Advertisement

Thymol and Bromothymol: Two Alleys in Biological Weapons Defeat

  • Silvia PezzolaEmail author
  • Federica Sabuzi
  • Valeria Conte
  • Francesco Scafarto
  • Francesca Valentini
  • Luigi Antonio Poggi
  • Pierluca Galloni
Conference paper

Abstract

In recent years, mounting concerns over the use of biological weapons has raised the need to identify effective countermeasures. In the majority of cases, such weapons have been designed modifying bacterial strains to achieve antidrug-resistance. In order to reduce resistance, treatments based on essential oil extracts are available. Thus, pharmaco-resistance overcoming is possible using the compounds that plants use in preserving themselves from microorganism infections. Among all, thymol is the most interesting compound due to its high efficacy towards a wide range of pathogenic bacteria. Indeed, it shows a Minimum Inhibitory Concentration (MIC) in the micro-nanomolar range. Furthermore, its activity is related with an unspecific mechanism, as the capability in binding ion pumps and interfering with cell membrane stability. In addition, it shows negligible toxicity versus human fibroblast. Our group have been developing the synthesis of a new functionalized thymol molecule, the bromothymol. Preliminary studies have shown that bromothymol is two folds more efficient on Escherichia coli strains and at least 15-folds more active on Staphylococcus strains compared to thymol. To summarize, bromothymol showed promising results as a potential treatment against some strains, such as E. Coli O157:H7 and Yersinia, similar to that used in biological weapons.

Keywords

Thymol Bromothymol Biological weapons Antibacterial agents 

References

  1. 1.
    Pitschmann, V.: Overall view of chemical and biochemical weapons. Toxins. 6, 1761–1784 (2014).  https://doi.org/10.3390/toxins6061761 CrossRefGoogle Scholar
  2. 2.
    Arora, N., Leppla, S.: Fusions of anthrax toxin lethal factor with Shiga toxin and diphtheria toxin enzymatic domains are toxic to mammalian cells. Infect. Immun. 62, 4955–4961 (1994)Google Scholar
  3. 3.
    Jefferson, C.: Protein engineering. In: Tucker, J.B. (ed.) Innovation, Dual Use, and Security, pp. 119–131. MIT Press, Cambridge (2012)Google Scholar
  4. 4.
    Kagan, E.: Bioregulators as instrument of terror. Clin. Lab. Med. 21, 607–618 (2001)CrossRefGoogle Scholar
  5. 5.
    Pepper, J.: Defeating pathogen drug resistance: guidance from evolutionary theory. Evolution. 62(12), 3185–3191.  https://doi.org/10.1111/j.1558-5646.2008.00525.x CrossRefGoogle Scholar
  6. 6.
    Marchese, A., Orhan, I.E., Dagalia, M., Barbieri, R., Di Lorenzo, A., Nabavi, S.F., Gortzi, O., Izadi, M., Nabavi, S.M.: Antibacterial and antifungal activities of Thymol: a brief review of literature. Food Chem. 210, 402–414 (2016).  https://doi.org/10.1016/j.foodchem.2016.04.111 CrossRefGoogle Scholar
  7. 7.
    Coutinho de Olivera, T.L., de Araujo Soares, R., Ramos, E.M., das Gracas Cardoso, M., Alves, E., Piccoli, R.H.: Antimicrobila activity of Saturejamontana L. essential oil against Clostridium perfringens type A inoculated in mortadella-type sausages formulated with different levels of sodium nitrate. Int. J. Food Micro. 144, 546–555 (2011).  https://doi.org/10.1016/j.ijfoodmicro.2010.11.022 CrossRefGoogle Scholar
  8. 8.
    Commission Implementing Regulation (EU) No 568/2013 of 18 June 2013Google Scholar
  9. 9.
    Licata, M., Tuttolomondo, T., Dugo, G., Ruberto, G., Leto, C., Napoli, E.M., Leone, R.: Study of quantitative and qualitative variations in essential oils of sicilian oregano biotypes. J. Essent. Oil Res. 27(4), 293–306 (2015).  https://doi.org/10.1080/10412905.2015.1045088 CrossRefGoogle Scholar
  10. 10.
    Trombetta, D., Castelli, F., Sarpietro, M.G., Venuti, V., Cristani, M., Daniele, C., Saija, A., Mazzanti, G., Bisignano, G.: Mechanisms of antibacterial action of three monoterpenes. Antimicrob. Agents Chemother. 49(6), 2474–2478 (2005).  https://doi.org/10.1128/AAC.49.6.2474-2478.2005 CrossRefGoogle Scholar
  11. 11.
    Lang-Hong, W., Zhi-Hong, Z., Xin-An, Z., De-Ming, G., Man-Sheng, W.: Combination of microbiological, spectroscopic and molecular docking techniques to study the antibacterial mechanism of thymol against Staphylococcus aureus: membrane damage and genomic DNA binding. Anal. Bioanal. Chem. 409, 1615–1625 (2017).  https://doi.org/10.1007/s00216-016-0102-z CrossRefGoogle Scholar
  12. 12.
    Thapa, D., Losa, R., Zweifel, B., Wallace, R.J.: Sensitivity of pathogenic and commensal bacteria from the human colon to essential oils. Microbiology. 158, 2870–2877 (2012).  https://doi.org/10.1099/mic.0.061127-0 CrossRefGoogle Scholar
  13. 13.
    Ozen, F., Ekinci, F.Y., Korachi, M.: The inhibition of helicobacter pylori infected cell by Origanumminutiflorum. J. Ind. Crop. 58, 329–334 (2014).  https://doi.org/10.1016/j.indcrop.2014.04.037 CrossRefGoogle Scholar
  14. 14.
    Sabuzi, F., Churakova, E., Galloni, P., Wever, R., Hollmann, F., Floris, B., Conte, V.: Thymol Bromination – a comparison between enzymatic and chemical catalysis. Eur. J. Inorg. Chem. 3519–3525 (2015).  https://doi.org/10.1002/ejic.201500086 CrossRefGoogle Scholar
  15. 15.
    Galloni, P., Conte, V., Sabuzi, F., Migliore, L., Thaller, M.C., Matteucci, G. Italian Patent, application n°102016000090701Google Scholar
  16. 16.
    Pezzola, S., Antonini, G., Geroni, C., Beria, I., Colombo, M., Broggini, M., Marchini, S., Mongelli, N., Leboffe, L., MacArthur, R., Mozzi, A.F., Federici, G., Caccuri, A.M.: Role of glutathione transferases in the mechanism of brostallicin activation. Biochemistry. 49, 226–235 (2010)CrossRefGoogle Scholar
  17. 17.
    Kim, C.W., Kim, C.D., Choi, K.C.: Establishment and evaluation of immortalized human epidermal keratinocytes for an alternative skin irritation test. J. Pharmacol. Toxicol. Methods. 17, 30005–30009 (2017).  https://doi.org/10.1016/j.vascn.2017.08.005 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Silvia Pezzola
    • 1
    Email author
  • Federica Sabuzi
    • 1
    • 2
  • Valeria Conte
    • 1
    • 2
  • Francesco Scafarto
    • 1
    • 3
  • Francesca Valentini
    • 1
    • 2
  • Luigi Antonio Poggi
    • 1
    • 4
  • Pierluca Galloni
    • 1
    • 2
  1. 1.BT-InnoVaChemsrl, c/o Dipartimento di Scienze e Tecnologie ChimicheUniversità degli Studi di Roma “Tor Vergata”RomeItaly
  2. 2.Dipartimento di Scienze e Tecnologie ChimicheUniversità degli Studi di Roma “Tor Vergata”RomeItaly
  3. 3.Dipartimento di Management e DirittoUniversità degli Studi di Roma “Tor Vergata”RomeItaly
  4. 4.Dipartimento di Ingegneria IndustrialeUniversità degli Studi di Roma “Tor Vergata”RomeItaly

Personalised recommendations