Advertisement

CD19 Deficiency due to Genetic Defects in the CD19 and CD81 Genes

  • Menno C. van Zelm
  • Ismail Reisli
Chapter
Part of the Rare Diseases of the Immune System book series (RDIS)

Abstract

CD19 is a transmembrane protein specifically expressed on B cells and acts together with CD21, CD81, and CD225 to reduce the threshold for B-cell antigen receptor (BCR) signaling. To date, 11 patients with childhood-onset hypogammaglobulinemia have been identified with CD19 deficiency due to mutations in the CD19 or CD81 genes. The patients have circulating B cells that lack CD19 expression and are impaired in BCR-induced signal transduction. In addition to recurrent respiratory infections, several patients suffer from autoimmunity and IgA nephropathy. These non-infectious complications might arise from altered signal transduction thresholds. Although rare, genetic defects in CD19 or CD81 should be considered in patients with childhood onset of autosomal recessive antibody deficiency.

Keywords

Primary antibody deficiency CD19 CD81 B cell B-cell antigen receptor Autoreactivity Vaccination responses 

References

  1. 1.
    Nadler LM, Anderson KC, Marti G, Bates M, Park E, Daley JF, Schlossman SF. B4, a human B lymphocyte-associated antigen expressed on normal, mitogen-activated, and malignant B lymphocytes. J Immunol. 1983;131:244.PubMedGoogle Scholar
  2. 2.
    Stashenko P, Nadler LM, Hardy R, Schlossman SF. Characterization of a human B lymphocyte-specific antigen. J Immunol. 1980;125:1678.PubMedGoogle Scholar
  3. 3.
    Nadler LM, Stashenko P, Hardy R, van Agthoven A, Terhorst C, Schlossman SF. Characterization of a human B cell-specific antigen (B2) distinct from B1. J Immunol. 1981;126:1941.PubMedGoogle Scholar
  4. 4.
    Stamenkovic I, Seed B. CD19, the earliest differentiation antigen of the B cell lineage, bears three extracellular immunoglobulin-like domains and an Epstein-Barr virus-related cytoplasmic tail. J Exp Med. 1988;168:1205.CrossRefGoogle Scholar
  5. 5.
    Tedder TF, Isaacs CM. Isolation of cDNAs encoding the CD19 antigen of human and mouse B lymphocytes. A new member of the immunoglobulin superfamily. J Immunol. 1989;143:712.PubMedGoogle Scholar
  6. 6.
    Matsumoto AK, Kopicky-Burd J, Carter RH, Tuveson DA, Tedder TF, Fearon DT. Intersection of the complement and immune systems: a signal transduction complex of the B lymphocyte-containing complement receptor type 2 and CD19. J Exp Med. 1991;173:55.CrossRefGoogle Scholar
  7. 7.
    Tedder TF, Clement LT, Cooper MD. Expression of C3d receptors during human B cell differentiation: immunofluorescence analysis with the HB-5 monoclonal antibody. J Immunol. 1984;133:678.PubMedGoogle Scholar
  8. 8.
    Moore MD, Cooper NR, Tack BF, Nemerow GR. Molecular cloning of the cDNA encoding the Epstein-Barr virus/C3d receptor (complement receptor type 2) of human B lymphocytes. Proc Natl Acad Sci U S A. 1987;84:9194.CrossRefGoogle Scholar
  9. 9.
    Weis JH, Morton CC, Bruns GA, Weis JJ, Klickstein LB, Wong WW, Fearon DT. A complement receptor locus: genes encoding C3b/C4b receptor and C3d/Epstein-Barr virus receptor map to 1q32. J Immunol. 1987;138:312.PubMedGoogle Scholar
  10. 10.
    Bradbury LE, Kansas GS, Levy S, Evans RL, Tedder TF. The CD19/CD21 signal transducing complex of human B lymphocytes includes the target of antiproliferative antibody-1 and Leu-13 molecules. J Immunol. 1992;149:2841.PubMedGoogle Scholar
  11. 11.
    Chen YX, Welte K, Gebhard DH, Evans RL. Induction of T cell aggregation by antibody to a 16kd human leukocyte surface antigen. J Immunol. 1984;133:2496.PubMedGoogle Scholar
  12. 12.
    Oren R, Takahashi S, Doss C, Levy R, Levy S. TAPA-1, the target of an antiproliferative antibody, defines a new family of transmembrane proteins. Mol Cell Biol. 1990;10:4007.CrossRefGoogle Scholar
  13. 13.
    Takahashi S, Doss C, Levy S, Levy R. TAPA-1, the target of an antiproliferative antibody, is associated on the cell surface with the Leu-13 antigen. J Immunol. 1990;145:2207.PubMedGoogle Scholar
  14. 14.
    Maecker HT, Levy S. Normal lymphocyte development but delayed humoral immune response in CD81-null mice. J Exp Med. 1997;185:1505.CrossRefGoogle Scholar
  15. 15.
    Miyazaki T, Muller U, Campbell KS. Normal development but differentially altered proliferative responses of lymphocytes in mice lacking CD81. EMBO J. 1997;16:4217.CrossRefGoogle Scholar
  16. 16.
    Tsitsikov EN, Gutierrez-Ramos JC, Geha RS. Impaired CD19 expression and signaling, enhanced antibody response to type II T independent antigen and reduction of B-1 cells in CD81-deficient mice. Proc Natl Acad Sci U S A. 1997;94:10844.CrossRefGoogle Scholar
  17. 17.
    Matsumoto AK, Martin DR, Carter RH, Klickstein LB, Ahearn JM, Fearon DT. Functional dissection of the CD21/CD19/TAPA-1/Leu-13 complex of B lymphocytes. J Exp Med. 1993;178:1407.CrossRefGoogle Scholar
  18. 18.
    Zhuang Y, Soriano P, Weintraub H. The helix-loop-helix gene E2A is required for B cell formation. Cell. 1994;79:875.CrossRefGoogle Scholar
  19. 19.
    Urbanek P, Wang ZQ, Fetka I, Wagner EF, Busslinger M. Complete block of early B cell differentiation and altered patterning of the posterior midbrain in mice lacking Pax5/BSAP. Cell. 1994;79:901.CrossRefGoogle Scholar
  20. 20.
    Lin H, Grosschedl R. Failure of B-cell differentiation in mice lacking the transcription factor EBF. Nature. 1995;376:263.CrossRefGoogle Scholar
  21. 21.
    Kozmik Z, Wang S, Dorfler P, Adams B, Busslinger M. The promoter of the CD19 gene is a target for the B-cell-specific transcription factor BSAP. Mol Cell Biol. 1992;12:2662.CrossRefGoogle Scholar
  22. 22.
    van Zelm MC, Reisli I, van der Burg M, Castaño D, van Noesel CJM, van Tol MJD, Woellner C, Grimbacher B, Patiño PJ, van Dongen JJM, Franco JL. An antibody-deficiency syndrome due to mutations in the CD19 gene. N Engl J Med. 2006;354:1901.CrossRefGoogle Scholar
  23. 23.
    Conley ME, Dobbs AK, Farmer DM, Kilic S, Paris K, Grigoriadou S, Coustan-Smith E, Howard V, Campana D. Primary B cell immunodeficiencies: comparisons and contrasts. Annu Rev Immunol. 2009;27:199.CrossRefGoogle Scholar
  24. 24.
    Kanegane H, Agematsu K, Futatani T, Sira MM, Suga K, Sekiguchi T, van Zelm MC, Miyawaki T. Novel mutations in a Japanese patient with CD19 deficiency. Genes Immun. 2007;8:663.CrossRefGoogle Scholar
  25. 25.
    Artac H, Reisli I, Kara R, Pico-Knijnenburg I, Adin-Cinar S, Pekcan S, Jol-van der Zijde CM, van Tol MJ, Bakker-Jonges LE, van Dongen JJ, van der Burg M, van Zelm MC. B-cell maturation and antibody responses in individuals carrying a mutated CD19 allele. Genes Immun. 2010;11:523.CrossRefGoogle Scholar
  26. 26.
    van Zelm MC, Smet J, Adams B, Mascart F, Schandene L, Janssen F, Ferster A, Kuo CC, Levy S, van Dongen JJ, van der Burg M. CD81 gene defect in humans disrupts CD19 complex formation and leads to antibody deficiency. J Clin Invest. 2010;120:1265.CrossRefGoogle Scholar
  27. 27.
    van Zelm MC, Smet J, van der Burg M, Ferster A, Le PQ, Schandene L, van Dongen JJ, Mascart F. Antibody deficiency due to a missense mutation in CD19 demonstrates the importance of the conserved tryptophan 41 in immunoglobulin superfamily domain formation. Hum Mol Genet. 2011;20:1854.CrossRefGoogle Scholar
  28. 28.
    Vince N, Boutboul D, Mouillot G, Just N, Peralta M, Casanova JL, Conley ME, Bories JC, Oksenhendler E, Malphettes M, Fieschi C, D. S. Group. Defects in the CD19 complex predispose to glomerulonephritis, as well as IgG1 subclass deficiency. J Allergy Clin Immunol. 2011;127:538.CrossRefGoogle Scholar
  29. 29.
    Skendros P, Rondeau S, Chateil JF, Bui S, Bocly V, Moreau JF, Theodorou I, Aladjidi N. Misdiagnosed CD19 deficiency leads to severe lung disease. Pediatr Allergy Immunol. 2014;25:603.PubMedGoogle Scholar
  30. 30.
    Conley ME, Notarangelo LD, Etzioni A. Diagnostic criteria for primary immunodeficiencies. Representing PAGID (Pan-American Group for Immunodeficiency) and ESID (European Society for Immunodeficiencies). Clin Immunol. 1999;93:190.CrossRefGoogle Scholar
  31. 31.
    Bousfiha A, Jeddane L, Al-Herz W, Ailal F, Casanova JL, Chatila T, Conley ME, Cunningham-Rundles C, Etzioni A, Franco JL, Gaspar HB, Holland SM, Klein C, Nonoyama S, Ochs HD, Oksenhendler E, Picard C, Puck JM, Sullivan KE, Tang ML. The 2015 IUIS phenotypic classification for primary immunodeficiencies. J Clin Immunol. 2015;35:727.CrossRefGoogle Scholar
  32. 32.
    Warnatz K, Wehr C, Drager R, Schmidt S, Eibel H, Schlesier M, Peter HH. Expansion of CD19(hi)CD21(lo/neg) B cells in common variable immunodeficiency (CVID) patients with autoimmune cytopenia. Immunobiology. 2002;206:502.CrossRefGoogle Scholar
  33. 33.
    Wehr C, Kivioja T, Schmitt C, Ferry B, Witte T, Eren E, Vlkova M, Hernandez M, Detkova D, Bos PR, Poerksen G, von Bernuth H, Baumann U, Goldacker S, Gutenberger S, Schlesier M, Bergeron-van der Cruyssen F, Le Garff M, Debre P, Jacobs R, Jones J, Bateman E, Litzman J, van Hagen PM, Plebani A, Schmidt RE, Thon V, Quinti I, Espanol T, Webster AD, Chapel H, Vihinen M, Oksenhendler E, Peter HH, Warnatz K. The EUROclass trial: defining subgroups in common variable immunodeficiency. Blood. 2008;111:77.CrossRefGoogle Scholar
  34. 34.
    Reisli I, Artac H, Pekcan S, Kara R, Yumiu K, Karagol C, Cimen O, Sen M, Artac M. CD19 deficiency: a village screening study. Turk Arch Ped. 2009;44:127.Google Scholar
  35. 35.
    Otero DC, Rickert RC. CD19 function in early and late B cell development. II. CD19 facilitates the pro-B/pre-B transition. J Immunol. 2003;171:5921.CrossRefGoogle Scholar
  36. 36.
    Diamant E, Keren Z, Melamed D. CD19 regulates positive selection and maturation in B lymphopoiesis: lack of CD19 imposes developmental arrest of immature B cells and consequential stimulation of receptor editing. Blood. 2005;105:3247.CrossRefGoogle Scholar
  37. 37.
    Thiel J, Kimmig L, Salzer U, Grudzien M, Lebrecht D, Hagena T, Draeger R, Voelxen N, Bergbreiter A, Jennings S, Gutenberger S, Aichem A, Illges H, Hannan JP, Kienzler AK, Rizzi M, Eibel H, Peter HH, Warnatz K, Grimbacher B, Rump JA, Schlesier M. Genetic CD21 deficiency is associated with hypogammaglobulinemia. J Allergy Clin Immunol. 2012;129:801.CrossRefGoogle Scholar
  38. 38.
    Wentink MW, Lambeck AJ, van Zelm MC, Simons E, van Dongen JJ, IJspeert H, Scholvinck EH, van der Burg M. CD21 and CD19 deficiency: two defects in the same complex leading to different disease modalities. Clin Immunol. 2015;161:120.CrossRefGoogle Scholar
  39. 39.
    Mattila PK, Feest C, Depoil D, Treanor B, Montaner B, Otipoby KL, Carter R, Justement LB, Bruckbauer A, Batista FD. The actin and tetraspanin networks organize receptor nanoclusters to regulate B cell receptor-mediated signaling. Immunity. 2013;38:461.CrossRefGoogle Scholar
  40. 40.
    Freeman SA, Jaumouille V, Choi K, Hsu BE, Wong HS, Abraham L, Graves ML, Coombs D, Roskelley CD, Das R, Grinstein S, Gold MR. Toll-like receptor ligands sensitize B-cell receptor signalling by reducing actin-dependent spatial confinement of the receptor. Nat Commun. 2015;6:6168.CrossRefGoogle Scholar
  41. 41.
    Treanor B, Depoil D, Gonzalez-Granja A, Barral P, Weber M, Dushek O, Bruckbauer A, Batista FD. The membrane skeleton controls diffusion dynamics and signaling through the B cell receptor. Immunity. 2010;32:187.CrossRefGoogle Scholar
  42. 42.
    Keppler SJ, Gasparrini F, Burbage M, Aggarwal S, Frederico B, Geha RS, Way M, Bruckbauer A, Batista FD. Wiskott-Aldrich syndrome interacting protein deficiency uncovers the role of the co-receptor CD19 as a generic hub for PI3 kinase signaling in B cells. Immunity. 2015;43:660.CrossRefGoogle Scholar
  43. 43.
    Morbach H, Schickel JN, Cunningham-Rundles C, Conley ME, Reisli I, Franco JL, Meffre E. CD19 controls Toll-like receptor 9 responses in human B cells. J Allergy Clin Immunol. 2016;137:889.CrossRefGoogle Scholar
  44. 44.
    Sato S, Miller AS, Howard MC, Tedder TF. Regulation of B lymphocyte development and activation by the CD19/CD21/CD81/Leu 13 complex requires the cytoplasmic domain of CD19. J Immunol. 1997;159:3278.PubMedGoogle Scholar
  45. 45.
    Wang Y, Brooks SR, Li X, Anzelon AN, Rickert RC, Carter RH. The physiologic role of CD19 cytoplasmic tyrosines. Immunity. 2002;17:501.CrossRefGoogle Scholar
  46. 46.
    Mouillot G, Carmagnat M, Gerard L, Garnier JL, Fieschi C, Vince N, Karlin L, Viallard JF, Jaussaud R, Boileau J, Donadieu J, Gardembas M, Schleinitz N, Suarez F, Hachulla E, Delavigne K, Morisset M, Jacquot S, Just N, Galicier L, Charron D, Debre P, Oksenhendler E, Rabian C, D. S. Group. B-cell and T-cell phenotypes in CVID patients correlate with the clinical phenotype of the disease. J Clin Immunol. 2010;30:746.CrossRefGoogle Scholar
  47. 47.
    van Zelm MC, van der Burg M, de Ridder D, Barendregt BH, de Haas EF, Reinders MJ, Lankester AC, Revesz T, Staal FJ, van Dongen JJ. Ig gene rearrangement steps are initiated in early human precursor B cell subsets and correlate with specific transcription factor expression. J Immunol. 2005;175:5912.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Immunology and Pathology, Central Clinical SchoolMonash University and The Alfred HospitalMelbourneAustralia
  2. 2.Division of Pediatric Allergy and Immunology, Department of Pediatrics, Meram Medical FacultyNecmettin Erbakan UniversityKonyaTurkey

Personalised recommendations