Advertisement

Mining Expressive and Executable Resource-Aware Imperative Process Models

  • Cristina Cabanillas
  • Stefan Schönig
  • Christian Sturm
  • Jan Mendling
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 318)

Abstract

Process mining extracts relevant information on executed business processes from historical data stored in event logs. The data typically available include the activities executed, temporal information and the resources in charge of their execution. With such data, the functional, behavioural and organisational perspectives of a process can be discovered. Many existing process mining approaches are capable of generating representations involving the first two perspectives with all types of processes. The extraction of simple and complex resource assignment rules has also been tackled with declarative process models. However, it is noticeable that despite imperative notations like BPMN are mostly used for process modelling nowadays, the existing process mining approaches for enriching such models with resource assignments cannot discover rules like separation of duties and do not produce executable resource-aware process models. In this paper we present an approach for mining resource-aware imperative process models that uses an expressive resource assignment language (RALph) with the de-facto standard notation BPMN. The organisational perspective of the resulting models can be automatically analysed thanks to the formal semantics of RALph. The method has been implemented and tested with a real use case.

Keywords

Organisational mining Process mining RALph Resource assignment Resource mining 

References

  1. 1.
    van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhancement of Business Processes. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19345-3CrossRefGoogle Scholar
  2. 2.
    Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.: Fundamentals of Business Process Management. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-33143-5CrossRefGoogle Scholar
  3. 3.
    Di Ciccio, C., Mecella, M.: On the discovery of declarative control flows for artful processes. ACM Trans. Manag. Inf. Syst. 5(4), 24:1–24:37 (2015)CrossRefGoogle Scholar
  4. 4.
    Rovani, M., Maggi, F.M., de Leoni, M., van der Aalst, W.M.: Declarative process mining in healthcare. Expert Syst. Appl. 42(23), 9236–9251 (2015)CrossRefGoogle Scholar
  5. 5.
    OMG: BPMN 2.0, recommendation, OMG (2011)Google Scholar
  6. 6.
    van der Aalst, W., Pesic, M., Schonenberg, H.: Declarative workflows: balancing between flexibility and support. Comput. Sci. R&D 23(2), 99–113 (2009)Google Scholar
  7. 7.
    Schönig, S., Cabanillas, C., Jablonski, S., Mendling, J.: A framework for efficiently mining the organisational perspective of business processes. Decis. Support Syst. 89, 87–97 (2016)CrossRefGoogle Scholar
  8. 8.
    Rinderle-Ma, S., van der Aalst, W.M.: Life-cycle support for staff assignment rules in process-aware information systems, Technical report, TU/e (2007)Google Scholar
  9. 9.
    Baumgrass, A.: Deriving current state RBAC models from event logs. In: International Conference on Availability, Reliability and Security, pp. 667–672 (2011)Google Scholar
  10. 10.
    Burattin, A., Sperduti, A., Veluscek, M.: Business models enhancement through discovery of roles. In: IEEE CIDM, pp. 103–110 (2013)Google Scholar
  11. 11.
    Russell, N., van der Aalst, W.M.P., ter Hofstede, A.H.M., Edmond, D.: Workflow resource patterns: identification, representation and tool support. In: Pastor, O., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 216–232. Springer, Heidelberg (2005).  https://doi.org/10.1007/11431855_16CrossRefGoogle Scholar
  12. 12.
    Cabanillas, C., Knuplesch, D., Resinas, M., Reichert, M., Mendling, J., Ruiz-Cortés, A.: RALph: a graphical notation for resource assignments in business processes. In: Zdravkovic, J., Kirikova, M., Johannesson, P. (eds.) CAiSE 2015. LNCS, vol. 9097, pp. 53–68. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-19069-3_4CrossRefGoogle Scholar
  13. 13.
    Schönig, S., Rogge-Solti, A., Cabanillas, C., Jablonski, S., Mendling, J.: Efficient and customisable declarative process mining with SQL. In: Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 290–305. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39696-5_18CrossRefGoogle Scholar
  14. 14.
    Verbeek, H.M.W., Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: XES, XESame, and ProM 6. In: Soffer, P., Proper, E. (eds.) CAiSE Forum 2010. LNBIP, vol. 72, pp. 60–75. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-17722-4_5CrossRefGoogle Scholar
  15. 15.
    Cabanillas, C., Resinas, M., del Río-Ortega, A., Ruiz-Cortés, A.: Specification and automated design-time analysis of the business process human resource perspective. Inf. Syst. 52, 55–82 (2015)CrossRefGoogle Scholar
  16. 16.
    Bose, R.P.J.C., Maggi, F.M., van der Aalst, W.M.P.: Enhancing declare maps based on event correlations. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 97–112. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40176-3_9CrossRefGoogle Scholar
  17. 17.
    Song, M., van der Aalst, W.M.: Towards comprehensive support for organizational mining. Decis. Support Syst. 46(1), 300–317 (2008)CrossRefGoogle Scholar
  18. 18.
    Pika, A., Leyer, M., Wynn, M.T., Fidge, C.J., ter Hofstede, A.H.M., van der Aalst, W.M.P.: Mining resource profiles from event logs. ACM Trans. Manag. Inf. Syst. 8(1), 1:1–1:30 (2017)CrossRefGoogle Scholar
  19. 19.
    Nakatumba, J., van der Aalst, W.M.P.: Analyzing resource behavior using process mining. In: Rinderle-Ma, S., Sadiq, S., Leymann, F. (eds.) BPM 2009. LNBIP, vol. 43, pp. 69–80. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-12186-9_8CrossRefGoogle Scholar
  20. 20.
    Hompes, B.F.A., Maaradji, A., La Rosa, M., Dumas, M., Buijs, J.C.A.M., van der Aalst, W.M.P.: Discovering causal factors explaining business process performance variation. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 177–192. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59536-8_12CrossRefGoogle Scholar
  21. 21.
    Wynn, M.T., Poppe, E., Xu, J., ter Hofstede, A.H.M., Brown, R., Pini, A., van der Aalst, W.M.P.: ProcessProfiler3D: a visualisation framework for log-based process performance comparison. Decis. Support Syst. 100, 93–108 (2017)CrossRefGoogle Scholar
  22. 22.
    Jin, T., Wang, J., Wen, L.: Organizational modeling from event logs. In: International Conference on Grid and Cooperative Computing (GCC), pp. 670–675 (2007)Google Scholar
  23. 23.
    Zhao, W., Zhao, X.: Process mining from the organizational perspective. Adv. Intell. Syst. Comput. 277, 701–708 (2014)CrossRefGoogle Scholar
  24. 24.
    American National Standards Institute, Inc.: Role-Based Access Control. ANSI INCITS 359–2004, February 2004. http://csrc.nist.gov/rbac
  25. 25.
    Zeising, M., Schönig, S., Jablonski, S.: Towards a common platform for the support of routine and agile business processes. In: IEEE International Conference on Collaborative Computing: Networking, Applications and Worksharing, pp. 94–103 (2014)Google Scholar
  26. 26.
    Kupferman, O., Vardi, M.Y.: Vacuity detection in temporal model checking. Int. J. Soft. Tools Technol. Transfer 4(2), 224–233 (2003)CrossRefGoogle Scholar
  27. 27.
    Montali, M., Pesic, M., van der Aalst, W.M.P., Chesani, F., Mello, P., Storari, S.: Declarative specification and verification of service choreographies. TWEB 4(1), 3:1–3:62 (2010)CrossRefGoogle Scholar
  28. 28.
    Burattin, A., Maggi, F.M., Sperduti, A.: Conformance checking based on multi-perspective declarative process models. Expert Syst. Appl. 65, 194–211 (2016)CrossRefGoogle Scholar
  29. 29.
    van Dongen, B.F., Shabani, S.: Relational XES: data management for process mining. In: CAiSE Forum 2015, pp. 169–176 (2015)Google Scholar
  30. 30.
    Schönig, S.: SQL Queries for Declarative Process Mining on Event Logs of Relational Databases, CoRR, vol. abs/1512.00196 (2015)Google Scholar
  31. 31.
    Eiglsperger, M., Siebenhaller, M., Kaufmann, M.: An efficient implementation of Sugiyama’s algorithm for layered graph drawing. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 155–166. Springer, Heidelberg (2005).  https://doi.org/10.1007/978-3-540-31843-9_17CrossRefGoogle Scholar
  32. 32.
    Cabanillas, C., del Río-Ortega, A., Resinas, M., Cortés, A.R.: CRISTAL: collection of resource-centric supporting tools and languages. In: BPM (Demos), pp. 51–56. CEUR-WS.org (2012)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Cristina Cabanillas
    • 1
  • Stefan Schönig
    • 2
  • Christian Sturm
    • 2
  • Jan Mendling
    • 1
  1. 1.Vienna University of Economics and BusinessViennaAustria
  2. 2.University of BayreuthBayreuthGermany

Personalised recommendations