Advertisement

Mucosal B Cells

  • Arianna Troilo
  • Nagaja Capitani
  • Laura Patrussi
  • Cosima T. Baldari
  • Mario Milco D’EliosEmail author
Chapter
Part of the Rare Diseases of the Immune System book series (RDIS)

Abstract

Mucosal B cells are crucial for host defense. The mucosal surfaces exceed 300 m2 in humans and represent indeed the largest part of the body in which immune responses take place daily. Mucosal B cells, located in the gut, respiratory, and urogenital mucosae as well as in skin, salivary, mammary, and lacrimal glands, are very important to protect ourselves from infections. Most harmful pathogens enter the body through the mucosal surfaces by ingestion, inhalation, or sexual contact. This chapter focuses on the mechanisms that coordinate B-cell development as well as on the mechanisms used by mucosal B cells and mucosal IgA to give protection to the host.

Keywords

B cells IgA Mucosal immunity Immunodeficiency 

References

  1. 1.
    Montecino-Rodriguez E, Dorshkind K. B-1 B cell development in the fetus and adult. Immunity. 2012;36:13–23.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Baumgarth N. The double life of a B-1 cell: self-reactivity selects for protective effector functions. Nat Rev Immunol. 2011;11(1):34–46.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Grönwall C, Vas J, Silverman GJ. Protective roles of natural IgM antibodies. Front Immunol. 2012;3:66.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Suzuki K, Maruya M, Kawamoto S, Fagarasan S. Roles of B-1 and B-2 cells in innate and acquired IgA-mediated immunity. Immunol Rev. 2010;237:180–90.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Griffin DO, Holodick NE, Rothstein TL. Human B1 cells in umbilical cord and adult peripheral blood express the novel phenotype CD20+ CD27+ CD43+ CD70. J Exp Med. 2011;208(1):67–80.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Tangye SG. To B1 or not to B1: that really is still the question! Blood. 2013;121(26):5109–10.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Cerutti A, Cols M, Puga I. Marginal zone B cells: virtues of innate-like antibody-producing lymphocytes. Nat Rev Immunol. 2013;13(2):118–32.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Pillai S, Cariappa A. The follicular versus marginal zone B lymphocyte cell fate decision. Nat Rev Immunol. 2009;9(11):767–77.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Thomas MD, Srivastava B, Allman D. Regulation of peripheral B cell maturation. Cell Immunol. 2006;239:92–102.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Wardemann H, Yurasov S, Schaefer A, Young JW, Meffre E, Nussenzweig MC. Predominant autoantibody production by early human B cell precursors. Science. 2003;301(5638):1374–7.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Cambier JC, Gauld SB, Merrell KT, Vilen BJ. B-cell anergy: from transgenic models to naturally occurring anergic B cells? Nat Rev Immunol. 2007;7(8):633–43.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Meffre E, Wardemann H. B-cell tolerance checkpoints in health and autoimmunity. Curr Opin Immunol. 2008;20:632–8.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Mei HE, Yoshida T, Sime W, Hiepe F, Thiele K, Manz RA, et al. Blood-borne human plasma cells in steady state are derived from mucosal immune responses. Blood. 2009;113(11):2461–9.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Weitkamp JH, Kallewaard NL, Bowen AL, Lafleur BJ, Greenberg HB, Crowe JE Jr. VH1-46 is the dominant immunoglobulin heavy chain gene segment in rotavirus-specific memory B cells expressing the intestinal homing receptor alpha4beta7. J Immunol. 2005;174(6):3454–60.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Macpherson AJ, McCoy KD, Johansen FE, Brandtzaeg P. The immune geography of IgA induction and function. Mucosal Immunol. 2008;1(1):11–22.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Cornes JS. Number, size, and distribution of Peyer’s patches in the human small intestine: Part I The development of Peyer’s patches. Gut. 1965;6(3):225–9.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Peterson DA, McNulty NP, Guruge JL, Gordon JI. IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe. 2007;2(5):328–39.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Obata T, Goto Y, Kunisawa J, Sato S, Sakamoto M, Setoyama H, et al. Indigenous opportunistic bacteria inhabit mammalian gut-associated lymphoid tissues and share a mucosal antibody-mediated symbiosis. Proc Natl Acad Sci U S A. 2010;107(16):7419–24.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Baker J, Garrod D. Epithelial cells retain junctions during mitosis. J Cell Sci. 1993;104(Pt 2):415–25.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Peters BM, Shirtliff ME, Jabra-Rizk MA. Antimicrobial peptides: primeval molecules or future drugs? PLoS Pathog. 2010;6(10):e1001067.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Dann SM, Eckmann L. Innate immune defenses in the intestinal tract. Curr Opin Gastroenterol. 2007;23(2):115–20.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Kraehenbuhl JP, Neutra MR. Epithelial M cells: differentiation and function. Annu Rev Cell Dev Biol. 2000;16:301–32.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Wolf JL, Rubin DH, Finberg R, Kauffman RS, Sharpe AH, Trier JS, et al. Intestinal M cells: a pathway for entry of reovirus into the host. Science. 1981;212(4493):471–2.PubMedCrossRefGoogle Scholar
  24. 24.
    Golovkina TV, Shlomchik M, Hannum L, Chervonsky A. Organogenic role of B lymphocytes in mucosal immunity. Science. 1999;286(5446):1965–8.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Endsley MA, Njongmeta LM, Shell E, Ryan MW, Indrikovs AJ, Ulualp S, et al. Human IgA-inducing protein from dendritic cells induces IgA production by naive IgD+ B cells. J Immunol. 2009;182(4):1854–9.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Spencer J, MacDonald TT, Finn T, Isaacson PG. The development of gut associated lymphoid tissue in the terminal ileum of fetal human intestine. Clin Exp Immunol. 1986;64(3):536–43.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Benckert J, Schmolka N, Kreschel C, Zoller MJ, Sturm A, Wiedenmann B, et al. The majority of intestinal IgA+ and IgG+ plasmablasts in the human gut are antigen-specific. J Clin Invest. 2011;121(5):1946–55.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Farstad IN, Carlsen H, Morton HC, Brandtzaeg P. Immunoglobulin A cell distribution in the human small intestine: phenotypic and functional characteristics. Immunology. 2000;101(3):354–63.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Di Niro R, Mesin L, Raki M, Zheng NY, Lund-Johansen F, Lundin KE, et al. Rapid generation of rotavirus-specific human monoclonal antibodies from small-intestinal mucosa. J Immunol. 2010;185(9):5377–83.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Stevens RH, Macy E, Morrow C, Saxon A. Characterization of a circulating subpopulation of spontaneous antitetanus toxoid antibody producing B cells following in vivo booster immunization. J Immunol. 1979;122(6):2498–504.PubMedGoogle Scholar
  31. 31.
    Brieva JA, Roldan E, Rodriguez C, Navas G. Human tonsil, blood and bone marrow in vivo-induced B cells capable of spontaneous and high-rate immunoglobulin secretion in vitro: differences in the requirements for factors and for adherent and bone marrow stromal cells, as well as distinctive adhesion molecule expression. Eur J Immunol. 1994;24(2):362–6.PubMedCrossRefGoogle Scholar
  32. 32.
    Munoz JL, Insel RA. In vitro human antibody production to the Haemophilus influenzae type b capsular polysaccharide. J Immunol. 1987;139(6):2026–31.PubMedGoogle Scholar
  33. 33.
    Sen ML, Garcia-Alonso A, Brieva JA. Human B lymphocytes capable of spontaneous Ig production in short-term cultures: characterization in the circulation and lymphoid tissues. Cell Immunol. 1986;98(1):200–10.PubMedCrossRefGoogle Scholar
  34. 34.
    Mesin L, Di Niro R, Thompson KM, Lundin KE, Sollid LM. Long-lived plasma cells from human small intestine biopsies secrete immunoglobulins for many weeks in vitro. J Immunol. 2011;187(6):2867–74.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Landsverk OJ, Snir O, Casado RB, Richter L, Mold JE, Reu P, et al. Antibody-secreting plasma cells persist for decades in human intestine. J Exp Med. 2017;214(2):309–17.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Mei HE, Wirries I, Frolich D, Brisslert M, Giesecke C, Grun JR, et al. A unique population of IgG-expressing plasma cells lacking CD19 is enriched in human bone marrow. Blood. 2015;125(11):1739–48.PubMedCrossRefGoogle Scholar
  37. 37.
    Pellat-Deceunynck C, Bataille R. Normal and malignant human plasma cells: proliferation, differentiation, and expansions in relation to CD45 expression. Blood Cells Mol Dis. 2004;32(2):293–301.PubMedCrossRefGoogle Scholar
  38. 38.
    Debertin AS, Tschernig T, Tonjes H, Kleemann WJ, Troger HD, Pabst R. Nasal-associated lymphoid tissue (NALT): frequency and localization in young children. Clin Exp Immunol. 2003;134(3):503–7.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Bienenstock J, McDermott MR. Bronchus- and nasal-associated lymphoid tissues. Immunol Rev. 2005;206:22–31.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Dolen WK, Spofford B, Selner JC. The hidden tonsils of Waldeyer’s ring. Ann Allergy. 1990;65(4):244–8.PubMedGoogle Scholar
  41. 41.
    Verbrugghe P, Kujala P, Waelput W, Peters PJ, Cuvelier CA. Clusterin in human gut-associated lymphoid tissue, tonsils, and adenoids: localization to M cells and follicular dendritic cells. Histochem Cell Biol. 2008;129(3):311–20.PubMedCrossRefGoogle Scholar
  42. 42.
    Ogasawara N, Kojima T, Go M, Takano K, Kamekura R, Ohkuni T, et al. Epithelial barrier and antigen uptake in lymphoepithelium of human adenoids. Acta Otolaryngol. 2011;131(2):116–23.PubMedCrossRefGoogle Scholar
  43. 43.
    Brandtzaeg P. Translocation of immunoglobulins across human epithelia: review of the development of a transport model. Acta Histochem Suppl. 1987;34:9–32.PubMedGoogle Scholar
  44. 44.
    Quiding-Jarbrink M, Granstrom G, Nordstrom I, Holmgren J, Czerkinsky C. Induction of compartmentalized B-cell responses in human tonsils. Infect Immun. 1995;63(3):853–7.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Brandtzaeg P, Prydz H. Direct evidence for an integrated function of J chain and secretory component in epithelial transport of immunoglobulins. Nature. 1984;311(5981):71–3.PubMedCrossRefGoogle Scholar
  46. 46.
    Fukuizumi T, Inoue H, Anzai Y, Tsujisawa T, Uchiyama C. Sheep red blood cell instillation at palatine tonsil effectively induces specific IgA class antibody in saliva in rabbits. Microbiol Immunol. 1995;39(5):351–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Moldoveanu Z, Russell MW, Wu HY, Huang WQ, Compans RW, Mestecky J. Compartmentalization within the common mucosal immune system. Adv Exp Med Biol. 1995;371A:97–101.PubMedCrossRefGoogle Scholar
  48. 48.
    Hiller AS, Tschernig T, Kleemann WJ, Pabst R. Bronchus-associated lymphoid tissue (BALT) and larynx-associated lymphoid tissue (LALT) are found at different frequencies in children, adolescents and adults. Scand J Immunol. 1998;47(2):159–62.PubMedCrossRefGoogle Scholar
  49. 49.
    Pabst R, Gehrke I. Is the bronchus-associated lymphoid tissue (BALT) an integral structure of the lung in normal mammals, including humans? Am J Respir Cell Mol Biol. 1990;3(2):131–5.PubMedCrossRefGoogle Scholar
  50. 50.
    Tschernig T, Kleemann WJ, Pabst R. Bronchus-associated lymphoid tissue (BALT) in the lungs of children who had died from sudden infant death syndrome and other causes. Thorax. 1995;50(6):658–60.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Meuwissen HJ, Hussain M. Bronchus-associated lymphoid tissue in human lung: correlation of hyperplasia with chronic pulmonary disease. Clin Immunol Immunopathol. 1982;23(2):548–61.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Sato A, Chida K, Iwata M, Hayakawa H. Study of bronchus-associated lymphoid tissue in patients with diffuse panbronchiolitis. Am Rev Respir Dis. 1992;146(2):473–8.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Suda T, Chida K, Hayakawa H, Imokawa S, Iwata M, Nakamura H, et al. Development of bronchus-associated lymphoid tissue in chronic hypersensitivity pneumonitis. Chest. 1999;115(2):357–63.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Sato A, Hayakawa H, Uchiyama H, Chida K. Cellular distribution of bronchus-associated lymphoid tissue in rheumatoid arthritis. Am J Respir Crit Care Med. 1996;154(6 Pt 1):1903–7.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Richmond I, Pritchard GE, Ashcroft T, Avery A, Corris PA, Walters EH. Bronchus associated lymphoid tissue (BALT) in human lung: its distribution in smokers and non-smokers. Thorax. 1993;48(11):1130–4.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Delventhal S, Brandis A, Ostertag H, Pabst R. Low incidence of bronchus-associated lymphoid tissue (BALT) in chronically inflamed human lungs. Virchows Arch B Cell Pathol Incl Mol Pathol. 1992;62(4):271–4.PubMedCrossRefGoogle Scholar
  57. 57.
    Tschernig T, Pabst R. Bronchus-associated lymphoid tissue (BALT) is not present in the normal adult lung but in different diseases. Pathobiology. 2000;68(1):1–8.PubMedCrossRefGoogle Scholar
  58. 58.
    Jung D, Giallourakis C, Mostoslavsky R, Alt FW. Mechanism and control of V(D)J recombination at the immunoglobulin heavy chain locus. Annu Rev Immunol. 2006;24:541–70.PubMedCrossRefGoogle Scholar
  59. 59.
    Chen K, Cerutti A. New insights into the enigma of immunoglobulin D. Immunol Rev. 2010;237(1):160–79.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Chen K, Xu W, Wilson M, He B, Miller NW, Bengten E, et al. Immunoglobulin D enhances immune surveillance by activating antimicrobial, proinflammatory and B cell-stimulating programs in basophils. Nat Immunol. 2009;10(8):889–98.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Schlissel MS. Regulating antigen-receptor gene assembly. Nat Rev Immunol. 2003;3(11):890–9.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y, Honjo T. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell. 2000;102(5):553–63.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Randall TD, Carragher DM, Rangel-Moreno J. Development of secondary lymphoid organs. Annu Rev Immunol. 2008;26:627–50.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Manis JP, Tian M, Alt FW. Mechanism and control of class-switch recombination. Trends Immunol. 2002;23(1):31–9.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Stavnezer J. Antibody class switching. Adv Immunol. 1996;61:79–146.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Hodge LM, Marinaro M, Jones HP, McGhee JR, Kiyono H, Simecka JW. Immunoglobulin A (IgA) responses and IgE-associated inflammation along the respiratory tract after mucosal but not systemic immunization. Infect Immun. 2001;69(4):2328–38.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Cerutti A. The regulation of IgA class switching. Nat Rev Immunol. 2008;8(6):421–34.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Hapfelmeier S, Lawson MA, Slack E, Kirundi JK, Stoel M, Heikenwalder M, et al. Reversible microbial colonization of germ-free mice reveals the dynamics of IgA immune responses. Science. 2010;328(5986):1705–9.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Fernandez MI, Pedron T, Tournebize R, Olivo-Marin JC, Sansonetti PJ, Phalipon A. Anti-inflammatory role for intracellular dimeric immunoglobulin a by neutralization of lipopolysaccharide in epithelial cells. Immunity. 2003;18(6):739–49.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Phalipon A, Corthesy B. Novel functions of the polymeric Ig receptor: well beyond transport of immunoglobulins. Trends Immunol. 2003;24(2):55–8.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Phalipon A, Cardona A, Kraehenbuhl JP, Edelman L, Sansonetti PJ, Corthesy B. Secretory component: a new role in secretory IgA-mediated immune exclusion in vivo. Immunity. 2002;17(1):107–15.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Mantis NJ, Cheung MC, Chintalacharuvu KR, Rey J, Corthesy B, Neutra MR. Selective adherence of IgA to murine Peyer’s patch M cells: evidence for a novel IgA receptor. J Immunol. 2002;169(4):1844–51.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Brandtzaeg P, Baekkevold ES, Morton HC. From B to A the mucosal way. Nat Immunol. 2001;2(12):1093–4.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Pasquier B, Launay P, Kanamaru Y, Moura IC, Pfirsch S, Ruffie C, et al. Identification of FcalphaRI as an inhibitory receptor that controls inflammation: dual role of FcRgamma ITAM. Immunity. 2005;22(1):31–42.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Matysiak-Budnik T, Moura IC, Arcos-Fajardo M, Lebreton C, Menard S, Candalh C, et al. Secretory IgA mediates retrotranscytosis of intact gliadin peptides via the transferrin receptor in celiac disease. J Exp Med. 2008;205(1):143–54.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Moura IC, Centelles MN, Arcos-Fajardo M, Malheiros DM, Collawn JF, Cooper MD, et al. Identification of the transferrin receptor as a novel immunoglobulin (Ig)A1 receptor and its enhanced expression on mesangial cells in IgA nephropathy. J Exp Med. 2001;194(4):417–25.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Molaei M, Kaboli A, Fathi AM, Mashayekhi R, Pejhan S, Zali MR. Nodular lymphoid hyperplasia in common variable immunodeficiency syndrome mimicking familial adenomatous polyposis on endoscopy. Indian J Pathol Microbiol. 2009;52(4):530–3.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Schaefer PS, Friedman AC. Nodular lymphoid hyperplasia of the small intestine with Burkitt's lymphoma and dysgammaglobulinemia. Gastrointest Radiol. 1981;6(4):325–8.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Macpherson AJ. IgA adaptation to the presence of commensal bacteria in the intestine. Curr Top Microbiol Immunol. 2006;308:117–36.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Breitfeld D, Ohl L, Kremmer E, Ellwart J, Sallusto F, Lipp M, et al. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J Exp Med. 2000;192(11):1545–52.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Boles KS, Vermi W, Facchetti F, Fuchs A, Wilson TJ, Diacovo TG, et al. A novel molecular interaction for the adhesion of follicular CD4 T cells to follicular DC. Eur J Immunol. 2009;39(3):695–703.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Reinhardt RL, Liang HE, Locksley RM. Cytokine-secreting follicular T cells shape the antibody repertoire. Nat Immunol. 2009;10(4):385–93.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Cerutti A, Rescigno M. The biology of intestinal immunoglobulin A responses. Immunity. 2008;28(6):740–50.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Bergqvist P, Gardby E, Stensson A, Bemark M, Lycke NY. Gut IgA class switch recombination in the absence of CD40 does not occur in the lamina propria and is independent of germinal centers. J Immunol. 2006;177(11):7772–83.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Fagarasan S, Kinoshita K, Muramatsu M, Ikuta K, Honjo T. In situ class switching and differentiation to IgA-producing cells in the gut lamina propria. Nature. 2001;413(6856):639–43.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Shang L, Fukata M, Thirunarayanan N, Martin AP, Arnaboldi P, Maussang D, et al. Toll-like receptor signaling in small intestinal epithelium promotes B-cell recruitment and IgA production in lamina propria. Gastroenterology. 2008;135(2):529–38.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Mora JR, von Andrian UH. Role of retinoic acid in the imprinting of gut-homing IgA-secreting cells. Semin Immunol. 2009;21(1):28–35.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Vinuesa CG, Sanz I, Cook MC. Dysregulation of germinal centres in autoimmune disease. Nat Rev Immunol. 2009;9(12):845–57.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Zucca E, Bertoni F. The spectrum of MALT lymphoma at different sites: biological and therapeutic relevance. Blood. 2016;127(17):2082–92.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, Advani R, Ghielmini M, Salles GA, Zelenetz AD, Jaffe ES. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127:2375–90.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Bergman MP, D'Elios MM. Cytotoxic T cells in H. pylori-related gastric autoimmunity and gastric lymphoma. J Biomed Biotechnol. 2010;2010:104918.  https://doi.org/10.1155/2010/104918.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Isaacson P, Wright DH. Malignant lymphoma of mucosa-associated lymphoid tissue. A distinctive type of B-cell lymphoma. Cancer. 1983;52(8):1410–6.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Wotherspoon AC, Ortiz-Hidalgo C, Falzon MR, Isaacson PG. Helicobacter pylori-associated gastritis and primary B-cell gastric lymphoma. Lancet. 1991;338(8776):1175–6.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Wotherspoon AC, Doglioni C, Diss TC, Pan L, Moschini A, de Boni M, Isaacson PG. Regression of primary low-grade-B-cell gastric lymphoma of mucosa-associated lymphoid tissue type after eradication of Helicobacter pylori. Lancet. 1993;342(8871):575–7.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Hussell T, Isaacson PG, Crabtree JE, Spencer J. The response of cells from low-grade B-cell gastric lymphomas of mucosa-associated lymphoid tissue to Helicobacter pylori. Lancet. 1993;342(8871):571–4.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Hussell T, Isaacson PG, Crabtree JE, Spencer J. Helicobacter pylori-specific tumour-infiltrating T cells provide contact dependent help for the growth of malignant B cells in low-grade gastric lymphoma of mucosa-associated lymphoid tissue. J Pathol. 1996;178(2):122–7.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Greiner A, Knörr C, Qin Y, Sebald W, Schimpl A, Banchereau J, Müller-Hermelink HK. Low-grade B cell lymphomas of mucosa-associated lymphoid tissue (MALT-type) require CD40-mediated signaling and Th2-type cytokines for in vitro growth and differentiation. Am J Pathol. 1997;150(5):1583–93.PubMedPubMedCentralGoogle Scholar
  98. 98.
    D'Elios MM, Amedei A, Del Prete G. Impaired T-cell regulation of B-cell growth in Helicobacter pylori-related gastric low-grade MALT lymphoma. Gastroenterology. 1999;117(5):1105–12.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Munari F, Lonardi S, Cassatella MA, Doglioni C, de Bernard M, D’Elios MM, Vermi W. Tumor-associated macrophages as major source of APRIL in gastric MALT lymphoma. Blood. 2011;117:6612–6.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Munari F, Fassan M, Capitani N, Troilo A, Baldari CT, D’Elios MM, de Bernard M. Cytokine BAFF released by Helicobacter pylori-infected macrophages triggers the Th17 response in human chronic gastritis. J Immunol. 2014;193(11):5584–94.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Arianna Troilo
    • 1
    • 2
  • Nagaja Capitani
    • 2
    • 3
  • Laura Patrussi
    • 3
  • Cosima T. Baldari
    • 3
  • Mario Milco D’Elios
    • 2
    Email author
  1. 1.Department of Rheumatology and Clinical ImmunologyMedical Center – University of FreiburgFreiburgGermany
  2. 2.Department of Clinical and Experimental MedicineUniversity of Florence Careggi HospitalFirenzeItaly
  3. 3.Department of Life SciencesUniversity of SienaSienaItaly

Personalised recommendations