Advertisement

Decidable Signal Processing Dataflow Graphs

  • Soonhoi Ha
  • Hyunok Oh
Chapter

Abstract

Digital signal processing algorithms can be naturally represented by a dataflow graph where nodes represent function blocks and arcs represent the data dependency between nodes. Among various dataflow models, decidable dataflow models have restricted semantics so that we can determine the execution order of nodes at compile-time and decide if the program has the possibility of buffer overflow or deadlock. In this chapter, we explain the synchronous dataflow (SDF) model as the pioneering and representative decidable dataflow model and its decidability focusing on how the static scheduling decision can be made. Through static scheduling, we can estimate the performance and resource requirement of an SDF graph on a multiprocessor system. In addition the cyclo-static dataflow model and a few other extended models are briefly introduced to show how they overcome the limitations of the SDF model.

References

  1. 1.
    Ade, M., Lauwereins, R., Peperstraete, J.A.: Implementing dsp applications on heterogeneous targets using minimal size data buffers. In: Proceedings of RSP’96, pp. 166–172 (1996)Google Scholar
  2. 2.
    Bamakhrama, M., Stefanov, T.: Hard-real-time scheduling of data-dependent tasks in embedded streaming applications. In: Proceedings of the Ninth ACM International Conference on Embedded Software, EMSOFT ’11, pp. 195–204. ACM, New York, NY, USA (2011). http://doi.acm.org/10.1145/2038642.2038672
  3. 3.
    Bhattacharyya, S.S., Murthy, P.K., Lee, E.A.: Software Synthesis from Dataflow Graphs. Kluwer Academic Publisher, Norwell MA (1996)CrossRefGoogle Scholar
  4. 4.
    Bhattachayya, S.S., Murthy, P.K., Lee, E.A.: Apgan and rpmc: Complementary heuristics for translating dsp block diagrams into efficient software implementations. In: Journal of Design Automation for Embedded Systems, vol. 2, pp. 33–60 (1997)Google Scholar
  5. 5.
    Bilsen, G., Engles, M., Lauwereins, R., Peperstraete, J.A.: Cyclo-static dataflow. In: IEEE Trans. Signal Processing, vol. 44, pp. 397–408 (1996)Google Scholar
  6. 6.
    Bodin, B., Kordon, A.M., de Dinechin, B.D.: Periodic schedules for cyclo-static dataflow. In: The 11th IEEE Symposium on Embedded Systems for Real-time Multimedia, Montreal, QC, Canada, October 3–4, 2013, pp. 105–114 (2013). http://dx.doi.org/10.1109/ESTIMedia.2013.6704509 Google Scholar
  7. 7.
    Buck, J.T., Ha, S., Lee, E.A., Messerschimitt, D.G.: Ptolemy: A framework for simulating and prototyping heterogeneous systems. In: Int. Journal of Computer Simulation, special issue on Simulation Software Development, vol. 4, pp. 155–182 (1994)Google Scholar
  8. 8.
    Dennis, J.B.: Dataflow supercomputers. In: IEEE Computer Magazine, vol. 13 (1980)Google Scholar
  9. 9.
    Govindarajan, R., Gao, G., Desai, P.: Minimizing memory requirements in rate-optimal schedules. In: Proceedings of the International Conference on Application Specific Array Processors, pp. 75–86 (1993)Google Scholar
  10. 10.
    Graham, R.L.: Bounds on multiprocessing timing anomalies. In: SIAM Journal on Applied Mathematics, vol. 17, pp. 416–429 (1969)MathSciNetzbMATHGoogle Scholar
  11. 11.
    de Groote, R.: Throughput analysis of dataflow graphs. In: S.S. Bhattacharyya, E.F. Deprettere, R. Leupers, J. Takala (eds.) Handbook of Signal Processing Systems, third edn. Springer (2018)Google Scholar
  12. 12.
    Hoang, P.D., Rabaey, J.M.: Scheduling of dsp programs onto multiprocessors for maximum throughput. In: IEEE Transactions on Signal Processing, pp. 2225–2235 (1993)CrossRefGoogle Scholar
  13. 13.
    Jung, H., Yang, H., Ha, S.: Optimized rtl code generation from coarse-grain dataflow specification for fast hw/sw cosynthesis. In: Journal of Signal Processing Systems, vol. 52, pp. 13–34 (2008)Google Scholar
  14. 14.
    Kang, S.h., Kang, D., Yang, H., Ha, S.: Real-time co-scheduling of multiple dataflow graphs on multi-processor systems. In: Proceedings of the 53rd Annual Design Automation Conference, DAC ’16, pp. 159:1–159:6. ACM, New York, NY, USA (2016). http://doi.acm.org/10.1145/2897937.2898077
  15. 15.
    Kermia, O., Sorel, Y.: A rapid heuristic for scheduling non-preemptive dependent periodic tasks onto multiprocessor. In: Proceedings of the ISCA 20th International Conference on Parallel and Distributed Computing Systems, September 24–26, 2007, Las Vegas, Nevada, USA, pp. 1–6 (2007)Google Scholar
  16. 16.
    Kim, J., Shin, T., Ha, S., Oh, H.: Resource minimized static mapping and dynamic scheduling of sdf graphs. In: ESTIMedia (2011)Google Scholar
  17. 17.
    Lauwereins, R., Engels, M., Peperstraete, J.A., Steegmans, E., Ginderdeuren, J.V.: Grape: A case tool for digital signal parallel processing. In: IEEE ASSP Magazine, vol. 7, pp. 32–43 (1990)Google Scholar
  18. 18.
    Lee, E.A., Ha, S.: Scheduling strategies for multiprocessor real-time DSP. In: GLOBECOM ’89: IEEE Global Telecommunications Conference and Exhibition. Communications Technology for the 1990s and Beyond, vol. 2, pp. 1279–1283. IEEE, Los Alamitos, CA, USA (1989). http://dx.doi.org/10.1109/GLOCOM.1989.64160 Google Scholar
  19. 19.
    Lee, E.A., Messerschmitt, D.G.: Static scheduling of synchronous dataflow programs for digital signal processing. In: IEEE Transaction on Computer, vol. C-36, pp. 24–35 (1987)Google Scholar
  20. 20.
    Oh, H., Ha, S.: Memory-optimized software synthesis from dataflow program graphs with large size data samples. In: EURASIP Journal on Applied Signal Processing, vol. 2003, pp. 514–529 (2003)zbMATHGoogle Scholar
  21. 21.
    Oh, H., Ha, S.: Fractional rate dataflow model for memory efficient synthesis. In: Journal of VLSI Signal Processing, vol. 37, pp. 41–51 (2004)Google Scholar
  22. 22.
    Parhi, K.K., Chen, Y.: Signal flow graphs and data flow graphs. In: S.S. Bhattacharyya, E.F. Deprettere, R. Leupers, J. Takala (eds.) Handbook of Signal Processing Systems, second edn. Springer (2012)Google Scholar
  23. 23.
    Park, C., Chung, J., Ha, S.: Extended synchronous dataflow for efficient dsp system prototyping. In: Design Automation for Embedded Systems, vol. 3, pp. 295–322. Kluwer Academic Publishers (2002)Google Scholar
  24. 24.
    Pino, J., Ha, S., Lee, E.A., Buck, J.T.: Software synthesis for dsp using ptolemy. In: Journal of VLSI Signal Processing, vol. 9, pp. 7–21 (1995)Google Scholar
  25. 25.
    Ritz, S., Pankert, M., Meyr, H.: High level software synthesis for signal processing systems. In: Proceedings of the International Conference on Application Specific Array Processors (1992)Google Scholar
  26. 26.
    Ritz, S., Willems, M., Meyr, H.: Scheduling for optimum data memory compaction in block diagram oriented software synthesis. In: Proceedings of the ICASSP 95 (1995)Google Scholar
  27. 27.
    Spasic, J., Liu, D., Cannella, E., Stefanov, T.: Improved hard real-time scheduling of csdf-modeled streaming applications. In: Proceedings of the 10th International Conference on Hardware/Software Codesign and System Synthesis, CODES ’15, pp. 65–74. IEEE Press, Piscataway, NJ, USA (2015). http://dl.acm.org/citation.cfm?id=2830840.2830848
  28. 28.
    Stuijk, S., Basten, T., Geilen, M.C.W., Coporaal, H.: Multiprocessor resource allocation for throughput-constrained synchronous dataflow graphs. In: DAC, pp. 777–782 (2007)Google Scholar
  29. 29.
    Stuijk, S., Geilen, M.C.W., Basten, T.: Exploring trade-offs in buffer requirements and throughput constraints for synchronous dataflow graphs. In: DAC, pp. 899–904 (2006)Google Scholar
  30. 30.
    Sung, W., Ha, S.: Memory efficient software synthesis using mixed coding style from dataflow graph. In: IEEE Transaction on VLSI Systems, vol. 8, pp. 522–526 (2000)Google Scholar
  31. 31.
    Woods, R.: Mapping decidable signal processing graphs into FPGA implementations. In: S.S. Bhattacharyya, E.F. Deprettere, R. Leupers, J. Takala (eds.) Handbook of Signal Processing Systems, second edn. Springer (2012)Google Scholar
  32. 32.
    Yang, H., Ha, S.: Pipelined data parallel task mapping/scheduling technique for mpsoc. In: DATE (Design Automation and Test in Europe) (2009)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Seoul National UniversitySeoulRepublic of Korea
  2. 2.Hanyang UniversitySeoulRepublic of Korea

Personalised recommendations