Structural Transformations of Permafrost before the Formation of the Yamal Craters

  • A. N. KhimenkovEmail author
  • D. O. Sergeev
  • Y. V. Stanilovskaya
  • A. N. Vlasov
  • D. B. Volkov-Bogorodsky
  • V. P. Merzlyakov
  • G. S. Tipenko
Part of the Innovation and Discovery in Russian Science and Engineering book series (IDRSE)


This article deals with the genesis of the gas discharge funnel located 30 km south of the Bovanenkovskoye gas condensate field and named the Yamal crater. A new approach contains the theory of the formation of similar funnels due to the structural transformations of the frozen massif under the influence of gases coming from the decomposition of gas hydrates. The leading role of lakes in the formation of local zones of dissociation of gas hydrates was declared. The estimation of the pressure that is necessary for migration of fluids in frozen rocks and the explosion that formed the Yamal crater was carried out.


Gas hydrates Dissociation Fluids Gas discharge funnel Yamal crater Process stage Permafrost 

Legend of Math Symbols


Ejection depth, meters


Angle of inclination to the conical surface, radians


Height of conical body, meters


Radius of the base of the conical body, meters


Upper radius of conical body, meters


Maximum permissible tensile stress, mPa


Maximum allowable shear stress, mPa


Vertical force of adhesion of the lateral surface to the ground, newtons


Strength of body weight, newtons


Atmospheric pressure, newtons


Frozen soil density, t/m3


Acceleration of gravity, m/s2

\( {p}_h^{\ast } \)

Critical ejection pressure from the depth, mPa


  1. 1.
    Alidibirov, M. A. (1998). Mechanism of fragmentation of highly viscous magma in volcanic explosions (experimental study): Thesis of Dr. Phys.-Math. sciences. M. NDG RAS, 272 p. (Rus.).Google Scholar
  2. 2.
    Bogoyavlensky, V. I. (2015). Emissions of gas and oil onshore and offshore in the Arctic and the World Ocean. Drilling and Oil, vol.6, 4–10 (Rus.).Google Scholar
  3. 3.
    Bogoyavlensky, V. I. (2014). The threat of catastrophic gas emissions from the Arctic cryolithozone. Craters of Yamal and Taimyr. Drilling and Oil, vol. 9, 12–17 (Rus.).Google Scholar
  4. 4.
    Bogoyavlensky, V. I., & Garagash, I. A. (2015). Justification of the gas emission craters formation process in the Arctic by mathematical modeling. Arctic: Ecology and Economics, 3(19), 12–17 (Rus.).Google Scholar
  5. 5.
    Chuvilin, E. M., Bukhanov, B. A., Grebenkin, S. I., Doroshin, V. V., & Iospa, A. V. (2016). Experimental study of the strength of frozen hydrate-bearing soils under conditions of self-preservation of pore hydrate. Fifth Conference of Russian Geocryologists, M. University Book Publ., Vol. 3: (pp. 180–186) (Rus.).Google Scholar
  6. 6.
    Civil protection. Encyclopedia. (2006). In S. K. Shoigu (Ed.), EMERCOM of Russia (Vol. No. 2. 1, pp. F–I). Moscow: Moscow Printing Plant (Rus.).Google Scholar
  7. 7.
    Cryosphere of oil and gas condensate fields of the Yamal Peninsula. (2013). Vol. 2: Cryosphere of the Bovanenkovo oil and gas condensate field. Yu. V. Badu, N. A. Gafarova, & E. E. Podborny (Eds.), M.: Gazprom Expo Publ., 424 p. (Rus.).Google Scholar
  8. 8.
    Devisilov. V. A., Drozdova, T. I., & Timofeeva, S. S. (2012). Theory of combustion and explosion: Workshop: A training manual. M: FORUM Publ., 352 p. (Rus.).Google Scholar
  9. 9.
    Dubrovin, V. A., Kritsuk, L. N., & Polyakova, E. I. (2015). Temperature, composition and age of the shelf sediments of the Kara Sea in the area of the geocryological observation marre sale. Cryosphere of the Earth, XIX(4), 3–16 (Rus.).Google Scholar
  10. 10.
    Dyadin, Y. A., & Gushchin, A. L. (1998). Gas hydrates. Sorosovsky Educational Magazine. vol. 3, 55–64 (Rus.).Google Scholar
  11. 11.
    Epov, M. I., Eltsov, I. N., Olenchenko, V. V., Potapov, V. V., Kushnarenko, O. N., Plotnikov, A. E., & Sinitsky, A. I. (2014). Bermuda triangle of Yamal. Science First-Hand, 5(59), 14–23 (Rus.).Google Scholar
  12. 12.
    Hunt, J. (1982). Geochemistry and geology of oil and gas. Moscow: Mir (Rus.).Google Scholar
  13. 13.
    Khimenkov, A. N., Sergeev, D. O., Stanilovskaya, Y. V., Vlasov, A. N., & Volkov-Bogorodsky, D. B. (2017a). Gas emissions in the cryolithozone, as a new type of geocryological hazards. Georisk, 3, 58–65 (Rus.).Google Scholar
  14. 14.
    Khimenkov, A. N., Sergeev, D. O., & Tipenko, G. S. (2017b). Local warming of permafrost massive as the one of causes of gas emission funnel in cryolithozone/theses of conferences “Natural processes in Polar Regions of Earth in Global Warming Epoch, October 9–11, Sochi, Russia:43 (Rus.).Google Scholar
  15. 15.
    Kizyakov, A. I., Sonyushkin, A. V., Leibman, M. O., Zimin, M. V., & Khomutov, A. V. (2015). Geomorphological conditions of gas-emission crater and its dynamics in Central Yamal. Cryosphere of the Earth, XIX(2), 15–25 (Rus.).Google Scholar
  16. 16.
    Kozhina, L. Y., Miklyaeva, E. S., Perlova, E. V., Sinitsky, A. I., Tkacheva, E. V., & Cherkasov, V. A. (2015). Dangerous contemporary manifestations of cryoactivity – the main results of the Yamal crater study. Scientific Herald of the Yamalo-Nenets Autonomous District, № 2/87, Salekhard:19–28 (Rus.).Google Scholar
  17. 17.
    Leibman, M. O., Kizyakov, A. I., Plekhanov, A. V., & Streletskaya, I. D. (2014). New permafrost feature – Deep crater in central Yamal (West Siberia, Russia) as a response to local climate fluctuations. Geography Environment, 7(4), 68–80 (Rus.).Google Scholar
  18. 18.
    Leibman, M. O., & Plekhanov, A. V. (2014). Yamal gas emission crater. Kholod’OK, 2(12), 9–15 (Rus.).Google Scholar
  19. 19.
    Olenchenko, V. V., Sinitsky, A. I., Antonov, E. Y., Yeltsov, I. N., Kushnarenko, O. N., Plotnikov, A. E., Potapov, V. V., & Epov, M. I. (2015). Results of geophysical researches of the area of new geological formation “Yamal crater”. Cryosphere of the Earth, vol. XIX, #4, 94–106 (Rus.).Google Scholar
  20. 20.
    Shostak, N. A. (2015). Modeling the formation and dissociation of hydrates in the development and operation of oil and gas fields: PhD thesis of tech. sciences. Krasnodar (Rus.).Google Scholar
  21. 21.
    Sizov, O. V. (2015). Remote analysis of the surface gas manifestations consequences in the north of Western Siberia. Geomatics, 1, 53–68 (Rus.).Google Scholar
  22. 22.
    Vasilyeva, Z. A., Djafarov, D. S., & Ametova, T. A. (2011). Indirect technogenic signs of gas hydrates indication in the cryolithozone. Cryosphere of the Earth, XV(1), 61–67 (Rus.).Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • A. N. Khimenkov
    • 1
    Email author
  • D. O. Sergeev
    • 1
  • Y. V. Stanilovskaya
    • 1
  • A. N. Vlasov
    • 1
  • D. B. Volkov-Bogorodsky
    • 1
  • V. P. Merzlyakov
    • 1
  • G. S. Tipenko
    • 1
  1. 1.Sergeev Institute of Environmental Geoscience RAS (IEG RAS)MoscowRussia

Personalised recommendations