FacultyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations