Advertisement

CVID

  • Ulrich SalzerEmail author
Chapter
Part of the Rare Diseases of the Immune System book series (RDIS)

Abstract

Common variable immunodeficiency (CVID) patients are individuals with antibody deficiency syndromes of various etiology and diverse clinical as well as immunological features. Clinical hallmarks are hypogammaglobulinemia and severe and/or frequent, chronic-recurring bacterial infections especially affecting the respiratory tract. Given that immunological and clinical presentations are by far more diverse and—since CVID per se is not a monogenetically defined disorder—there is a high chance of missed or incorrect diagnosis, since the “clinical picture perfect CVID patient” rarely encounters us in real life. Management of CVID consists of continuous replacement therapy with immunoglobulins, targeted antibiotic treatment of infections, and adequate therapy of complications. Allogenic peripheral stem cell therapy is considered today in patients with severe hematological changes (chronic transfusion-dependent anemia, leukopenia, thrombocytopenia), malignancies, and overall prognostically poor outcome despite consistent immunoglobulin substitution.

Keywords

Common variable immunodeficiency B cells T cells Management Infections Autoimmunity Cancer 

References

  1. 1.
    Conley ME, Notarangelo LD, Etzioni A. Diagnostic criteria for primary immunodeficiencies. Representing PAGID (Pan-American Group for Immunodeficiency) and ESID (European Society for Immunodeficiencies). Clin Immunol. 1999;93(3):190–7.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Malphettes M, et al. Late-onset combined immune deficiency: a subset of common variable immunodeficiency with severe T cell defect. Clin Infect Dis. 2009;49(9):1329–38.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Bertinchamp R, et al. Exclusion of patients with a severe T-cell defect improves the definition of common variable immunodeficiency. J Allergy Clin Immunol Pract. 2016;4(6):1147–57.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Wirsum C, et al. Secondary antibody deficiency in glucocorticoid therapy clearly differs from primary antibody deficiency. J Clin Immunol. 2016;36(4):406–12.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Bonilla FA, et al. Practice parameter for the diagnosis and management of primary immunodeficiency. Ann Allergy Asthma Immunol. 2005;94(5 Suppl 1):S1–63.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Cunningham-Rundles C, Bodian C. Common variable immunodeficiency: clinical and immunological features of 248 patients. Clin Immunol. 1999;92(1):34–48.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Oksenhendler E, et al. Infections in 252 patients with common variable immunodeficiency. Clin Infect Dis. 2008;46(10):1547–54.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Tseng CW, et al. The incidence and prevalence of common variable immunodeficiency disease in Taiwan, a population-based study. PLoS One. 2015;10(10):e0140473.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Gathmann B, et al. Clinical picture and treatment of 2212 patients with common variable immunodeficiency. J Allergy Clin Immunol. 2014;134(1):116–26.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Chapel H, et al. Common variable immunodeficiency disorders: division into distinct clinical phenotypes. Blood. 2008;112(2):277–86.CrossRefGoogle Scholar
  11. 11.
    Vorechovsky I, et al. Family and linkage study of selective IgA deficiency and common variable immunodeficiency. Clin Immunol Immunopathol. 1995;77(2):185–92.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Aghamohammadi A, et al. Progression of selective IgA deficiency to common variable immunodeficiency. Int Arch Allergy Immunol. 2008;147(2):87–92.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Aghamohammadi A, et al. Clinical and immunological features of 65 Iranian patients with common variable immunodeficiency. Clin Diagn Lab Immunol. 2005;12(7):825–32.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Schroeder HW Jr, et al. Susceptibility locus for IgA deficiency and common variable immunodeficiency in the HLA-DR3, -B8, -A1 haplotypes. Mol Med. 1998;4(2):72–86.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Kralovicova J, et al. Fine-scale mapping at IGAD1 and genome-wide genetic linkage analysis implicate HLA-DQ/DR as a major susceptibility locus in selective IgA deficiency and common variable immunodeficiency. J Immunol. 2003;170(5):2765–75.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Finck A, et al. Linkage of autosomal-dominant common variable immunodeficiency to chromosome 4q. Eur J Hum Genet. 2006;14(7):867–75.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Schaffer AA, et al. Analysis of families with common variable immunodeficiency (CVID) and IgA deficiency suggests linkage of CVID to chromosome 16q. Hum Genet. 2006;118(6):725–9.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Brodin P, et al. Variation in the human immune system is largely driven by non-heritable influences. Cell. 2015;160(1–2):37–47.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Rodriguez-Cortez VC, et al. Monozygotic twins discordant for common variable immunodeficiency reveal impaired DNA demethylation during naive-to-memory B-cell transition. Nat Commun. 2015;6:7335.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Warnatz K, et al. Severe deficiency of switched memory B cells (CD27(+)IgM(−)IgD(−)) in subgroups of patients with common variable immunodeficiency: a new approach to classify a heterogeneous disease. Blood. 2002;99(5):1544–51.PubMedCrossRefGoogle Scholar
  21. 21.
    Piqueras B, et al. Common variable immunodeficiency patient classification based on impaired B cell memory differentiation correlates with clinical aspects. J Clin Immunol. 2003;23(5):385–400.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Wehr C, et al. The EUROclass trial: defining subgroups in common variable immunodeficiency. Blood. 2008;111(1):77–85.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Giovannetti A, et al. Unravelling the complexity of T cell abnormalities in common variable immunodeficiency. J Immunol. 2007;178(6):3932–43.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    De Vera MJ, Al-Harthi L, Gewurz AT. Assessing thymopoiesis in patients with common variable immunodeficiency as measured by T-cell receptor excision circles. Ann Allergy Asthma Immunol. 2004;93(5):478–84.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Isgro A, et al. Bone marrow clonogenic capability, cytokine production, and thymic output in patients with common variable immunodeficiency. J Immunol. 2005;174(8):5074–81.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Goldacker S, Warnatz K. Tackling the heterogeneity of CVID. Curr Opin Allergy Clin Immunol. 2005;5(6):504–9.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Stuchly J, et al. Common variable immunodeficiency patients with a phenotypic profile of immunosenescence present with thrombocytopenia. Sci Rep. 2017;7:39710.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Farrington M, et al. CD40 ligand expression is defective in a subset of patients with common variable immunodeficiency. Proc Natl Acad Sci U S A. 1994;91(3):1099–103.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Nordoy I, et al. Adhesion molecules in common variable immunodeficiency (CVID)--a decrease in L-selectin-positive T lymphocytes. Clin Exp Immunol. 1998;114(2):258–63.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Pozzi N, et al. Defective surface expression of attractin on T cells in patients with common variable immunodeficiency (CVID). Clin Exp Immunol. 2001;123(1):99–104.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Ferrer JM, et al. Alterations in interleukin secretion (IL-2 and IL-4) by CD4 and CD4 CD45RO cells from common variable immunodeficiency (CVI) patients. Clin Exp Immunol. 1995;102(2):286–9.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Fischer MB, et al. Defective interleukin-2 and interferon-gamma gene expression in response to antigen in a subgroup of patients with common variable immunodeficiency. J Allergy Clin Immunol. 1993;92(2):340–52.PubMedCrossRefGoogle Scholar
  33. 33.
    Holm AM, et al. Impaired secretion of IL-10 by T cells from patients with common variable immunodeficiency—involvement of protein kinase A type I. J Immunol. 2003;170(11):5772–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Holm AM, et al. Abnormal interleukin-7 function in common variable immunodeficiency. Blood. 2005;105(7):2887–90.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    North ME, Webster AD, Farrant J. Role of interleukin-2 and interleukin-6 in the mitogen responsiveness of T cells from patients with ‘common-variable’ hypogammaglobulinaemia. Clin Exp Immunol. 1990;81(3):412–6.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Taraldsrud E, et al. Defective IL-4 signaling in T cells defines severe common variable immunodeficiency. J Autoimmun. 2017;81:110–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Berron-Ruiz L, et al. Impaired selective cytokine production by CD4(+) T cells in common variable immunodeficiency associated with the absence of memory B cells. Clin Immunol. 2016;166–167:19–26.PubMedCrossRefGoogle Scholar
  38. 38.
    Unger S, et al. The TH1 phenotype of follicular helper T cells indicates an IFN-gamma-associated immune dysregulation in patients with CD21low common variable immunodeficiency. J Allergy Clin Immunol. 2018;141(2):730–40.PubMedCrossRefGoogle Scholar
  39. 39.
    Cunill V, et al. Follicular T cells from smB(−) common variable immunodeficiency patients are skewed toward a Th1 phenotype. Front Immunol. 2017;8:174.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Fischer MB, et al. A defect in the early phase of T-cell receptor-mediated T-cell activation in patients with common variable immunodeficiency. Blood. 1994;84(12):4234–41.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Boncristiano M, et al. Defective recruitment and activation of ZAP-70 in common variable immunodeficiency patients with T cell defects. Eur J Immunol. 2000;30(9):2632–8.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Paccani SR, et al. Defective Vav expression and impaired F-actin reorganization in a subset of patients with common variable immunodeficiency characterized by T-cell defects. Blood. 2005;106(2):626–34.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Arumugakani G, Wood PM, Carter CR. Frequency of Treg cells is reduced in CVID patients with autoimmunity and splenomegaly and is associated with expanded CD21lo B lymphocytes. J Clin Immunol. 2010;30(2):292–300.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Horn J, et al. Decrease in phenotypic regulatory T cells in subsets of patients with common variable immunodeficiency. Clin Exp Immunol. 2009;156(3):446–54.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Melo KM, et al. A decreased frequency of regulatory T cells in patients with common variable immunodeficiency. PLoS One. 2009;4(7):e6269.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Yu GP, et al. Regulatory T cell dysfunction in subjects with common variable immunodeficiency complicated by autoimmune disease. Clin Immunol. 2009;131(2):240–53.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Holm AM, et al. Gene expression analysis of peripheral T cells in a subgroup of common variable immunodeficiency shows predominance of CCR7(−) effector-memory T cells. Clin Exp Immunol. 2004;138(2):278–89.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Viallard JF, et al. CD8+HLA-DR+ T lymphocytes are increased in common variable immunodeficiency patients with impaired memory B-cell differentiation. Clin Immunol. 2006;119(1):51–8.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Raeiszadeh M, et al. The T cell response to persistent herpes virus infections in common variable immunodeficiency. Clin Exp Immunol. 2006;146(2):234–42.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Kuntz M, et al. Analysis of bulk and virus-specific CD8+ T cells reveals advanced differentiation of CD8+ T cells in patients with common variable immunodeficiency. Clin Immunol. 2011;141(2):177–86.PubMedCrossRefGoogle Scholar
  51. 51.
    Holm AM, et al. Polyclonal expansion of large granular lymphocytes in common variable immunodeficiency—association with neutropenia. Clin Exp Immunol. 2006;144(3):418–24.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Wong GK, et al. Accelerated loss of TCR repertoire diversity in common variable immunodeficiency. J Immunol. 2016;197(5):1642–9.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Resnick ES, et al. Morbidity and mortality in common variable immune deficiency over 4 decades. Blood. 2012;119(7):1650–7.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Weston SA, et al. Assessment of male CVID patients for mutations in the Btk gene: how many have been misdiagnosed? Clin Exp Immunol. 2001;124(3):465–9.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Gaspar HB, Conley ME. Early B cell defects. Clin Exp Immunol. 2000;119(3):383–9.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Warnatz K, et al. Human ICOS deficiency abrogates the germinal center reaction and provides a monogenic model for common variable immunodeficiency. Blood. 2006;107(8):3045–52.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Warnatz K, et al. B-cell activating factor receptor deficiency is associated with an adult-onset antibody deficiency syndrome in humans. Proc Natl Acad Sci U S A. 2009;106(33):13945–50.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Ochtrop ML, et al. T and B lymphocyte abnormalities in bone marrow biopsies of common variable immunodeficiency. Blood. 2011;118(2):309–18.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Alachkar H, et al. Memory switched B cell percentage and not serum immunoglobulin concentration is associated with clinical complications in children and adults with specific antibody deficiency and common variable immunodeficiency. Clin Immunol. 2006;120(3):310–8.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Detkova D, et al. Common variable immunodeficiency: association between memory B cells and lung diseases. Chest. 2007;131(6):1883–9.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Ko J, Radigan L, Cunningham-Rundles C. Immune competence and switched memory B cells in common variable immunodeficiency. Clin Immunol. 2005;116(1):37–41.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Vodjgani M, et al. Analysis of class-switched memory B cells in patients with common variable immunodeficiency and its clinical implications. J Investig Allergol Clin Immunol. 2007;17(5):321–8.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Berglund LJ, Wong SW, Fulcher DA. B-cell maturation defects in common variable immunodeficiency and association with clinical features. Pathology. 2008;40(3):288–94.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Sanchez-Ramon S, et al. Memory B cells in common variable immunodeficiency: clinical associations and sex differences. Clin Immunol. 2008;128(3):314–21.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Cuss AK, et al. Expansion of functionally immature transitional B cells is associated with human-immunodeficient states characterized by impaired humoral immunity. J Immunol. 2006;176(3):1506–16.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Unger S, et al. Ill-defined germinal centers and severely reduced plasma cells are histological hallmarks of lymphadenopathy in patients with common variable immunodeficiency. J Clin Immunol. 2014;34(6):615–26.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Bonhomme D, et al. Impaired antibody affinity maturation process characterizes a subset of patients with common variable immunodeficiency. J Immunol. 2000;165(8):4725–30.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Andersen P, et al. Deficiency of somatic hypermutation of the antibody light chain is associated with increased frequency of severe respiratory tract infection in common variable immunodeficiency. Blood. 2005;105(2):511–7.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Almejun MB, et al. Noninfectious complications in patients with pediatric-onset common variable immunodeficiency correlated with defects in somatic hypermutation but not in class-switch recombination. J Allergy Clin Immunol. 2017;139(3):913–22.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Almejun MB, Borge M. Somatic hypermutation defects in common variable immune deficiency. Curr Allergy Asthma Rep. 2017;17(11):76.PubMedCrossRefGoogle Scholar
  71. 71.
    Herbst EW, et al. Intestinal B cell defects in common variable immunodeficiency. Clin Exp Immunol. 1994;95(2):215–21.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Taubenheim N, et al. Defined blocks in terminal plasma cell differentiation of common variable immunodeficiency patients. J Immunol. 2005;175(8):5498–503.PubMedCrossRefGoogle Scholar
  73. 73.
    Bryant A, et al. Classification of patients with common variable immunodeficiency by B cell secretion of IgM and IgG in response to anti-IgM and interleukin-2. Clin Immunol Immunopathol. 1990;56(2):239–48.PubMedCrossRefGoogle Scholar
  74. 74.
    Driessen GJ, et al. B-cell replication history and somatic hypermutation status identify distinct pathophysiologic backgrounds in common variable immunodeficiency. Blood. 2011;118(26):6814–23.PubMedCrossRefGoogle Scholar
  75. 75.
    Taraldsrud E, et al. Patterns of constitutively phosphorylated kinases in B cells are associated with disease severity in common variable immunodeficiency. Clin Immunol. 2017;175:69–74.PubMedCrossRefGoogle Scholar
  76. 76.
    Visentini M, et al. Dysregulated extracellular signal-regulated kinase signaling associated with impaired B-cell receptor endocytosis in patients with common variable immunodeficiency. J Allergy Clin Immunol. 2014;134(2):401–10.PubMedCrossRefGoogle Scholar
  77. 77.
    Keller B, et al. Disturbed canonical nuclear factor of kappa light chain signaling in B cells of patients with common variable immunodeficiency. J Allergy Clin Immunol. 2017;139(1):220–31. e8PubMedCrossRefGoogle Scholar
  78. 78.
    van de Ven AA, et al. Defective calcium signaling and disrupted CD20-B-cell receptor dissociation in patients with common variable immunodeficiency disorders. J Allergy Clin Immunol. 2012;129(3):755–61. e7PubMedCrossRefGoogle Scholar
  79. 79.
    Schena F, et al. Dependence of immunoglobulin class switch recombination in B cells on vesicular release of ATP and CD73 ectonucleotidase activity. Cell Rep. 2013;3(6):1824–31.PubMedCrossRefGoogle Scholar
  80. 80.
    Yu JE, et al. TLR-mediated B cell defects and IFN-alpha in common variable immunodeficiency. J Clin Immunol. 2012;32(1):50–60.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Clemente A, et al. B cells from common variable immunodeficiency patients fail to differentiate to antibody secreting cells in response to TLR9 ligand (CpG-ODN) or anti-CD40+IL21. Cell Immunol. 2011;268(1):9–15.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Barsotti NS, et al. IL-10-producing regulatory B cells are decreased in patients with common variable immunodeficiency. PLoS One. 2016;11(3):e0151761.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Kofod-Olsen E, et al. Altered fraction of regulatory B and T cells is correlated with autoimmune phenomena and splenomegaly in patients with CVID. Clin Immunol. 2016;162:49–57.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Litinsky I, et al. Sarcoidosis: TB or not TB? Ann Rheum Dis. 2002;61(5):385–6.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Poeck H, et al. Plasmacytoid dendritic cells, antigen, and CpG-C license human B cells for plasma cell differentiation and immunoglobulin production in the absence of T-cell help. Blood. 2004;103(8):3058–64.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    He B, et al. The transmembrane activator TACI triggers immunoglobulin class switching by activating B cells through the adaptor MyD88. Nat Immunol. 2010;11(9):836–45.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Ozcan E, et al. Transmembrane activator, calcium modulator, and cyclophilin ligand interactor drives plasma cell differentiation in LPS-activated B cells. J Allergy Clin Immunol. 2009;123(6):1277–86.e5.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Groom JR, et al. BAFF and MyD88 signals promote a lupuslike disease independent of T cells. J Exp Med. 2007;204(8):1959–71.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Treml LS, et al. TLR stimulation modifies BLyS receptor expression in follicular and marginal zone B cells. J Immunol. 2007;178(12):7531–9.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Ng LG, et al. BAFF costimulation of Toll-like receptor-activated B-1 cells. Eur J Immunol. 2006;36(7):1837–46.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Bayry J, et al. Common variable immunodeficiency is associated with defective functions of dendritic cells. Blood. 2004;104(8):2441–3.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Cunningham-Rundles C, Radigan L. Deficient IL-12 and dendritic cell function in common variable immune deficiency. Clin Immunol. 2005;115(2):147–53.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Scott-Taylor TH, et al. Monocyte derived dendritic cell responses in common variable immunodeficiency. Clin Exp Immunol. 2004;138(3):484–90.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Viallard JF, et al. Altered dendritic cell distribution in patients with common variable immunodeficiency. Arthritis Res Ther. 2005;7(5):R1052–5.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Yong PF, et al. Selective deficits in blood dendritic cell subsets in common variable immunodeficiency and X-linked agammaglobulinaemia but not specific polysaccharide antibody deficiency. Clin Immunol. 2008;127(1):34–42.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Cunningham-Rundles C, et al. TLR9 activation is defective in common variable immune deficiency. J Immunol. 2006;176(3):1978–87.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Marron TU, Yu JE, Cunningham-Rundles C. Toll-like receptor function in primary B cell defects. Front Biosci (Elite Ed). 2012;4:1853–63.CrossRefGoogle Scholar
  98. 98.
    Lanzavecchia A, et al. Understanding and making use of human memory B cells. Immunol Rev. 2006;211:303–9.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Ruprecht CR, Lanzavecchia A. Toll-like receptor stimulation as a third signal required for activation of human naive B cells. Eur J Immunol. 2006;36(4):810–6.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Bernasconi NL, Traggiai E, Lanzavecchia A. Maintenance of serological memory by polyclonal activation of human memory B cells. Science. 2002;298(5601):2199–202.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Taraldsrud E, et al. Common variable immunodeficiency revisited: normal generation of naturally occurring dendritic cells that respond to Toll-like receptors 7 and 9. Clin Exp Immunol. 2014;175(3):439–48.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Yu JE, et al. Toll-like receptor 7 and 9 defects in common variable immunodeficiency. J Allergy Clin Immunol. 2009;124(2):349–56, 356.e1–3.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    van de Ven AA, et al. B-cell defects in common variable immunodeficiency: BCR signaling, protein clustering and hardwired gene mutations. Crit Rev Immunol. 2011;31(2):85–98.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Ebbo M, et al. Innate lymphoid cells: major players in inflammatory diseases. Nat Rev Immunol. 2017;17(11):665–78.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Vely F, et al. Evidence of innate lymphoid cell redundancy in humans. Nat Immunol. 2016;17(11):1291–9.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Cols M, et al. Expansion of inflammatory innate lymphoid cells in patients with common variable immune deficiency. J Allergy Clin Immunol. 2016;137(4):1206–15. e6PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Geier CB, et al. Reduced numbers of circulating group 2 innate lymphoid cells in patients with common variable immunodeficiency. Eur J Immunol. 2017;47(11):1959–69.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Gao Y, et al. Common variable immunodeficiency is associated with a functional deficiency of invariant natural killer T cells. J Allergy Clin Immunol. 2014;133(5):1420–8, 1428.e1.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Sanchez LA, et al. Two sides of the same coin: pediatric-onset and adult-onset common variable immune deficiency. J Clin Immunol. 2017;37(6):592–602.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Kralickova P, et al. Cytomegalovirus disease in patients with common variable immunodeficiency: three case reports. Int Arch Allergy Immunol. 2014;163(1):69–74.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Wheat WH, et al. Possible role of human herpesvirus 8 in the lymphoproliferative disorders in common variable immunodeficiency. J Exp Med. 2005;202(4):479–84.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Morimoto Y, Routes JM. Granulomatous disease in common variable immunodeficiency. Curr Allergy Asthma Rep. 2005;5(5):370–5.PubMedCrossRefGoogle Scholar
  113. 113.
    Bates CA, et al. Granulomatous-lymphocytic lung disease shortens survival in common variable immunodeficiency. J Allergy Clin Immunol. 2004;114(2):415–21.PubMedCrossRefGoogle Scholar
  114. 114.
    Ardeniz O, Cunningham-Rundles C. Granulomatous disease in common variable immunodeficiency. Clin Immunol. 2009;133(2):198–207.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Jorgensen SF, et al. A cross-sectional study of the prevalence of gastrointestinal symptoms and pathology in patients with common variable immunodeficiency. Am J Gastroenterol. 2016;111(10):1467–75.PubMedCrossRefGoogle Scholar
  116. 116.
    Venhoff N, et al. The role of HLA DQ2 and DQ8 in dissecting celiac-like disease in common variable immunodeficiency. J Clin Immunol. 2013;33(5):909–16.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Washington K, et al. Gastrointestinal pathology in patients with common variable immunodeficiency and X-linked agammaglobulinemia. Am J Surg Pathol. 1996;20(10):1240–52.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Daniels JA, et al. Gastrointestinal tract pathology in patients with common variable immunodeficiency (CVID): a clinicopathologic study and review. Am J Surg Pathol. 2007;31(12):1800–12.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Ward C, et al. Abnormal liver function in common variable immunodeficiency disorders due to nodular regenerative hyperplasia. Clin Exp Immunol. 2008;153(3):331–7.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Fuss IJ, et al. Nodular regenerative hyperplasia in common variable immunodeficiency. J Clin Immunol. 2013;33(4):748–58.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Malamut G, et al. Nodular regenerative hyperplasia: the main liver disease in patients with primary hypogammaglobulinemia and hepatic abnormalities. J Hepatol. 2008;48(1):74–82.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Quinti I, et al. Long-term follow-up and outcome of a large cohort of patients with common variable immunodeficiency. J Clin Immunol. 2007;27(3):308–16.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Seve P, et al. Autoimmune hemolytic anemia and common variable immunodeficiency: a case-control study of 18 patients. Medicine (Baltimore). 2008;87(3):177–84.CrossRefGoogle Scholar
  124. 124.
    Guffroy A, et al. Neutropenia in patients with common variable immunodeficiency: a rare event associated with severe outcome. J Clin Immunol. 2017;37(7):715–26.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Boileau J, et al. Autoimmunity in common variable immunodeficiency: correlation with lymphocyte phenotype in the French DEFI study. J Autoimmun. 2011;36(1):25–32.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Chapel H, et al. Confirmation and improvement of criteria for clinical phenotyping in common variable immunodeficiency disorders in replicate cohorts. J Allergy Clin Immunol. 2012;130(5):1197–8. e9PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Mouillot G, et al. B-cell and T-cell phenotypes in CVID patients correlate with the clinical phenotype of the disease. J Clin Immunol. 2010;30(5):746–55.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Oraei M, et al. Naive CD4+ T cells and recent thymic emigrants in common variable immunodeficiency. J Investig Allergol Clin Immunol. 2012;22(3):160–7.PubMedPubMedCentralGoogle Scholar
  129. 129.
    Maglione PJ. Autoimmune and lymphoproliferative complications of common variable immunodeficiency. Curr Allergy Asthma Rep. 2016;16(3):19.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    van de Ven AA, Warnatz K. The autoimmune conundrum in common variable immunodeficiency disorders. Curr Opin Allergy Clin Immunol. 2015;15(6):514–24.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Podjasek JC, Abraham RS. Autoimmune cytopenias in common variable immunodeficiency. Front Immunol. 2012;3:189.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Rensing-Ehl A, et al. Clinical and immunological overlap between autoimmune lymphoproliferative syndrome and common variable immunodeficiency. Clin Immunol. 2010;137(3):357–65.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Castigli E, et al. TACI is mutant in common variable immunodeficiency and IgA deficiency. Nat Genet. 2005;37(8):829–34.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Zhang L, et al. Transmembrane activator and calcium-modulating cyclophilin ligand interactor mutations in common variable immunodeficiency: clinical and immunologic outcomes in heterozygotes. J Allergy Clin Immunol. 2007;120(5):1178–85.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Salzer U, et al. Screening of functional and positional candidate genes in families with common variable immunodeficiency. BMC Immunol. 2008;9:3.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Lee JJ, et al. Transmembrane activator and calcium-modulator and cyclophilin ligand interactor mutations in common variable immunodeficiency. Curr Opin Allergy Clin Immunol. 2008;8(6):520–6.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Verma N, et al. Immune deficiency and autoimmunity in patients with CTLA-4 (CD152) mutations. Clin Exp Immunol. 2017;190(1):1–7.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Schubert D, et al. Autosomal dominant immune dysregulation syndrome in humans with CTLA4 mutations. Nat Med. 2014;20(12):1410–6.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Gamez-Diaz L, et al. The extended phenotype of LPS-responsive beige-like anchor protein (LRBA) deficiency. J Allergy Clin Immunol. 2016;137(1):223–30.PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Lopez-Herrera G, et al. Deleterious mutations in LRBA are associated with a syndrome of immune deficiency and autoimmunity. Am J Hum Genet. 2012;90(6):986–1001.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Hou TZ, et al. Identifying functional defects in patients with immune dysregulation due to LRBA and CTLA-4 mutations. Blood. 2017;129(11):1458–68.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Vorechovsky I, et al. Chromosomal radiosensitivity in common variable immune deficiency. Mutat Res. 1993;290(2):255–64.PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Chua I, Quinti I, Grimbacher B. Lymphoma in common variable immunodeficiency: interplay between immune dysregulation, infection and genetics. Curr Opin Hematol. 2008;15(4):368–74.PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Dhalla F, et al. Review of gastric cancer risk factors in patients with common variable immunodeficiency disorders, resulting in a proposal for a surveillance programme. Clin Exp Immunol. 2011;165(1):1–7.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Mellemkjaer L, et al. Cancer risk among patients with IgA deficiency or common variable immunodeficiency and their relatives: a combined Danish and Swedish study. Clin Exp Immunol. 2002;130(3):495–500.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Seymour B, Miles J, Haeney M. Primary antibody deficiency and diagnostic delay. J Clin Pathol. 2005;58(5):546–7.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Roberts CA, et al. Investigation of common variable immunodeficiency patients and healthy individuals using autoimmune lymphoproliferative syndrome biomarkers. Hum Immunol. 2013;74(12):1531–5.PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Rizzi M, et al. Outcome of allogeneic stem cell transplantation in adults with common variable immunodeficiency. J Allergy Clin Immunol. 2011;128(6):1371–4. e2PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Wehr C, et al. Multicenter experience in hematopoietic stem cell transplantation for serious complications of common variable immunodeficiency. J Allergy Clin Immunol. 2015;135(4):988–97. e6PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Ballow M, et al. Immunodeficiencies. Clin Exp Immunol. 2009;158(Suppl 1):14–22.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Orange JS, et al. Use of intravenous immunoglobulin in human disease: a review of evidence by members of the Primary Immunodeficiency Committee of the American Academy of Allergy, Asthma and Immunology. J Allergy Clin Immunol. 2006;117(4 Suppl):S525–53.PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Gardulf A, et al. Subcutaneous immunoglobulin replacement in patients with primary antibody deficiencies: safety and costs. Lancet. 1995;345(8946):365–9.PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Gardulf A, et al. Children and adults with primary antibody deficiencies gain quality of life by subcutaneous IgG self-infusions at home. J Allergy Clin Immunol. 2004;114(4):936–42.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Medicine, Department of Rheumatology and Clinical ImmunologyMedical Center—University of FreiburgFreiburg im BreisgauGermany
  2. 2.Faculty of Medicine, Center for Chronic Immunodeficiency (CCI)Medical Center—University of FreiburgFreiburg im BreisgauGermany

Personalised recommendations