Advertisement

Additive Manufacturing of Titanium Alloys for Biomedical Applications

  • Lai-Chang ZhangEmail author
  • Yujing Liu
Chapter

Abstract

Titanium alloys have been extensively used in medical field, especially for load-bearing implants due to their excellent properties such as high strength and great corrosion resistance. In addition to the well-known CP-Ti and Ti-6Al-4V alloy, many beta type titanium alloys comprising of non-toxic and non-allergic elements have being developed for the next generation of bone implant materials. However, the hard machinery and high cost of materials removal arising from the conventional manufacturing processes are the two main obstacles of various potential applications of titanium alloys. As emerging advanced manufacturing technologies, additive manufacturing techniques are providing the ideal platform for the creation of these customized devices, where three dimensional complex parts could be realized by sequential production of two dimensional layers. Thus, additive manufacturing facilitates the manufacturing of parts with almost no geometric constraints and is economically feasible down to a batch size of one. This chapter mainly review the recent progress of the additive manufacturing (via selective laser melting and electron beam melting) of titanium alloys and their products, including the processing optimization, microstructure, mechanical properties and fatigue properties for different types of titanium alloys (CP-Ti, Ti-6Al-4V and Ti-24Nb-4Zr-8Sn) and their porous structures.

References

  1. 1.
    Long M, Rack H (1998) Titanium alloys in total joint replacement—a materials science perspective. Biomaterials 19 (18):1621-1639CrossRefGoogle Scholar
  2. 2.
    Gu DD, Meiners W, Wissenbach K, Poprawe R (2012) Laser additive manufacturing of metallic components: materials, processes and mechanisms. International Materials Review 57 (3):133-164.CrossRefGoogle Scholar
  3. 3.
    Wang XJ, Xu SQ, Zhou SW, Xu W, Leary M, Choong P, Qian M, Brandt M, Xie YM (2016) Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials 83:127-141CrossRefGoogle Scholar
  4. 4.
    Dai N, Zhang LC, Zhang J, Zhang X, Ni Q, Chen Y, Wu M, Yang C (2016) Distinction in Corrosion Resistance of Selective Laser Melted Ti-6Al-4V Alloy on Different Planes. Corrosion Science 111:703-710CrossRefGoogle Scholar
  5. 5.
    de Formanoir C, Michotte S, Rigo O, Germain L, Godet S (2016) Electron beam melted Ti–6Al–4V: Microstructure, texture and mechanical behavior of the as-built and heat-treated material. Materials Science and Engineering: A 652:105-119CrossRefGoogle Scholar
  6. 6.
    Liu YJ, Li SJ, Hou WT, Wang SG, Hao YL, Yang R, Sercombe TB, Zhang LC (2016) Electron beam melted beta-type Ti-24Nb-4Zr-8Sn porous structures with high strength-to-modulus ratio. Journal of Materials Science & Technology 32 (6):505-508CrossRefGoogle Scholar
  7. 7.
    Liu YJ, Li SJ, Wang HL, Hou WT, Hao YL, Yang R, Sercombe TB, Zhang LC (2016) Microstructure, defects and mechanical behavior of beta-type titanium porous structures manufactured by electron beam melting and selective laser melting. Acta Materialia 113:56-67CrossRefGoogle Scholar
  8. 8.
    Attar H, Bönisch M, Calin M, Zhang LC, Scudino S, Eckert J (2014) Selective laser melting of in situ titanium–titanium boride composites: Processing, microstructure and mechanical properties. Acta Materialia 76 (9):13–22CrossRefGoogle Scholar
  9. 9.
    Attar H, Calin M, Zhang LC, Scudino S, Eckert J (2014) Manufacture by selective laser melting and mechanical behavior of commercially pure titanium. Materials Science and Engineering: A 593:170-177CrossRefGoogle Scholar
  10. 10.
    Liu YJ, Li X, Zhang LC, Sercombe T (2015) Processing and properties of topologically optimised biomedical Ti–24Nb–4Zr–8Sn scaffolds manufactured by selective laser melting. Materials Science and Engineering: A 642:268-278CrossRefGoogle Scholar
  11. 11.
    Attar H, Löber L, Funk A, Calin M, Zhang LC, Prashanth KG, Scudino S, Zhang YS, Eckert J (2015) Mechanical behavior of porous commercially pure Ti and Ti-TiB composite materials manufactured by selective laser melting. Materials Science Engineering: A 625:350-356CrossRefGoogle Scholar
  12. 12.
    Tan XP, Kok YH, Tan YJ, Descoins M, Mangelinck D, Tor SB, Leong KF, Chua CK (2015) Graded microstructure and mechanical properties of additive manufactured Ti–6Al–4V via electron beam melting. Acta Materialia 97:1-16CrossRefGoogle Scholar
  13. 13.
    Zhao XL, Li SJ, Zhang M, Liu YD, Sercombe TB, Wang SG, Hao YL, Yang R, Murr LE (2016) Comparison of the microstructures and mechanical properties of Ti–6Al–4V fabricated by selective laser melting and electron beam melting. Materials & Design 95:21-31CrossRefGoogle Scholar
  14. 14.
    Liu YJ, Wang HL, Li SJ, Wang SG, Wang WJ, Hou WT, Hao YL, Yang R, Zhang LC (2017) Compressive and fatigue behavior of beta-type titanium porous structures fabricated by electron beam melting. Acta Materialia 126:58-66CrossRefGoogle Scholar
  15. 15.
    Chua CK, Leong KF (2015) 3D printing and additive manufacturing: principles and applicationsGoogle Scholar
  16. 16.
    Zhang LC, Klemm D, Eckert J, Hao YL, Sercombe TB (2011) Manufacture by selective laser melting and mechanical behavior of a biomedical Ti–24Nb–4Zr–8Sn alloy. Scripta Materialia 65 (1):21-24CrossRefGoogle Scholar
  17. 17.
    Liu ZH, Zhang DQ, Chua CK, Leong KF (2013) Crystal structure analysis of M2 high speed steel parts produced by selective laser melting. Materials Characterization 84 (10):72–80CrossRefGoogle Scholar
  18. 18.
    Ramirez DA, Murr LE, Martinez E, Hernandez DH, Martinez JL, Machado BI, Medina F, Frigola P, Wicker RB (2011) Novel precipitate-microstructural architecture developed in the fabrication of solid copper components by additive manufacturing using electron beam melting. Acta Materialia 59 (10):4088-4099CrossRefGoogle Scholar
  19. 19.
    Sun SH, Koizumi Y, Kurosu S, Li YP, Chiba A (2015) Phase and grain size inhomogeneity and their influences on creep behavior of Co–Cr–Mo alloy additive manufactured by electron beam melting. Acta Materialia 86:305–318CrossRefGoogle Scholar
  20. 20.
    Riedlbauer D, Drexler M, Drummer D, Steinmann P, Mergheim J (2014) Modelling, simulation and experimental validation of heat transfer in selective laser melting of the polymeric material PA12. Computational Materials Science 93:239-248CrossRefGoogle Scholar
  21. 21.
    Wilkes J, Hagedorn Y-C, Meiners W, Wissenbach K (2013) Additive manufacturing of ZrO2-Al2O3 ceramic components by selective laser melting. Rapid Prototyping Journal 19 (1):51-57CrossRefGoogle Scholar
  22. 22.
    Prashanth K, Scudino S, Klauss H, Surreddi KB, Löber L, Wang Z, Chaubey A, Kühn U, Eckert J (2014) Microstructure and mechanical properties of Al–12Si produced by selective laser melting: Effect of heat treatment. Materials Science and Engineering: A 590:153-160CrossRefGoogle Scholar
  23. 23.
    Hrabe NW, Heinl P, Flinn B, Körner C, Bordia RK (2011) Compression-compression fatigue of selective electron beam melted cellular titanium (Ti-6Al-4V). Journal of Biomedical Materials Research Part B: Applied Biomaterials 99 (2):313-320CrossRefGoogle Scholar
  24. 24.
    Lin CY, Wirtz T, LaMarca F, Hollister SJ (2007) Structural and mechanical evaluations of a topology optimized titanium interbody fusion cage fabricated by selective laser melting process. Journal of Biomedical Materials Research Part A 83 (2):272-279CrossRefGoogle Scholar
  25. 25.
    Zhang LC, Attar H (2016) Selective laser melting of titanium alloys and titanium matrix composites for biomedical applications: a review. Advanced Engineering Materials 18 (4):463-475CrossRefGoogle Scholar
  26. 26.
    Thijs L, Verhaeghe F, Craeghs T, Van Humbeeck J, Kruth JP (2010) A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta Materialia 58 (9):3303-3312CrossRefGoogle Scholar
  27. 27.
    Parthasarathy J, Starly B, Raman S, Christensen A (2010) Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM). Journal of the Mechanical Behavior of Biomedical Materials 3 (3):249-259CrossRefGoogle Scholar
  28. 28.
    Mohammadhosseini A, Masood SH, Fraser D, Jahedi M (2015) Dynamic compressive behaviour of Ti-6Al-4V alloy processed by electron beam melting under high strain rate loading. Advanced Manufacturing 3 (3):232-243CrossRefGoogle Scholar
  29. 29.
    Murr LE, Gaytan SM, Ceylan A, Martinez E, Martinez JL, Hernandez DH, Machado BI, Ramirez DA, Medina F, Collins S (2010) Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting. Acta Materialia 58 (5):1887-1894CrossRefGoogle Scholar
  30. 30.
    Zhang LC, Liu YJ, Li SJ, Hao YL (2018) Additive manufacturing of titanium alloys by electron beam melting: a review. Advanced Engineering Materials 20 (5):1700842CrossRefGoogle Scholar
  31. 31.
    Zhang H, Lewis CG, Aronow MS, Gronowicz GA (2004) The effects of patient age on human osteoblasts’ response to Ti–6Al–4V implants in vitro. Journal of Orthopaedic Research 22 (1):30-38CrossRefGoogle Scholar
  32. 32.
    Johansson CB, Albrektsson T, Ericson LE, Thomsen P (1992) A quantitative comparison of the cell response to commercially pure titanium and Ti-6Al-4V implants in the abdominal wall of rats. Journal of Materials Science Materials in Medicine 3 (2):126-136CrossRefGoogle Scholar
  33. 33.
    Haghighi SE, Lu H, Jian G, Cao G, Habibi D, Zhang LC (2015) Effect of α ″martensite on the microstructure and mechanical properties of beta-type Ti–Fe–Ta alloys. Materials & Design 76:47-54CrossRefGoogle Scholar
  34. 34.
    Rao S, Okazaki Y, Tateishi T, Ushida T, Ito Y (1997) Cytocompatibility of new Ti alloy without Al and V by evaluating the relative growth ratios of fibroblasts L929 and osteoblasts MC3T3-E1 cells. Materials Science and Engineering: C 4 (4):311-314CrossRefGoogle Scholar
  35. 35.
    Niinomi M, Nakai M, Hieda J (2012) Development of new metallic alloys for biomedical applications. Acta Biomaterialia 8 (11):3888-3903CrossRefGoogle Scholar
  36. 36.
    Eisenbarth E, Velten D, Müller M, Thull R, Breme J (2004) Biocompatibility of β-stabilizing elements of titanium alloys. Biomaterials 25 (26):5705-5713CrossRefGoogle Scholar
  37. 37.
    Zardiackas LD, Mitchell DW, Disegi JA (1996) Characterization of ti-15Mo Beta Titanium Alloy for Orthopaedic. Medical Applications of Titanium and Its Alloys: The Material and Biological Issues (1272):60Google Scholar
  38. 38.
    Ho W, Ju C, Lin JC (1999) Structure and properties of cast binary Ti–Mo alloys. Biomaterials 20 (22):2115-2122CrossRefGoogle Scholar
  39. 39.
    Kim H, Ikehara Y, Kim J, Hosoda H, Miyazaki S (2006) Martensitic transformation, shape memory effect and superelasticity of Ti–Nb binary alloys. Acta Materialia 54 (9):2419-2429CrossRefGoogle Scholar
  40. 40.
    Hao Y, Li S, Sun S, Yang R (2006) Effect of Zr and Sn on Young's modulus and superelasticity of Ti–Nb-based alloys. Materials Science and Engineering: A 441 (1):112-118CrossRefGoogle Scholar
  41. 41.
    Al-Bermani SS, Blackmore ML, Zhang W, Todd I (2010) The origin of microstructural diversity, texture, and mechanical properties in electron beam melted Ti-6Al-4V. Metallurgical and Materials Transaction A 41 (13):3422-3434CrossRefGoogle Scholar
  42. 42.
    Vrancken B, Thijs L, Kruth J-P, Van Humbeeck J (2012) Heat treatment of Ti6Al4V produced by Selective Laser Melting: Microstructure and mechanical properties. Journal of Alloys and Compounds 541:177-185CrossRefGoogle Scholar
  43. 43.
    Facchini L, Magalini E, Robotti P, Molinari A (2009) Microstructure and mechanical properties of Ti-6Al-4V produced by electron beam melting of pre-alloyed powders. Rapid Prototyping Journal 15 (3):171-178CrossRefGoogle Scholar
  44. 44.
    Gaytan SM, Murr LE, Medina F, Martinez E, Lopez MI, Wicker RB (2009) Advanced metal powder based manufacturing of complex components by electron beam melting. Materials Technololgy 24:180-190CrossRefGoogle Scholar
  45. 45.
    Murr LE, Esquivel EV, Quinones SA, Gaytan SM, Lopez MI, Martinez EY, Medina F, Hernandez DH, Martinez E, Martinez JL (2009) Microstructures and mechanical properties of electron beam-rapid manufactured Ti-6Al-4V biomedical prototypes compared to wrought Ti–6Al–4V. Materials Characterization 60 (2):96-105CrossRefGoogle Scholar
  46. 46.
    Koike M, Martinez K, Guo L, Chahine G, Kovacevic R, Okabe T (2011) Evaluation of titanium alloy fabricated using electron beam melting system for dental applications. Journal of Materials Processing Technology 211 (8):1400-1408CrossRefGoogle Scholar
  47. 47.
    Scharowsky T, Juechter V, Singer RF, Körner C (2015) Influence of the scanning strategy on the microstructure and mechanical properties in selective electron beam melting of Ti–6Al–4V. Advanced Engineering Materials 17 (11):1573-1578CrossRefGoogle Scholar
  48. 48.
    Baudana G, Biamino S, Klöden B, Kirchner A, Weißgärber T, Kieback B, Pavese M, Ugues D, Fino P, Badini C (2016) Electron beam melting of Ti-48Al-2Nb-0.7 Cr-0.3 Si: feasibility investigation. Intermetallics 73:43-49CrossRefGoogle Scholar
  49. 49.
    Hernandez J, Li SJ, Martinez E, Murr LE, Pan XM, Amato KN, Cheng XY, Yang F, Terrazas CA, Gaytan SM (2013) Microstructures and Hardness Properties for β-Phase Ti-24Nb-4Zr-7.9 Sn Alloy Fabricated by Electron Beam Melting. Journal of Materials Science & Technology 29 (11):1011-1017CrossRefGoogle Scholar
  50. 50.
    Imanishi J, Choong PF (2015) Three-dimensional printed calcaneal prosthesis following total calcanectomy. International Journal of Surgery Case Reports 10:83-87CrossRefGoogle Scholar
  51. 51.
    Gu D, Hagedorn Y-C, Meiners W, Meng G, Batista RJS, Wissenbach K, Poprawe R (2012) Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium. Acta Materialia 60 (9):3849-3860CrossRefGoogle Scholar
  52. 52.
    Dai N, Zhang LC, Zhang J, Chen Q, Wu M (2016) Corrosion Behaviour of Selective Laser Melted Ti-6Al-4V Alloy in NaCl Solution. Corrosion Science 102:484-489CrossRefGoogle Scholar
  53. 53.
    Das M, Balla VK, Basu D, Bose S, Bandyopadhyay A (2010) Laser processing of SiC-particle-reinforced coating on titanium. Scripta Materialia 63 (4):438-441CrossRefGoogle Scholar
  54. 54.
    Niinomi M (1998) Mechanical properties of biomedical titanium alloys. Materials Science and Engineering: A 243 (1):231-236CrossRefGoogle Scholar
  55. 55.
    Suo J, Chen H, Li Z (2009) Mechanical Properties of Ti-6Al-4V Alloys by Electron Beam Melting (EBM)[J]. Aerospace Manufacturing Techology 6:6Google Scholar
  56. 56.
    Malinauskas M, Rekštytė S, Lukoševičius L, Butkus S, Balčiūnas E, Pečiukaitytė M, Baltriukienė D, Bukelskienė V, Butkevičius A, Kucevičius P (2014) 3D Microporous Scaffolds Manufactured via Combination of Fused Filament Fabrication and Direct Laser Writing Ablation. Micromachines 5 (4):839-858CrossRefGoogle Scholar
  57. 57.
    Bai Y, Gai X, Li SJ, Zhang LC, Liu YJ, Hao YL, Zhang X, Yang R, Gao YB (2017) Improved corrosion behaviour of electron beam melted Ti-6Al–4 V alloy in phosphate buffered saline. Corrosion Science 123:289-296CrossRefGoogle Scholar
  58. 58.
    Zhao S, Li SJ, Hou WT, Hao YL, Yang R, Misra RDK (2016) The influence of cell morphology on the compressive fatigue behavior of Ti-6Al-4V meshes fabricated by electron beam melting. Journal of the Mechanical Behavior of Biomedical Materials 59:251-264CrossRefGoogle Scholar
  59. 59.
    Kufelt O, Eltamer A, Sehring C, Schliewolter S, Chichkov BN (2014) Hyaluronic acid based materials for scaffolding via two-photon polymerization. Biomacromol 15 (2):650-659CrossRefGoogle Scholar
  60. 60.
    Liu YJ, Liu Z, Jiang Y, Wang GW, Yang Y, Zhang LC (2018) Gradient in microstructure and mechanical property of selective laser melted AlSi10Mg. Journal of Alloys and Compounds 735:1414-1421Google Scholar
  61. 61.
    Chen Y, Zhang J, Gu X, Dai N, Qin P, Zhang LC (2018) Distinction of corrosion resistance of selective laser melted Al-12Si alloy on different planes. Journal of Alloys and Compounds 747:648-658Google Scholar
  62. 62.
    Zhao S, Li SJ, Wang SG, Hou WT, Li Y, Zhang LC, Hao YL, Yang R, Misra RDK, Murr LE (2018) Compressive and fatigue behavior of functionally graded Ti-6Al-4V meshes fabricated by electron beam melting. Acta Materialia 150:1-15Google Scholar
  63. 63.
    Liu YJ, Li SJ, Zhang LC, Hao YL, Sercombe TB (2018) Early plastic deformation behaviour and energy absorption in porous β-type biomedical titanium produced by selective laser melting. Scripta Materialia 153:99-103Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Edith Cowan UniversityPerthAustralia

Personalised recommendations