Advertisement

Class-Switch Recombination Defects

  • Mirjam van der BurgEmail author
  • Andrew R. Gennery
  • Qiang Pan-Hammarström
Chapter
Part of the Rare Diseases of the Immune System book series (RDIS)

Abstract

Class-switch recombination (CSR), also known as isotype switching, is the biological mechanism that changes the isotype of an antibody (immunoglobulin) from one type to the other (i.e., from IgM to IgG, IgA or IgE). This confers to the antibodies specific effector function and tissue distribution. Class-switch recombination deficiencies are a heterogeneous group of primary immunodeficiencies characterized by normal or increased levels of serum IgM in combination with reduced or absence of serum IgG, IgA, or IgE. The former name of CSR deficiency was hyper-IgM syndrome. The estimated frequency of CSR defects is around 1:500,000 newborns. There are different underlying genetic causes of CSR deficiencies, and they can be divided into groups with genetic defects hampering the cognate T-B interaction (CD40L, CD40, and NEMO), a group with intrinsic B-cell defects (AID and UNG), and finally a group with DNA repair defects involving the non-homologous end-joining (NHEJ) pathway or the mismatch repair (MMR) pathway. The different CSR deficiencies have their specific immunological and clinical characteristics, which also require different treatment strategies.

Keywords

Class-switch recombination defects Hyper-IgM syndrome AID UNG CD40 CD40L NEMO DNA repair 

References

  1. 1.
    Shlomchik MJ, Weisel F. Germinal center selection and the development of memory B and plasma cells. Immunol Rev. 2012;247(1):52–63.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Victora GD, Nussenzweig MC. Germinal centers. Annu Rev Immunol. 2012;30:429–57.PubMedCrossRefGoogle Scholar
  3. 3.
    Hwang JK, Alt FW, Yeap LS. Related mechanisms of antibody somatic hypermutation and class switch recombination. Microbiol Spectr. 2015;3(1):MDNA3-0037-2014.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Dunnick W, Hertz GZ, Scappino L, Gritzmacher C. DNA sequences at immunoglobulin switch region recombination sites. Nucleic Acids Res. 1993;21(3):365–72.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Stavnezer J, Bjorkman A, Du L, Cagigi A, Pan-Hammarstrom Q. Mapping of switch recombination junctions, a tool for studying DNA repair pathways during immunoglobulin class switching. Adv Immunol. 2010;108:45–109.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Qamar N, Fuleihan RL. The hyper IgM syndromes. Clin Rev Allergy Immunol. 2014;46(2):120–30.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Min IM, Selsing E. Antibody class switch recombination: roles for switch sequences and mismatch repair proteins. Adv Immunol. 2005;87:297–328.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Jesus AA, Duarte AJ, Oliveira JB. Autoimmunity in hyper-IgM syndrome. J Clin Immunol. 2008;28(Suppl 1):S62–6.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Berkowska MA, Driessen GJ, Bikos V, Grosserichter-Wagener C, Stamatopoulos K, Cerutti A, et al. Human memory B cells originate from three distinct germinal center-dependent and -independent maturation pathways. Blood. 2011;118(8):2150–8.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Winkelstein JA, Marino MC, Ochs H, Fuleihan R, Scholl PR, Geha R, et al. The X-linked hyper-IgM syndrome: clinical and immunologic features of 79 patients. Medicine (Baltimore). 2003;82(6):373–84.CrossRefGoogle Scholar
  11. 11.
    Banatvala N, Davies J, Kanariou M, Strobel S, Levinsky R, Morgan G. Hypogammaglobulinaemia associated with normal or increased IgM (the hyper IgM syndrome): a case series review. Arch Dis Child. 1994;71(2):150–2.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Cabral-Marques O, Klaver S, Schimke LF, Ascendino EH, Khan TA, Pereira PV, et al. First report of the Hyper-IgM syndrome Registry of the Latin American Society for Immunodeficiencies: novel mutations, unique infections, and outcomes. J Clin Immunol. 2014;34(2):146–56.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Madkaikar M, Gupta M, Chavan S, Italia K, Desai M, Merchant R, et al. X-linked hyper IgM syndrome: clinical, immunological and molecular features in patients from India. Blood Cells Mol Dis. 2014;53(3):99–104.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    de la Morena MT. Clinical phenotypes of hyper-IgM syndromes. J Allergy Clin Immunol Pract. 2016;4(6):1023–36.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Ferrua F, Courteille V, Janda A, Slatter M, Albert MH, Al-Mousa H. Haematopoietic stem cell transplantation for CD40 ligand deficiency: results from an EBMT Inborn Errors Working Party (IEWP) study. Bone Marrow Transplant. 2015;50(Suppl 1):S45–S6.Google Scholar
  16. 16.
    Hadzic N, Pagliuca A, Rela M, Portmann B, Jones A, Veys P, et al. Correction of the hyper-IgM syndrome after liver and bone marrow transplantation. N Engl J Med. 2000;342(5):320–4.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Brown MP, Topham DJ, Sangster MY, Zhao J, Flynn KJ, Surman SL, et al. Thymic lymphoproliferative disease after successful correction of CD40 ligand deficiency by gene transfer in mice. Nat Med. 1998;4(11):1253–60.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Hubbard N, Hagin D, Sommer K, Song Y, Khan I, Clough C, et al. Targeted gene editing restores regulated CD40L function in X-linked hyper-IgM syndrome. Blood. 2016;127(21):2513–22.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Courtois G, Israel A. NF-kappa B defects in humans: the NEMO/incontinentia pigmenti connection. Sci STKE. 2000;2000(58):pe1.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Doffinger R, Smahi A, Bessia C, Geissmann F, Feinberg J, Durandy A, et al. X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-kappaB signaling. Nat Genet. 2001;27(3):277–85.PubMedCrossRefGoogle Scholar
  21. 21.
    Hanson EP, Monaco-Shawver L, Solt LA, Madge LA, Banerjee PP, May MJ, et al. Hypomorphic nuclear factor-kappaB essential modulator mutation database and reconstitution system identifies phenotypic and immunologic diversity. J Allergy Clin Immunol. 2008;122(6):1169–77. e16PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Picard C, Casanova JL, Puel A. Infectious diseases in patients with IRAK-4, MyD88, NEMO, or IkappaBalpha deficiency. Clin Microbiol Rev. 2011;24(3):490–7.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Frans G, van der Werff Ten Bosch J, Moens L, Gijsbers R, Changi-Ashtiani M, Rokni-Zadeh H, et al. Functional evaluation of an IKBKG variant suspected to cause immunodeficiency without ectodermal dysplasia. J Clin Immunol. 2017;37(8):801–10.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Miot C, Imai K, Imai C, Mancini AJ, Kucuk ZY, Kawai T, et al. Hematopoietic stem cell transplantation in 29 patients hemizygous for hypomorphic IKBKG/NEMO mutations. Blood. 2017;130(12):1456–67.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Pai SY, Levy O, Jabara HH, Glickman JN, Stoler-Barak L, Sachs J, et al. Allogeneic transplantation successfully corrects immune defects, but not susceptibility to colitis, in a patient with nuclear factor-kappaB essential modulator deficiency. J Allergy Clin Immunol. 2008;122(6):1113–8. e1PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Revy P, Muto T, Levy Y, Geissmann F, Plebani A, Sanal O, et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell. 2000;102(5):565–75.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Kavli B, Andersen S, Otterlei M, Liabakk NB, Imai K, Fischer A, et al. B cells from hyper-IgM patients carrying UNG mutations lack ability to remove uracil from ssDNA and have elevated genomic uracil. J Exp Med. 2005;201(12):2011–21.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Imai K, Slupphaug G, Lee WI, Revy P, Nonoyama S, Catalan N, et al. Human uracil-DNA glycosylase deficiency associated with profoundly impaired immunoglobulin class-switch recombination. Nat Immunol. 2003;4(10):1023–8.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Hase K, Takahashi D, Ebisawa M, Kawano S, Itoh K, Ohno H. Activation-induced cytidine deaminase deficiency causes organ-specific autoimmune disease. PLoS One. 2008;3(8):e3033.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Bakkenist CJ, Kastan MB. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature. 2003;421(6922):499–506.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Downs JA, Nussenzweig MC, Nussenzweig A. Chromatin dynamics and the preservation of genetic information. Nature. 2007;447(7147):951–8.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Guikema JE, Schrader CE, Brodsky MH, Linehan EK, Richards A, El Falaky N, et al. p53 represses class switch recombination to IgG2a through its antioxidant function. J Immunol. 2010;184(11):6177–87.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Driessen GJ, Ijspeert H, Weemaes CM, Haraldsson A, Trip M, Warris A, et al. Antibody deficiency in patients with ataxia telangiectasia is caused by disturbed B- and T-cell homeostasis and reduced immune repertoire diversity. J Allergy Clin Immunol. 2013;131(5):1367–75. e9PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Swift M, Morrell D, Massey RB, Chase CL. Incidence of cancer in 161 families affected by ataxia-telangiectasia. N Engl J Med. 1991;325(26):1831–6.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Noordzij JG, Wulffraat NM, Haraldsson A, Meyts I, van't Veer LJ, Hogervorst FB, et al. Ataxia-telangiectasia patients presenting with hyper-IgM syndrome. Arch Dis Child. 2009;94(6):448–9.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Mohammadinejad P, Abolhassani H, Aghamohammadi A, Pourhamdi S, Ghosh S, Sadeghi B, et al. Class switch recombination process in ataxia telangiectasia patients with elevated serum levels of IgM. J Immunoassay Immunochem. 2015;36(1):16–26.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Schroeder SA, Zielen S. Infections of the respiratory system in patients with ataxia-telangiectasia. Pediatr Pulmonol. 2014;49(4):389–99.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Pan Q, Petit-Frere C, Lahdesmaki A, Gregorek H, Chrzanowska KH, Hammarstrom L. Alternative end joining during switch recombination in patients with ataxia-telangiectasia. Eur J Immunol. 2002;32(5):1300–8.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Crawford TO, Skolasky RL, Fernandez R, Rosquist KJ, Lederman HM. Survival probability in ataxia telangiectasia. Arch Dis Child. 2006;91(7):610–1.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Mallott J, Kwan A, Church J, Gonzalez-Espinosa D, Lorey F, Tang LF, et al. Newborn screening for SCID identifies patients with ataxia telangiectasia. J Clin Immunol. 2013;33(3):540–9.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Staples ER, McDermott EM, Reiman A, Byrd PJ, Ritchie S, Taylor AM, et al. Immunodeficiency in ataxia telangiectasia is correlated strongly with the presence of two null mutations in the ataxia telangiectasia mutated gene. Clin Exp Immunol. 2008;153(2):214–20.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Reiman A, Srinivasan V, Barone G, Last JI, Wootton LL, Davies EG, et al. Lymphoid tumours and breast cancer in ataxia telangiectasia; substantial protective effect of residual ATM kinase activity against childhood tumours. Br J Cancer. 2011;105(4):586–91.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Slack J, Albert MH, Balashov D, Belohradsky BH, Bertaina A, Bleesing J, et al. Outcome of hematopoietic cell transplantation for DNA double-strand break repair disorders. J Allergy Clin Immunol. 2018;141(1):322–8. e10PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Du L, Pollard JM, Gatti RA. Correction of prototypic ATM splicing mutations and aberrant ATM function with antisense morpholino oligonucleotides. Proc Natl Acad Sci U S A. 2007;104(14):6007–12.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Du L, Jung ME, Damoiseaux R, Completo G, Fike F, Ku JM, et al. A new series of small molecular weight compounds induce read through of all three types of nonsense mutations in the ATM gene. Mol Ther. 2013;21(9):1653–60.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    van Os NJ, Roeleveld N, Weemaes CM, Jongmans MC, Janssens GO, Taylor AM, et al. Health risks for ataxia-telangiectasia mutated heterozygotes: a systematic review, meta-analysis and evidence-based guideline. Clin Genet. 2016;90(2):105–17.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Renwick A, Thompson D, Seal S, Kelly P, Chagtai T, Ahmed M, et al. ATM mutations that cause ataxia-telangiectasia are breast cancer susceptibility alleles. Nat Genet. 2006;38(8):873–5.CrossRefGoogle Scholar
  48. 48.
    Marabelli M, Cheng SC, Parmigiani G. Penetrance of ATM gene mutations in breast cancer: a meta-analysis of different measures of risk. Genet Epidemiol. 2016;40(5):425–31.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Maser RS, Monsen KJ, Nelms BE, Petrini JH. hMre11 and hRad50 nuclear foci are induced during the normal cellular response to DNA double-strand breaks. Mol Cell Biol. 1997;17(10):6087–96.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Hopfner KP, Craig L, Moncalian G, Zinkel RA, Usui T, Owen BA, et al. The Rad50 zinc-hook is a structure joining Mre11 complexes in DNA recombination and repair. Nature. 2002;418(6897):562–6.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Zhou J, Lim CU, Li JJ, Cai L, Zhang Y. The role of NBS1 in the modulation of PIKK family proteins ATM and ATR in the cellular response to DNA damage. Cancer Lett. 2006;243(1):9–15.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Lee JH, Paull TT. ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science. 2005;308(5721):551–4.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Zhang Y, Zhou J, Lim CU. The role of NBS1 in DNA double strand break repair, telomere stability, and cell cycle checkpoint control. Cell Res. 2006;16(1):45–54.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Wolska-Kusnierz B, Gregorek H, Chrzanowska K, Piatosa B, Pietrucha B, Heropolitanska-Pliszka E, et al. Nijmegen breakage syndrome: clinical and immunological features, long-term outcome and treatment options—a retrospective analysis. J Clin Immunol. 2015;35(6):538–49.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Piatosa B, van der Burg M, Siewiera K, Pac M, van Dongen JJ, Langerak AW, et al. The defect in humoral immunity in patients with Nijmegen breakage syndrome is explained by defects in peripheral B lymphocyte maturation. Cytometry A. 2012;81(10):835–42.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    van der Burg M, Pac M, Berkowska MA, Goryluk-Kozakiewicz B, Wakulinska A, Dembowska-Baginska B, et al. Loss of juxtaposition of RAG-induced immunoglobulin DNA ends is implicated in the precursor B-cell differentiation defect in NBS patients. Blood. 2010;115(23):4770–7.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Meijers RW, Dzierzanowska-Fangrat K, Zborowska M, Solarska I, Tielemans D, van Turnhout BA, et al. Circulating T cells of patients with Nijmegen breakage syndrome show signs of senescence. J Clin Immunol. 2017;37(2):133–42.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Kracker S, Bergmann Y, Demuth I, Frappart PO, Hildebrand G, Christine R, et al. Nibrin functions in Ig class-switch recombination. Proc Natl Acad Sci U S A. 2005;102(5):1584–9.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Lahdesmaki A, Taylor AM, Chrzanowska KH, Pan-Hammarstrom Q. Delineation of the role of the Mre11 complex in class switch recombination. J Biol Chem. 2004;279(16):16479–87.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Deripapa E, Balashov D, Rodina Y, Laberko A, Myakova N, Davydova NV, et al. Prospective Study of a Cohort of Russian Nijmegen breakage syndrome patients demonstrating predictive value of low kappa-deleting recombination excision circle (KREC) numbers and beneficial effect of hematopoietic stem cell transplantation (HSCT). Front Immunol. 2017;8:807.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Pastorczak A, Szczepanski T, Mlynarski W. International Berlin-Frankfurt-Munster ALLhgvwg. Clinical course and therapeutic implications for lymphoid malignancies in Nijmegen breakage syndrome. Eur J Med Genet. 2016;59(3):126–32.PubMedCrossRefGoogle Scholar
  62. 62.
    Albert MH, Gennery AR, Greil J, Cale CM, Kalwak K, Kondratenko I, et al. Successful SCT for Nijmegen breakage syndrome. Bone Marrow Transplant. 2010;45(4):622–6.PubMedCrossRefGoogle Scholar
  63. 63.
    Seemanova E, Jarolim P, Seeman P, Varon R, Digweed M, Swift M, et al. Cancer risk of heterozygotes with the NBN founder mutation. J Natl Cancer Inst. 2007;99(24):1875–80.PubMedCrossRefGoogle Scholar
  64. 64.
    Cybulski C, Gorski B, Debniak T, Gliniewicz B, Mierzejewski M, Masojc B, et al. NBS1 is a prostate cancer susceptibility gene. Cancer Res. 2004;64(4):1215–9.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Steffen J, Varon R, Mosor M, Maneva G, Maurer M, Stumm M, et al. Increased cancer risk of heterozygotes with NBS1 germline mutations in Poland. Int J Cancer. 2004;111(1):67–71.PubMedCrossRefGoogle Scholar
  66. 66.
    Lescale C, Abramowski V, Bedora-Faure M, Murigneux V, Vera G, Roth DB, et al. RAG2 and XLF/Cernunnos interplay reveals a novel role for the RAG complex in DNA repair. Nat Commun. 2016;7:10529.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Hammel M, Rey M, Yu Y, Mani RS, Classen S, Liu M, et al. XRCC4 protein interactions with XRCC4-like factor (XLF) create an extended grooved scaffold for DNA ligation and double strand break repair. J Biol Chem. 2011;286(37):32638–50.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Soulas-Sprauel P, Le Guyader G, Rivera-Munoz P, Abramowski V, Olivier-Martin C, Goujet-Zalc C, et al. Role for DNA repair factor XRCC4 in immunoglobulin class switch recombination. J Exp Med. 2007;204(7):1717–27.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Murray JE, van der Burg M, IJspeert H, Carroll P, Wu Q, Ochi T, et al. Mutations in the NHEJ component XRCC4 cause primordial dwarfism. Am J Hum Genet. 2015;96(3):412–24.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Guo C, Nakazawa Y, Woodbine L, Bjorkman A, Shimada M, Fawcett H, et al. XRCC4 deficiency in human subjects causes a marked neurological phenotype but no overt immunodeficiency. J Allergy Clin Immunol. 2015;136(4):1007–17.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Riballo E, Critchlow SE, Teo SH, Doherty AJ, Priestley A, Broughton B, et al. Identification of a defect in DNA ligase IV in a radiosensitive leukaemia patient. Curr Biol. 1999;9(13):699–702.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    van der Burg M, van Veelen LR, Verkaik NS, Wiegant WW, Hartwig NG, Barendregt BH, et al. A new type of radiosensitive T-B-NK+ severe combined immunodeficiency caused by a LIG4 mutation. J Clin Invest. 2006;116(1):137–45.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    O'Driscoll M, Cerosaletti KM, Girard PM, Dai Y, Stumm M, Kysela B, et al. DNA ligase IV mutations identified in patients exhibiting developmental delay and immunodeficiency. Mol Cell. 2001;8(6):1175–85.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    IJspeert H, Warris A, van der Flier M, Reisli I, Keles S, Chishimba S, et al. Clinical spectrum of LIG4 deficiency is broadened with severe dysmaturity, primordial dwarfism, and neurological abnormalities. Hum Mutat. 2013;34(12):1611–4.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Murray JE, Bicknell LS, Yigit G, Duker AL, van Kogelenberg M, Haghayegh S, et al. Extreme growth failure is a common presentation of ligase IV deficiency. Hum Mutat. 2014;35(1):76–85.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Buck D, Malivert L, de Chasseval R, Barraud A, Fondaneche MC, Sanal O, et al. Cernunnos, a novel nonhomologous end-joining factor, is mutated in human immunodeficiency with microcephaly. Cell. 2006;124(2):287–99.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    IJspeert H, Rozmus J, Schwarz K, Warren RL, van Zessen D, Holt RA, et al. XLF deficiency results in reduced N-nucleotide addition during V(D)J recombination. Blood. 2016;128(5):650–9.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Pan-Hammarstrom Q, Jones AM, Lahdesmaki A, Zhou W, Gatti RA, Hammarstrom L, et al. Impact of DNA ligase IV on nonhomologous end joining pathways during class switch recombination in human cells. J Exp Med. 2005;201(2):189–94.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Du L, Peng R, Bjorkman A, Filipe de Miranda N, Rosner C, Kotnis A, et al. Cernunnos influences human immunoglobulin class switch recombination and may be associated with B cell lymphomagenesis. J Exp Med. 2012;209(2):291–305.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Bacon CM, Wilkinson SJ, Spickett GP, Barge D, Lucraft HH, Jackson G, et al. Epstein-Barr virus-independent diffuse large B-cell lymphoma in DNA ligase 4 deficiency. J Allergy Clin Immunol. 2013;131(4):1237–9, 9 e1PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Peron S, Metin A, Gardes P, Alyanakian MA, Sheridan E, Kratz CP, et al. Human PMS2 deficiency is associated with impaired immunoglobulin class switch recombination. J Exp Med. 2008;205(11):2465–72.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Wimmer K, Kratz CP. Constitutional mismatch repair-deficiency syndrome. Haematologica. 2010;95(5):699–701.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mirjam van der Burg
    • 1
    Email author
  • Andrew R. Gennery
    • 2
  • Qiang Pan-Hammarström
    • 3
  1. 1.Department of Pediatrics, Laboratory for ImmunologyLeiden University Medical CenterLeidenThe Netherlands
  2. 2.Department of PediatricsInstitute of Cellular Medicine Paediatric Immunology, Great North Children’s HospitalNewcastle Upon TyneUK
  3. 3.Department of Laboratory MedicineKarolinska University Hospital HuddingeStockholmSweden

Personalised recommendations