Advertisement

Stochastic Modeling of Human-Induced Thermokarst and Natural Risk Assessment for Existing and Planned Engineering Structures

  • A. S. Victorov
  • T. V. Orlov
  • V. N. Kapralova
  • O. N. Trapeznikova
  • S. A. Sadkov
  • A. V. Zverev
Chapter
Part of the Innovation and Discovery in Russian Science and Engineering book series (IDRSE)

Abstract

The aim of the present research is a stochastic modeling of initiated thermokarst developing along a linear structure and its impact risk assessment by thermokarst basing on the mathematical morphology of landscape approaches. Two versions of the models of the initiated thermokarst for linear structures are considered: the model of the initiated thermokarst 1.0 (linear variant) and the model of the initiated thermokarst 1.1 (zone variant). The research allows to make the following conclusions: Models of initiated thermokarst developing along linear structures (a linear and a zone variants) are created, and their empirical verification is done. Distribution laws for initiated thermokarst foci are obtained for the area of the linear structure influence, including the lognormal distribution of the foci areas and the exponential distribution of distances between the projections of the centers of foci into a linear structure. The mathematical landscape morphology approach allows us to estimate the thermokarst impact probability for linear structures.

Keywords

Natural risk Risk assessment Thermokarst Engineering structures Modeling 

Notes

Acknowledgments

The research was supported by RGS-RFBR grant (project No. № 17-05-41141).

References

  1. 1.
    Arp, C. D., Jones, B., Bondurant, A., Grosse, G., Parsekian, A. D., Romanovsky, V., & Hinkel, K. (2016). Extreme sensitivity of shallow lakes and sublake permafrost to arctic climate change. In F. Günther, & A. Morgenstern (Eds.), XI. international conference on permafrost – Book of abstracts, 20–24 June 2016, Potsdam, Germany. Bibliothek Wissenschaftspark Albert Einstein. https://doi.org/10.2312/GFZ.LIS.2016.001.
  2. 2.
    Bogdanov, A. N., & Polishchuk, Y. U. M. (2014). Distantsionnoye issledovaniye prostranstvennogo raspredeleniya malykh ozer v zonakh aktivnogo termokarsta Zapadnoy Sibiri (Remote study of spatial distribution of small lakes in zones of active thermokarst of Western Siberia). Vestnik Yugorskogo gosudarstvennogo universiteta, 3(34), 8–12.Google Scholar
  3. 3.
    Bondurant, A. C., Arp, C., Jones, B., & Engram, M. (2016). Rates and mechanisms of expansion in thermokarst lakes with bedfast and floating ice regimes on the Arctic Coastal Plain of northern Alaska 2015. In XI. International conference on permafrost – Book of Abstracts, 20–24 June 2016, Potsdam, Germany. Bibliothek Wissenschaftspark Albert Einstein (pp 703–705). https://doi.org/10.2312/GFZ.LIS.2016.001.
  4. 4.
    Burn, C. R., & Smith, M. W. (1990). Development of thermokarst lakes during the Holocene at sites near Mayo, Yukon territory. Permafrost and Periglacial Processes, 1, 161–176.CrossRefGoogle Scholar
  5. 5.
    Fell, R., Corominas, J., Bonnard, C., Cascini, L., Leroi, E., & Savage, W. Z. (2008). Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Engineering Geology, 102(3–4), 85–98. Fitzgerald, D., & Riordan, B. A. (2003). Permafrost and ponds. Remote sensing and GIS used to monitor Alaska wetlands at the landscape level. Agroborealis, 35(1), 30–35.CrossRefGoogle Scholar
  6. 6.
    Grechishchev, S. Y., Chistotinov, L. V., & Shur, Y. U. L. (1980). Kriogennyye fiziko-geologicheskiye protsessy i ikh prognoz. (Cryogenic physico-geological processes and their prognosis). Moscow: Nedra 384 p.Google Scholar
  7. 7.
    Grosse, G., Jones, B. M., Nitze, I., Lindgren, P. R., Walter Anthony, K. M., & Romanovsky, V. E. (2016). Massive thermokarst lake area loss in continuous ice-rich permafrost of the northern Seward Peninsula, Northwestern Alaska, 1949–2015. In XI. International conference on permafrost – Book of abstracts, 20–24 June 2016, Potsdam, Germany. Bibliothek Wissenschaftspark Albert Einstein (pp. 739–740). https://doi.org/10.2312/GFZ.LIS.2016.001.
  8. 8.
    Kapralova, V. N. (2014). Zakonomernosti razvitiya termokarstovykh protsessov v predelakh ozerno-termokarstovykh ravnin (na osnove podkhodov matematicheskoy morfologii landshafta) (Regularities of the development of thermokarst processes within the lacustrine-thermokarst plains (based on the approaches of the mathematical morphology of the landscape)). Author’s Candidate’s summery. Moscow: IGE RAN, 24 p.Google Scholar
  9. 9.
    Kapralova, V. N., & Victorov, A. S. (2009). Modelirovaniye morfologicheskoy struktury ozerno-termokarstovykh ravnin i yego geoekologicheskoye znacheniye. (Modeling of the morphological structure of the lake-thermokarst plains and its geo-ecological significance), Modelirovaniye pri reshenii geoekologicheskikh zadach. Sergeyevskiye chteniya. Is. 11. – Moscow: Geos (pp. 174–178).Google Scholar
  10. 10.
    Karlin, S. (1971). Osnovy teorii sluchaynykh protsessov. (Fundamentals of the theory of random processes). Moscow: Mir 536 p.Google Scholar
  11. 11.
    Kirpotin, S. N., Polishchuk, Y. U. M., & Bryksina, N. A. (2008). Dinamika ploshchadey termokarstovykh ozer v sploshnoy i preryvistoy kriolitozonakh Zapadnoy Sibiri v usloviyakh global’nogo potepleniya (Dynamics of the areas of thermokarst lakes in the continuous and intermittent cryolithozones of Western Siberia under conditions of global warming). Vestnik TGU, 311, 185–189.Google Scholar
  12. 12.
    Kravtsova, V. I. & Tarasenko, T. V. (2009). Izucheniye i kartografirovaniye dinamiki termokarstovykh ozer na territorii Zapadnoy Sibiri po raznovremennym kosmicheskim snimkam // Vos’moye sibirskoye soveshchaniye po klimato-ekologicheskomu monitoringu. Materialy rossiyskoy konferentsii 8–10 oktyabrya 2009 (Study and mapping of the dynamics of thermokarst lakes in the territory of Western Siberia for various space images. The eighth Siberian conference on climate and environmental monitoring. Materials of the Russian conference October 8–10, 2009). – Tomsk: Agraf-Press (pp. 273–275).Google Scholar
  13. 13.
    Kravtsova, V. I., & Bystrova, A. G. (2009). Izucheniye izmeneniy rasprostraneniya termokarstovykh ozer Rossii po raznovremennym kosmicheskim snimkam. Kriosfera Zemli, 15(2), 16–26.Google Scholar
  14. 14.
    Makarycheva, E., Sergeev, D., Kapralova, V., & Jin, H. (2014). Water level regime of thermokarst lakes in the mountain areas. In Book of Abstracts of EUCOP4 – 4th European conference on permafrost. 2014, P. 206.Google Scholar
  15. 15.
    Metodicheskoye rukovodstvo po inzhenerno-geologicheskoy s”yemke masshtaba 1:200 000 (1:100000–1:500000). (1978). (Methodical guidelines for engineering-geological survey of a scale of 1: 200 000 (1: 100000–1: 500000)). Moscow: Nedra 391 p.Google Scholar
  16. 16.
    Osipov, V. I. (2009). Prirodnyye opasnosti i strategicheskiye riski v mire i v Rossii (Natural dangers and strategic risks in the world and in Russia). Ekologiya i zhizn’, 11–12(96–97), 5–15.Google Scholar
  17. 17.
    Otsenka i upravleniye prirodnymi riskami. (2003a). (Assessment and management of natural risks.) Mater. Vserop. konf. “Risk-2003” (Vol. 1). Moscow: Izd. Rop. univer. druzh. narodov 412 p.Google Scholar
  18. 18.
    Otsenka i upravleniye prirodnymi riskami. (2003b). Tematicheskiy tom. (Assessment and management of natural risks. Thematic volume) Ragozin A.L. ed. – Moscow, Izd. firma. KRUK, 320 p.Google Scholar
  19. 19.
    Perl'shteyn, G. Z., Pavlov, A. V., Levashov, A. V., & Sergeyev, D. O. (2005). Netemperaturnyye faktory teploobmena deyatel'nogo sloya s atmosferoy (Non-temperature factors of heat exchange of the active layer with the atmosphere), Materialy Tret'yey konferentsii geokriologov (pp. 86–91). Rossii: MGU.Google Scholar
  20. 20.
    Ragozin, A. L. (1997). Osnovnyye polozheniya teorii opasnykh geologicheskikh protsessov i riskov (Basic theses of the theory of dangerous geological processes and risks), Novyye idei v naukakh o Zemle: Abstracts, Moscow (Vol. 4, p. 115).Google Scholar
  21. 21.
    Riordan, B., Verbyla, D., & McGuire, A. D. (2006). Shrinking ponds in subarctic Alaska based on 1950–2002 remotely sensed images. Journal of Geophysical Research, 111, G04002. https://doi.org/10.1029/2005JG000150.CrossRefGoogle Scholar
  22. 22.
    Sejourne, A., Costard, F., Fedorov, A., Gargani, J., Skorve, J., Masse, M., & Mege, D. (2015). Evolution of the banks of thermokarst lakes in Central Yakutiya (Central Siberia) due to retrogressive thaw slump activity controlled by insolation. Geomorphology, 241, 31–40.CrossRefGoogle Scholar
  23. 23.
    Sheko, A. I., & Krupoderov, V. S. (1994). Otsenka opasnosti i riska ekzogennykh geologicheskikh protsessov (Assessment of the danger and risk of exogenous geological processes). Geoekologiya, 3, 53–59.Google Scholar
  24. 24.
    Shiklomanov, N. I., & Nelson, F. E. (2013). Thermokarst and civil infrastructure. In Treatise on geomorphology (Vol. 8, pp. 354–373). Elsevier. https://doi.org/10.1016/B978-0-12-374739-6.00214-1 CrossRefGoogle Scholar
  25. 25.
    Tomirdiaro, S. V. (1972). Vechnaya merzlota i osvoyeniye gornykh stran i nizmennostey. (Permafrost and development of mountainous countries and lowlands). Magadan publishing house: Magadan, 174 p. Google Scholar
  26. 26.
    Tumskoy, V. Ye. (2002). Termokarst i yego rol' v razvitii regiona morya Laptevykh v pozdnem pleystotsene i golotsene. (Thermokarst and its role in the development of the Laptev Sea region in the Late Pleistocene and Holocene), Author's Candidate's summary. Moscow.Google Scholar
  27. 27.
    Tumskoy, V. Ye., Nikol’skiy, P. A., Basilyan, A. E., Kuznetsova, T. V., & Gavrilov, A. V. (2000). Evolyutsiya mnogoletnemerzlykh porod na poberezh'ye proliva Dmitriya Lapteva v pozdnem kaynozoye – Tezisy konferentsii “Ritmy prirodnykh protsessov v kriosfere Zemli” (Evolution of Permafrost on the Strait of Dmitrii Laptev in the Late Cenozoic – Theses of the conference “Rhythms of Natural Processes in the Earth’s Cryosphere”), Pushchino, (pp. 123–125).Google Scholar
  28. 28.
    Veremeeva, A., & Gubin, S. (2009). Modern tundra landscapes of the Kolyma Lowland and their evolution in the Holocene. Permafrost and Periglacial Processes, 20(4), 399–406.CrossRefGoogle Scholar
  29. 29.
    Victorov, A. S. (1995). Matematicheskaya model’ termokarstovykh ozernykh ravnin kak odna iz osnov interpretatsii materialov kosmicheskikh s’yemok. Issledovaniye Zemli iz kosmosa, 5, 42–50.Google Scholar
  30. 30.
    Victorov, A. S. (2006). Osnovnyye problemy matematicheskoy morfologii landshafta (The main problems of the mathematical morphology of the landscape.). Moscow: Nauka 252 p.Google Scholar
  31. 31.
    Victorov, A. S. (1998). Matematicheskaya morfologiya landshafta (Mathematical morphology of the landscape). Moscow: Tratek 191 p.Google Scholar
  32. 32.
    Victorov, A. S. (2003). An integrated mathematical model for diffuse exogenous geological processes. Proceedings of the 9th annual conference of international association for mathematical geology. IAMG 2003 Portsmouth, UK, Sept 7–12.Google Scholar
  33. 33.
    Victorov, A. S. (2002). Mathematical models of landscape patterns for geological interpretation of remote sensing data (pp. 571–576). Proceedings of the 8th annual conference of international association for mathematical geology. IAMG 2002, Berlin, Germany.Google Scholar
  34. 34.
    Voskresenskiy, K. S. (1999). Sovremennyye rel'yefoobrazuyushchiye protsessy na ravninakh Severa Rossii, (Contemporary relief-forming processes on the plains of the North of Russia). Author’s Doctor’s summery.Google Scholar
  35. 35.
    Yelkin, V. A. (2004). Regional’naya otsenka karstovoy opasnosti i riska (na primere Respubliki Tatarstan) (Regional assessment of karst danger and risk (on the example of the Republic of Tatarstan)). Author’s Candidate’s summery. Moscow: IGE RAN. 24 p. 36.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • A. S. Victorov
    • 1
  • T. V. Orlov
    • 1
  • V. N. Kapralova
    • 1
  • O. N. Trapeznikova
    • 1
  • S. A. Sadkov
    • 1
  • A. V. Zverev
    • 1
  1. 1.Sergeev Institute of Environmental Geoscience RAS (IEG RAS)MoscowRussia

Personalised recommendations