Advertisement

Nuclear Medicine in Tumor Diagnosis

  • Majid Assadi
  • Hojjat Ahmadzadehfar
  • Hans-Jürgen Biersack
Chapter

Abstract

  1. 1.
    A species of an atomic nucleus characterized by its mass number, atomic number, and nuclear energy state provided that the mean life in that state is long enough to be observable:
    1. (a)

      Nuclide

       
    2. (b)

      Radionuclide

       
    3. (c)

      Radioisotope

       
    4. (d)

      Radiopharmaceutical

       
     
  2. 2.
    Radionuclides used in nuclear medicine are synthesized by the following methods except:
    1. (a)

      Thermal neutron reactor

       
    2. (b)

      Cyclotron

       
    3. (c)

      Fission reactor

       
    4. (d)

      Vapor condensation

       
     
  3. 3.
    All of the following radioisotopes can be used in SPECT except:
    1. (a)

      53Se

       
    2. (b)

      76Br

       
    3. (c)

      67Ga

       
    4. (d)

      123I

       
     
  4. 4.
    The decay mode of all of the following radionuclides is electron capture (EC) except:
    1. (a)

      67Ga

       
    2. (b)

      201Tl

       
    3. (c)

      111In

       
    4. (d)

      99mTc

       
     
  5. 5.
    Which radiopharmaceutical requires heating for preparation?
    1. (a)

      99mTc-tetrofosmin

       
    2. (b)

      99mTc-sulfur colloid

       
    3. (c)

      123I-MIBG

       
    4. (d)

      99mTc-RBC

       
     
  6. 6.
    Which isotope is a beta emitter?
    1. (a)

      15O

       
    2. (b)

      3H

       
    3. (c)

      13C

       
    4. (d)

      64Cu

       
     
  7. 7.
    Choose the isotope with the shortest half-life.
    1. (a)

      13 N

       
    2. (b)

      15 O

       
    3. (c)

      82 Rb

       
    4. (d)

      11 C

       
     
  8. 8.
    The mean effective life of an ideal gamma-emitting radiopharmaceutical should be approximately … times of the duration of the diagnostic procedure.
    1. (a)

      2

       
    2. (b)

      3

       
    3. (c)

      1.5

       
    4. (d)

      1

       
     
  9. 9.
    What is the minimum target-to-nontarget ratio of an ideal gamma-emitting radiopharmaceutical for planar and SPECT imaging, respectively?
    1. (a)

      5:1, 2:1

       
    2. (b)

      4:1, 3:1

       
    3. (c)

      2:1, 1:1

       
    4. (d)

      3:1, 2:1

       
     
  10. 10.
    What is the spatial resolution of the most clinical PET scanners?
    1. (a)

      3–4 mm

       
    2. (b)

      4–5 mm

       
    3. (c)

      5–7 mm

       
    4. (d)

      6–8 mm

       
     
  11. 11.
    What is the sensitivity of PET?
    1. (a)

      10−11–10−12 moles/I

       
    2. (b)

      10−7–10−8 moles/I

       
    3. (c)

      10−15–10−16 moles/I

       
    4. (d)

      10−5–10−6 moles/I

       
     
  12. 12.
    An imaging type that does not depend on precise biological or cellular markers but is more of a reflection of functional status is called:
    1. (a)

      Surrogate imaging

       
    2. (b)

      Tissue microenvironment imaging

       
    3. (c)

      Targeted imaging

       
    4. (d)

      a and b

       
     
  13. 13.
    Compared with normal tissue, tumors show increased values of the following parameters except:
    1. (a)

      Hexokinase level

       
    2. (b)

      Glut-1

       
    3. (c)

      Glut mRNA/protein

       
    4. (d)

      Glucose-6-phosphatase activity

       
     
  14. 14.
    All of the following radiopharmaceuticals are used in the imaging of tumor hypoxia except:
    1. (a)

      123I-AZA

       
    2. (b)

      99mTc-HL91

       
    3. (c)

      62CU-ATSM

       
    4. (d)

      18F-α-methyltyrosine (FMT)

       
     
  15. 15.
    An imaging radiopharmaceutical for tumor apoptosis:
    1. (a)

      18F-MISO

       
    2. (b)

      11C-CO2

       
    3. (c)

      99mTc-annexin V

       
    4. (d)

      62Cu-ATSM

       
     
  16. 16.
    Murine monoclonal antibody Fab′ fragment is used in:
    1. (a)

      111In-satumomab pendetide (OncoScint)

       
    2. (b)

      99mTc-CEA (arcitumomab)

       
    3. (c)

      111In capromab pendetide (ProstaScint)

       
    4. (d)

      111In-ibritumomab tiuxetan (Zevalin)

       
     
  17. 17.
    Which protein is associated with multidrug resistance (MDR) to chemotherapeutic agents?
    1. (a)

      P-glycoprotein (P-gp)

       
    2. (b)

      Lung resistance protein (LRP)

       
    3. (c)

      Breast cancer resistance protein (BCRP)

       
    4. (d)

      All of the above

       
     
  18. 18.
    Which one does NOT affect the tumor uptake of FDG?
    1. (a)

      Physical activity

       
    2. (b)

      Blood insulin level

       
    3. (c)

      Surrounding temperature

       
    4. (d)

      Body mass index

       
     
  19. 19.
    In which tumor is FDG-PET the least applicable?
    1. (a)

      Lymphoma

       
    2. (b)

      Head and neck cancer

       
    3. (c)

      Prostate cancer

       
    4. (d)

      Colorectal cancer

       
     
  20. 20.
    The uptake mechanism of 15O-H2O and 67Cu-PTSM is associated with… and 18F-fluoromisonidazole with…, respectively.
    1. (a)

      Tumor flow, tumor flow

       
    2. (b)

      Hypoxia, tumor flow

       
    3. (c)

      Tumor flow, hypoxia

       
    4. (d)

      Hypoxia, hypoxia

       
     
  21. 21.
    All of the following mechanisms mediate the tumoral uptake of FDG except:
    1. (a)

      Increase in the expression of glucose transporters on the cell surface

       
    2. (b)

      Increase in hexokinase activity

       
    3. (c)

      Increase in glucose-6-phosphatase activity

       
    4. (d)

      a and b

       
     
  22. 22.
    One hour after injection, FDG is normally distributed in all of the following organs except:
    1. (a)

      Large intestine

       
    2. (b)

      Brain

       
    3. (c)

      Heart

       
    4. (d)

      Kidney and urinary tract

       
     
  23. 23.
    About myocardial uptake in FDG-PET scan:
    1. (a)

      Myocardial uptake depends on the nutrition of the patient

       
    2. (b)

      Insulin increases myocardial and muscular uptake

       
    3. (c)

      Glucose transporter 4 (GluT-4) is expressed in the myocardium

       
    4. (d)

      All of the above

       
     
  24. 24.
    All of the following statements regarding the effects of blood sugar on the FDG-PET scan are correct except:
    1. (a)

      Invasive insulin treatment increases the muscular uptake and decreases the tumoral uptake of FDG.

       
    2. (b)

      High blood sugar competitively inhibits the tumoral uptake of FDG.

       
    3. (c)

      The appropriate approach to diabetic patients is NOT yet defined.

       
    4. (d)

      Fasting and administration of insulin for cases with high blood sugar are recommended in most centers.

       
     
  25. 25.
    Which of the following variables is strongly associated with the tumoral uptake of FDG?
    1. (a)

      Cell proliferation

       
    2. (b)

      Number of viable cells

       
    3. (c)

      Ratio of cytoplasm to nucleus

       
    4. (d)

      a and b

       
     
  26. 26.
    Which of the following mechanisms justifies the increased uptake of 11C-methionine in cancer cells?
    1. (a)

      Phosphorylation

       
    2. (b)

      Decarboxylation

       
    3. (c)

      Hexokinase activity

       
    4. (d)

      Transmethylation

       
     
  27. 27.
    The observation of 11C-methionine uptake in all organs in the PET scan is considered normal except:
    1. (a)

      Kidneys

       
    2. (b)

      Lungs

       
    3. (c)

      Liver

       
    4. (d)

      Pancreas

       
     
  28. 28.
    What is the meaning of stereospecificity of the radiotracer uptake in brain tumors?
    1. (a)

      If BBB is normal, the D isoform of the radiotracer will be more localized in brain tumors than the L isoform.

       
    2. (b)

      If BBB is normal, the L isoform of the radiotracer will be more localized in brain tumors than the D isoform.

       
    3. (c)

      If BBB is abnormal, the L isoform of the radiotracer will be more localized in brain tumors than the D isoform.

       
    4. (d)

      If BBB is abnormal, the D isoform of the radiotracer will be more localized in brain tumors than the L isoform.

       
     
  29. 29.
    What is the choice reagent for the study on the amino acid entrance into tumoral cells?
    1. (a)

      Aminocyclohexanecarboxylate (ACHC)

       
    2. (b)

      Aminocyclopentane carboxylic acid (ACPC)

       
    3. (c)

      Methionine

       
    4. (d)

      a and b

       
     
  30. 30.
    Which of the following PET radiotracers is NOT used as a DNA precursor?
    1. (a)

      Fluoroethyl uracil ([18F] FEU)

       
    2. (b)

      67Cu-PTSM

       
    3. (c)

      Carbon-11-thymidine

       
    4. (d)

      Adenosine 18F-

       
     
  31. 31.
    Which of the following PET radiotracers better predicts the therapeutic efficacy of cancer treatment?
    1. (a)

      FDG

       
    2. (b)

      67Cu-PTSM

       
    3. (c)

      15O-H2O

       
    4. (d)

      18F-fluorodeoxyuridine (FLT)

       
     
  32. 32.
    All of the following radiotracers can be used for the evaluation of tumor flow except:
    1. (a)

      15O-CO

       
    2. (b)

      15O-CO2

       
    3. (c)

      15O-H2O

       
    4. (d)

      66Cu-PTSM

       
     
  33. 33.
    What are the recommended radiotracers to determine the tumor volume and the tumor distribution volume, respectively?
    1. (a)

      66Cu-PTSM, 15O-CO2

       
    2. (b)

      15O-CO, 15O-H2O

       
    3. (c)

      15O-CO2, 15O-CO

       
    4. (d)

      66Cu-PTSM, 15O-CO

       
     
  34. 34.
    Labeled ligands are designed against specific receptors. 16α-[18F]-fluoro-17β-estradiol (FES) is one of these ligands and is indicated for the diagnosis of:
    1. (a)

      Kidney cancer

       
    2. (b)

      Breast cancer

       
    3. (c)

      Testis cancer

       
    4. (d)

      Kidney cancer

       
     
  35. 35.
    The greater the FDG uptake is, the worse the prognosis except in:
    1. (a)

      RCC

       
    2. (b)

      HCC

       
    3. (c)

      Juvenile pilocytic astrocytomas

       
    4. (d)

      Choriocarcinoma

       
     
  36. 36.
    The ability to study polyamine metabolism in tumor cells is demonstrated by using:
    1. (a)

      11C-putrescine

       
    2. (b)

      11C-thymidine

       
    3. (c)

      18F-fluorocholine

       
    4. (d)

      18F-fluorothymidine

       
     
  37. 37.
    It appears to be a promising agent for the imaging of membrane synthesis:
    1. (a)

      18F-fluorocholine

       
    2. (b)

      11C-thymidine

       
    3. (c)

      11C-putrescine

       
    4. (d)

      18F-fluorothymidine

       
     
  38. 38.
    Which of the following radioisotopes is recommended for the labeling of monoclonal antibodies for PET imaging?
    1. (a)

      68Ga

       
    2. (b)

      124I

       
    3. (c)

      18F

       
    4. (d)

      11C

       
     

Suggested Readings

  1. 1.
    Ahmadzadehfar H, Biersack HJ, Freeman LM, Zuckier L. Clinical nuclear medicine. 2nd ed. Berlin: Springer; 2018.Google Scholar
  2. 2.
    Ell PJ, Gambhir SS. Nuclear medicine in clinical diagnosis and treatment. 3rd ed. Edinburgh, NY: Churchill Livingstone; 2004.Google Scholar
  3. 3.
    Sandler MP, Coleman RE, Patton JA, Wackers FJT, Gottschalk A. Diagnostic nuclear medicine. 4th ed. Philadelphia: Lippincott & Williams Wilkins; 2003.Google Scholar
  4. 4.
    Henkin RE. Nuclear medicine. 2nd ed. Philadelphia: Mosby Elsevier; 2006.Google Scholar
  5. 5.
    Rosenkrantz AB, Friedman K, Chandarana H, Melsaether A, Moy L, Ding YS, Jhaveri K, Beltran L, Jain R. Current status of hybrid PET/MRI in oncologic imaging. AJR Am J Roentgenol. 2016;206(1):162–72.CrossRefGoogle Scholar
  6. 6.
    Fraum TJ, Fowler KJ, McConathy J. PET/MRI: emerging clinical applications in oncology. Acad Radiol. 2016;23(2):220–36.CrossRefGoogle Scholar
  7. 7.
    Basu S, Alavi A. PET-|based personalized management in clinical oncology: an unavoidable path for the foreseeable future. PET Clin. 2016;11(3):203–7.CrossRefGoogle Scholar
  8. 8.
    Platzek I. (18)F-fluorodeoxyglucose PET/MR imaging in head and neck cancer. PET Clin. 2016;11(4):375–86.CrossRefGoogle Scholar
  9. 9.
    Platzek I. 18F-Fluorodeoxyglucose PET/MR imaging in lymphoma. PET Clin. 2016;11(4):363–73.CrossRefGoogle Scholar
  10. 10.
    Rice SL, Friedman KP. Clinical PET-MR imaging in breast cancer and lung cancer. PET Clin. 2016;11(4):387–402.CrossRefGoogle Scholar
  11. 11.
    Ponisio MR, Fowler KJ, Dehdashti F. The Emerging role of PET/MR imaging in gynecologic cancers. PET Clin. 2016;11(4):425–40.CrossRefGoogle Scholar
  12. 12.
    Kjær A, Torigian DA. Clinical PET/MR imaging in oncology future perspectives. PET Clin. 2016;11(4):489–93.CrossRefGoogle Scholar
  13. 13.
    Kwon HW, Becker AK, Goo JM, Cheon GJ. FDG whole-body PET/MRI in oncology: a systematic review. Nucl Med Mol Imaging. 2017;51(1):22–31.CrossRefGoogle Scholar
  14. 14.
    Paspulati RM, Gupta A. PET/MR imaging in cancers of the gastrointestinal tract. PET Clin. 2016;11(4):403–23.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Majid Assadi
    • 1
  • Hojjat Ahmadzadehfar
    • 2
  • Hans-Jürgen Biersack
    • 3
  1. 1.Department of Nuclear MedicineBushehr University of Medical SciencesBushehrIran
  2. 2.Department of Nuclear MedicineUniversity Hospital BonnBonnGermany
  3. 3.Department of Nuclear MedicineUniverity Hospital BonnBonnGermany

Personalised recommendations