Advertisement

Comparison of Classification Methods for Spectral Data of Laser-Induced Fluorescence

  • Marian KrausEmail author
  • Lea Fellner
  • Florian Gebert
  • Karin Grünewald
  • Carsten Pargmann
  • Arne Walter
  • Frank Duschek
Conference paper

Abstract

Online detection of CBRNE is a research field of growing importance due to its relevance for public security and defense. The selectivity of machine learning has reached maturity in order to distinguish very similar laser-induced fluorescence (LIF) spectra of different samples—establishing the basis for an automatic classification. The work in this contribution applies the classification process of decision trees, support vector machines, and artificial neural networks to LIF spectra. Two experimental setups with two excitation wavelengths each (280 and 355 nm; 266 and 355 nm) and different spectral resolutions of about 1 nm and 12 nm, respectively, have been performed. In the first setup, the discrimination of seven bacteria species with an accuracy of over 90% is demonstrated. The data of the second setup with lower spectral resolution are equally sufficient for a subsequent classification. The results are compared and represented in a low-dimensional subspace for the purpose of visualization.

Keywords

Standoff detection Laser-induced fluorescence spectra Classification models Machine learning Decision trees Support vector machines Artificial neural networks 

References

  1. 1.
    Duschek, F., Fellner, L., Gebert, F., Grünewald, K., Köhntopp, A., Kraus, M., Mahnke, P., Pargmann, C., Tomaso, H., Walter, A.: Standoff detection and classification of bacteria by multispectral laser-induced fluorescence. Adv. Opt. Technol. 6(2), 75–83 (2017)ADSGoogle Scholar
  2. 2.
    Gaudio, P., Gelfusa, M., Murari, A., Pizzoferrato, R., Carestia, M., Cenciarelli, O., Parracino, S., Ludovici, G., Gabriele, J., Gabbarini, V., Di Giovanni, D., Rossi, R., Jean Francois, C., Carlo, B., Andrea, M.: Application of optical techniques to detect chemical and biological agents. Def. S&T Tech. Bull. 10(1), 1–13 (2017)Google Scholar
  3. 3.
    Buteau, S., Ho, J., Lahaie, P., Rowsell, S., Simard, J.R., Kadlcak, J., Sgarzi, G., Tonini, P., van den Heuvel, J.C., Blatny, J.M., Øystein Farsund, Gran, H.C., Lovold, S., Rustad, G., Sletmoen, M., Baxter, K., Castle, M., Foot, E.V.J., Swim, C., Vanderbeek, R.: Laser based standoff detection of biological agents. Technical Report TR-SET-098, North Atlantic Treaty Organisation, Research and Technology Organisation (2010)Google Scholar
  4. 4.
    Gebert, F., Fellner, L., Grünewald, K., Kraus, M., Pargmann, C., Walter, A., Duschek, F.: Standoff detection and classification of chemical and biological hazardous substances combining temporal and spectral laser induced fluorescence techniques. In: First Scientific International Conference on CBRNe, Scientific International Conference on CBRNe (2017)Google Scholar
  5. 5.
    R Core Team: R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2016)
  6. 6.
    Kuhn, M.: Caret: classification and regression training. R Package Version 6.0-76 (2017)Google Scholar
  7. 7.
    Kuhn, M., Weston, S., Coulter, N., Code for C5.0 by R. Quinlan, M.C.C.: C50: C5.0 decision trees and rule-based models. R Package Version 0.1.0-24 (2015)Google Scholar
  8. 8.
    Karatzoglou, A., Smola, A., Hornik, K., Zeileis, A.: kernlab – an S4 package for kernel methods in R. J. Stat. Softw. 11(9), 1–20 (2004)CrossRefGoogle Scholar
  9. 9.
    Venables, W.N., Ripley, B.D.: Modern Applied Statistics with S, 4th edn. Springer, New York (2002)CrossRefGoogle Scholar
  10. 10.
    Wickham, H., Chang, W.: devtools: tools to make developing R packages easier. R Package Version 1.12.0 (2016)Google Scholar
  11. 11.
    Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., Leisch, F.: e1071: misc functions of the department of statistics, probability theory group (Formerly: E1071), TU Wien. R Package Version 1.6-7 (2015)Google Scholar
  12. 12.
    Lantz, B.: Machine Learning with R, 2nd edn. Packt, Birmingham (2015)Google Scholar
  13. 13.
    Kuhn, M., Johnson, K.: Applied Predictive Modeling. Springer, Cham (2013)CrossRefGoogle Scholar
  14. 14.
    Fellner, L., Gebert, F., Walter, A., Grünewald, K., Duschek, F.: Variations in fluorescence spectra of a bacterial population during different growth phases. In: 1st Scientific International Conference on CBRNe, Springer (2017)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Marian Kraus
    • 1
    Email author
  • Lea Fellner
    • 1
  • Florian Gebert
    • 1
  • Karin Grünewald
    • 1
  • Carsten Pargmann
    • 1
  • Arne Walter
    • 1
  • Frank Duschek
    • 1
  1. 1.German Aerospace CenterInstitute of Technical PhysicsHardthausenGermany

Personalised recommendations