Advertisement

Blue Carbon pp 37-51 | Cite as

Seagrass Meadows

  • Daniel M. Alongi
Chapter
Part of the SpringerBriefs in Climate Studies book series (BRIEFSCLIMATE)

Abstract

Seagrass meadows are intertidal and shallow subtidal habitats composed of up to 76 species of marine angiosperms and are important components of global estuarine and coastal ecosystems in boreal, temperate and tropical latitudes. Seagrasses are capable by their very existence of reducing the velocity of currents and attenuating waves to the extent that sediment particles and associated carbon can deposit on their surfaces and on the seabed. Rates of carbon sequestration in seagrass beds average 220.7 ± 20.1 g Corg m−2 year−1 with a median of 167.4 g Corg m−2 year−1. Seagrasses, on average, store carbon although apparently less than salt marshes and mangroves. Carbon stocks show a median value of 69.3 Mg Corg ha−1. Median above- and below-ground biomass are 0.264 and 0.540 Mg Corg ha−1, respectively, underscoring that nearly all seagrass Corg is stored in soil. Global Corg stocks range between 2.1 and 4.2 Pg Corg for soils and 75.5 and 151 Tg Corg for biomass. Assuming a soil profile one metre deep, the soil Corg stock rises to between 5.8 and 9.8 Pg Corg. Seagrass losses return to either the atmosphere or to the adjacent coastal ocean, or both, from 0.54 to 1.08 Pg CO2 equivalents annually. This range is greater than that for salt marshes and mangroves.

References

  1. Adams M, Ferguson A, Maxwell PS, O’Brian KR (2016) Light history-dependent respiration explains the hysteresis in the daily ecosystem metabolism of seagrasses. Hydrobiologia 766:75–88CrossRefGoogle Scholar
  2. Alexandre A, Silva J, Buapet P, Björk M, Santos R (2012) Effects of CO2 enrichment on photosynthesis, growth and nitrogen metabolism of the seagrass Zostera noltii. Ecol Evol 2:2625–2635CrossRefGoogle Scholar
  3. Alongi DM, Murdiyarso D, Fourqurean JW, Kauffman JB, Hutahaean A, Crooks S, Lovelock CE, Howard J, Herr D, Fortes M, Pidgeon E, Wagey T (2016) Indonesia’s blue carbon: a globally significant and vulnerable sink for seagrass and mangrove carbon. Wetl Ecol Manage 24:3–13CrossRefGoogle Scholar
  4. Anton A, Cebrian J, Duarte CM, Heck J, Kenneth L, Goff J (2009) Low impact of Hurricane Katrina on seagrass community structure and functioning in the Northern Gulf of Mexico. Bull Mar Sci 85:45–59Google Scholar
  5. Apostolaki ET, Holmer M, Marbá N, Karakassis I (2010) Metabolic imbalance in coastal vegetated (Posidonia oceanica) and unvegetated benthic ecosystems. Ecosystems 13:459–471CrossRefGoogle Scholar
  6. Apostolaki ET, Vizzini S, Hendriks IE, Olsen YS (2014) Seagrass ecosystem response to long-term high CO2 in a Mediterranean volcanic vent. Mar Environ Res 99:9–15CrossRefGoogle Scholar
  7. Armitage AR, Fourqurean JW (2016) Carbon storage in seagrass soils: long-term nutrient history exceeds the effects of near-term nutrient enrichment. Biogeosciences 13:313–321CrossRefGoogle Scholar
  8. Asmus RM, Sprung M, Asmus H (2000) Nutrient fluxes in intertidal communities of a South European lagoon (Ria Formosa): similarities and differences with a northern Wadden Sea bay (Sylt-Romo Bay). Hydrobiologia 436:217–235CrossRefGoogle Scholar
  9. Bahlmann E, Weinberg I, Lavrič JV, Eckhardt T, Michaelis W, Santos R, Seifert R (2015) Tidal controls on trace gas dynamics in a seagrass meadow of the Rio Formosa lagoon (southern Portugal). Biogeosciences 12:1683–1696CrossRefGoogle Scholar
  10. Baird D, Ulanowicz RE (1993) Comparative study on the trophic structure, cycling and ecosystem properties of four tidal estuaries. Mar Ecol. Prog Ser 99:221–237CrossRefGoogle Scholar
  11. Barrón C, Marbá N, Terrados J, Kennedy H, Duarte CM (2004) Community metabolism and carbon budget along a gradient of seagrass (Cymodocea nodosa) colonization. Limnol Oceangr 49:1642–1651CrossRefGoogle Scholar
  12. Bos AR, Bouma TJ, de kort GLJ, van Katwijk MM (2007) Ecosystem engineering by annual intertidal seagrass beds: sediment accretion and modification. Estuar Coast Shelf Sci 74:344–348CrossRefGoogle Scholar
  13. Caffrey JM (2004) Factors controlling net ecosystem metabolism in U.S. estuaries. Estuaries 27:90–101CrossRefGoogle Scholar
  14. Caffrey JM, Murrell MC, Amacker KS, Harper JW, Philipps S, Woodrey MS (2014) Seasonal and inter-annual patterns in primary production, respiration, and net ecosystem metabolism in three estuaries in the Northeast Gulf of Mexico. Estuar Coast 37:222–241CrossRefGoogle Scholar
  15. Calleja ML, Barrón C, Hale JA, Frazer TK, Duarte CM (2006) Light regulation of benthic sulfate reduction rates mediated by seagrass (Thalassia testudinum) metabolism. Estuar Coast 29:1255–1264CrossRefGoogle Scholar
  16. Campbell JE, Lacey EA, Decker RA, Crooks S, Fourqurean JW (2015) Carbon storage in seagrass beds of Abu Dhabi, United Arab Emirates. Estuar Coast 38:242–251CrossRefGoogle Scholar
  17. Cebrian J (2002) Variability and control of carbon consumption, export, and accumulation in marine communities. Limnol Oceanogr 47:11–22CrossRefGoogle Scholar
  18. Cebrian J, Pedersen MF, Kroeger KD, Valiela I (2000) Fate of production of the seagrass Cymodocea nodosa in different stages of meadow formation. Mar Ecol Prog Ser 204:119–130CrossRefGoogle Scholar
  19. Champenois W, Borges A (2012) Seasonal and inter-annual variations of community metabolism rates of a Posidonia oceanica meadow. Limnol Oceangr 57:347–361CrossRefGoogle Scholar
  20. Chew ST, Gallagher JB (2018) Accounting for black carbon lowers estimates of blue carbon storage services. Sci Rept 8:2553–2560CrossRefGoogle Scholar
  21. Clavier J, Chauvard L, Amice E, Lazure P, van der Geest M, Labrosse P, Diagne A, Carlier A, Chauvard S (2014) Benthic metabolism in a shallow coastal ecosystem of the Banc d’Arguin. Mar Ecol Prog Ser 501:11–23CrossRefGoogle Scholar
  22. Cox TE, Gazeau F, Allioune S, Hendriks IE, Makacek P, Le Fur A, Gattuso JP (2016) Effects of in situ CO2 enrichment on structural characteristics, photosynthesis, and growth of the Mediterranean seagrass Posidonia oceanica. Biogeosciences 13:2179–2194CrossRefGoogle Scholar
  23. Cullen-Unsworth LC, Nordlund LM, Paddock J, Baker S, McKenzie LJ, Unsworth RKF (2014) Seagrass meadows globally as a coupled social-ecological system: implications for human wellbeing. Mar Pollut Bull 83:387–397CrossRefGoogle Scholar
  24. Dahl M, Deyanova D, Lyimo LD, Näslund J, Samuelsson GS, Mtolera MSP, Bjӧrk M, Gullstrӧm M (2016) Effects of shading and simulating grazing on carbon sequestration in a tropical seagrass meadow. J Ecol 104:654–664CrossRefGoogle Scholar
  25. de Boer WF (2007) Seagrass-sediment interactions, positive feedbacks and critical thresholds for occurrence: a review. Hydrobiologia 591:5–24CrossRefGoogle Scholar
  26. Delgard ML, Deflandre B, Bernard G, Richard M, Kockoni E, Charbonnier C, Cesbrom F, Metzger E, Gremare A, Anschultz P (2016) Benthic oxygen exchange over a heterogeneous Zostera noltei meadow in a temperate coastal ecosystem. Mar Ecol Prog Ser 543:55–71CrossRefGoogle Scholar
  27. Desious-Paoli JM, Auby I, Dagault F (2001) Factors influencing primary production of seagrass beds (Zostera noltii Hornem.) in the Thau lagoon (French Mediterranean coast). J Exp Mar Biol Ecol 259:63–84CrossRefGoogle Scholar
  28. Duarte CM, Krause-Jensen D (2017) Export of seagrass meadows contributes to marine carbon sequestration. Front Mar Sci 4:13.  https://doi.org/10.3389/fmars.2017.00013 CrossRefGoogle Scholar
  29. Duarte CM, Martinez R, Barrón C (2002) Biomass, production and rhizome growth near the northern limit of seagrass (Zostera marina) distribution. Aq Bot 72:183–189CrossRefGoogle Scholar
  30. Duarte CM, Middelburg JJ, Caraco N (2005) Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2:1–8CrossRefGoogle Scholar
  31. Duarte CM, Marbä N, Gacia E, Fourqurean JW, Beggins J, Barrón C, Apostolaki ET (2010) Seagrass community metabolism: assessing the carbon sink capacity of seagrass meadows. Glob Biogeochem Cycles 24  https://doi.org/10.1029/2010GB003793 CrossRefGoogle Scholar
  32. Duarte CM, Kennedy H, Marbá N, Hendriks I (2011) Assessing the capacity of seagrass meadows for carbon burial: current limitations and future strategies. Ocean Coast Manage 83:32–38CrossRefGoogle Scholar
  33. Duarte CM, Losada IJ, Hendriks IE, Mazarrasa I, Marbá N (2013a) The role of coastal plant communities for climate change mitigation and adaptation. Nat Climate Change 3:961–968CrossRefGoogle Scholar
  34. Duarte CM, Sintes T, Marbá N (2013b) Assessing the CO2 capture potential of seagrass restoration projects. J Appl Ecol 50:1341–1349CrossRefGoogle Scholar
  35. Erftemeijer PLA, Osinga R, Mars AE (1993) Primary production of seagrass beds in South Sulawesi (Indonesia): a comparison of habitats, methods and species. Aq Bot 46:67–90CrossRefGoogle Scholar
  36. Eyre BD, Ferguson JP (2002) Comparison of carbon production and decomposition, benthic nutrient fluxes and denitrification in seagrass, phytoplankton, benthic microalgae- and macroalgae-dominated warm temperate Australian lagoons. Mar Ecol Prog Ser 229:43–59CrossRefGoogle Scholar
  37. Fourqurean JW, Duarte CM, Kennedy H, Marbá MH, Mateo MA, Apostolaki ET, Kendrick GA, Krause-Jensen D, McGlathery KJ, Serano O (2012a) Seagrass ecosystems as a globally significant carbon stock. Nature Geosci 5:505–509CrossRefGoogle Scholar
  38. Fourqurean JW, Kendrick GA, Collins LS, Chambers RM, Vanderklift MA (2012b) Carbon, nitrogen and phosphorus storage in subtropical seagrass meadows: examples from Florida Bay and Shark Bay. Mar Freshw Res 63:967–983CrossRefGoogle Scholar
  39. Frankingnoulle M, Bouquegneau JM (1987) Seasonal variation of the diel carbon budget of a marine macrophyte ecosystem. Mar Ecol Prog Ser 38:197–199CrossRefGoogle Scholar
  40. Gacia E, Duarte CM, Marbá N, Terrados J, Kennedy H, Fortes MD, Tri NH (2003) Sediment deposition and production in SE-Asia seagrass meadows. Estuar Coast Shelf Sci 56:909–919CrossRefGoogle Scholar
  41. Gacia E, Kennedy H, Duarte CM, Terrados J, Marbá N, Papadimitriou S, Fortes M (2005) Light-dependence of the metabolic balance of a highly productive Philippine seagrass community. J Exp Mar Biol Ecol 316:55–67CrossRefGoogle Scholar
  42. Gazeau F, Duarte CM, Gattuso JP, Barrón C, Navarro N, Ruiz S, Borges AV (2005) Whole-system metabolism and CO2 fluxes in a Mediterranean Bay dominated by seagrass beds (Palma Bay, NW Mediterranean). Biogeosciences 2:43–60CrossRefGoogle Scholar
  43. Gullström M, Lyimo LD, Dahl M, Samuelsson GS, Eggertsen M, Anderberg E, Rasmusson LM, Linderholm HW, Knudby A, Banderia S, Nordlund LM, Björk M (2018) Blue carbon storage in tropical seagrass meadows relates to carbonate stock dynamics, plant-sediment processes, and landscape context: insights from the Western Indian Ocean. Ecosystems 21:551–566CrossRefGoogle Scholar
  44. Heiss WM, Smith AM, Probert PK (2000) Influence of the small intertidal seagrass Zostera novazelandica on linear water flow and sediment texture. New Zealand J Mar Freshw Res 34:689–694CrossRefGoogle Scholar
  45. Hendriks IE, Olsen YS, Ramajo L, Basso L, Steckbauer A, Moore TS, Howard J, Duarte CM (2014) Photosynthetic activity buffers ocean acidification in seagrass meadows. Biogeosciences 11:333–346CrossRefGoogle Scholar
  46. Herbert DA, Fourqurean JW (2008) Ecosystem structure and function still altered two decades after short-term fertilization of a seagrass meadow. Ecosystems 11:688–700CrossRefGoogle Scholar
  47. Holmer M (2009) Productivity and biogeochemical cycling in seagrass ecosystems. In: Perillo GME, Wolanski E, Cahoon DR, Brinson MM (eds) Coastal wetlands: an integrated ecosystem approach. Elsevier, Amsterdam, pp 377–401Google Scholar
  48. Holmer M, Duarte CM, Boschker HTS, Barrón C (2004) Carbon cycling and bacterial carbon sources in pristine and impacted Mediterranean seagrass sediments. Aq Micro Ecol 36:227–237CrossRefGoogle Scholar
  49. Howard JL, Creed JC, Agular MVP, Fourqurean JW (2018) CO2 released by carbonate sediment production in some coastal areas may offset the benefits of seagrass “Blue Carbon” storage. Limnol Oceanogr 63:160–172CrossRefGoogle Scholar
  50. Howarth RW, Hayn M, Marino RM, Ganju N, Foreman K, McGlathery K, Giblin AE, Berg P, Walker JD (2014) Metabolism of a nitrogen-enriched coastal lagoon during the summertime. Biogeochemistry 118:1–20CrossRefGoogle Scholar
  51. Jackson EL, Rowden AA, Attrill MJ, Bossey S, Jones M (2001) The importance of seagrass beds as a habitat for fishery species. Oceanogr Mar Biol Annu Rev 39:269–304Google Scholar
  52. Kenworthy J, Thayer G (1984) Production and decomposition of the roots and rhizomes of seagrasses Zostera marina and Thalassia testudinum in temperate and subtropical marine ecosystems. Bull Mar Sci 35:364–379Google Scholar
  53. Koch MS, Madden CJ (2001) Patterns of primary productivity and nutrient availability in a Bahamas lagoon with fringing mangroves. Mar Ecol Prog Ser 219:109–119CrossRefGoogle Scholar
  54. Koch EW, Ackerman JD, Verduin J, van Keulen M (2006) Fluid dynamics in seagrass ecology – from molecules to ecosystems. In: Karkum AWD (ed) Seagrasses: biology, ecology and conservation. Springer, Dordrecht, pp 193–225Google Scholar
  55. Lavery PS, Mateo MA, Serrano O, Rozaimi M (2013) Variability in the carbon storage of seagrass habitats and its implications for global estimates of blue carbon ecosystem service. PLoS One 8:e73748CrossRefGoogle Scholar
  56. Lee-Nagel JL (2007) Plant-sediment interactions and biogeochemical cycling for seagrass communities in Chesapeake and Florida Bays. PhD thesis, Univer of Maryland, USAGoogle Scholar
  57. Long MH, Berg P, Falter JL (2015) Seagrass metabolism across a productivity gradient using eddy covariance, Eulerian control volume, and biomass addition techniques. J Geophys Res (Oceans) 120:3624–3639CrossRefGoogle Scholar
  58. López-Caldeŕon C, Guzman HM, Jacome GE, Barnes PAG (2013) Decadal increase in seagrass biomass and temperature at the CARICOMP site in Bocas del Toro, Panama. Rev Biol Trop 61:1815–1826CrossRefGoogle Scholar
  59. Martin S, Clavier J, Guarini JM, Chauvaud L, Hily C, Grall J, Thouzeau G, Jean F, Richard J (2005) Comparison of Zostera marina and maerl community metabolism. Aq Bot 83:161–174CrossRefGoogle Scholar
  60. Mateo MA, Romero J, Pérez M, Littler MM, Littler DS (1997) Dynamics of millenary organic deposits resulting from the growth of the Mediterranean seagrass Posidonia oceanica. Estuar Coast Shelf Sci 44:103–110CrossRefGoogle Scholar
  61. Mateo MA, Cebrian J, Dunton KH, Mutchler T (2006) Carbon flux in seagrass ecosystems. In: Larkum AWD (ed) Seagrasses: biology, ecology and conservation. Springer, Dordrecht, pp 159–192Google Scholar
  62. Mazarrasa I, Marbá N, Lovelock CE, Serrano O, Lavery PS, Fourqurean JW, Kennedy H, Mateo MA, Krause-Jensen D, Steven ADL, Duarte CM (2015) Seagrass meadows as a globally significant carbonate reservoir. Biogeosciences 12:4993–5003CrossRefGoogle Scholar
  63. Miyajima T, Hori M, Hamaguchi M, Shimabukuro H, Adachi H, Yamano H, Nakaoka M (2015) Geographic variability in organic carbon stock and accumulation rate in sediments of East and Southeast Asian seagrass meadows. Global Biogeochem Cycles 29:397–415CrossRefGoogle Scholar
  64. Moriarty DJW, Roberts DG, Pollard PC (1990) Primary and bacterial productivity of tropical seagrass communities in the Gulf of Carpentaria, Australia. Mar Ecol Prog Ser 61:145–157CrossRefGoogle Scholar
  65. Murray L, Wetzel RL (1987) Oxygen production and consumption associated with the major autotrophic components in two temperate seagrass communities. Mar Ecol Prog Ser 38:231–239CrossRefGoogle Scholar
  66. Odum HT (1956) Primary production in flowing waters. Limnol Oceanogr 1:102–117CrossRefGoogle Scholar
  67. Odum HT (1959) Measurements of productivity of turtle grass flats, reefs and the Bahia Fosforescente of southern Puerto Rico. Inst Mar Sci Univ Texas 6:159–170Google Scholar
  68. Odum HT (1962) Further studies on reaeration and metabolism of Texas Bays 1958-1960. Inst Mar Sci Univ Texas 8:23–55Google Scholar
  69. Odum HT (1963) Productivity measurements in Texas turtle grass and the effects of dredging an intracoastal channel. Inst Mar Sci Univ Texas 6:48–58Google Scholar
  70. Olive I, Silva J, Costa MM, Santos R (2016) Estimating seagrass community metabolism using benthic chambers: the effects of incubation time. Estuar Coasts 39:138–144CrossRefGoogle Scholar
  71. Ouisse V, Migné A, Davoult D (2014) Comparative study of methodologies to measure in situ the intertidal benthic community metabolism during immersion. Estuar Coast Shelf Sci 136:19–25CrossRefGoogle Scholar
  72. Pellikaan G, Nienhuis P (1988) Nutrient uptake and release during growth and decomposition of eelgrass, Zostera marina L., and its effect on the nutrient dynamics of Lake Grevelingen. Aq Bot 30:189–214CrossRefGoogle Scholar
  73. Phang VXH, Chou LM, Friess DA (2015) Ecosystem carbon stocks across a tropical intertidal habitats mosaic of mangrove forest, seagrass meadow, mudflat and sandbar. Earth Surf Process Landf 40:1387–1400CrossRefGoogle Scholar
  74. Qasim SZ, Bhattathiri PMA (1971) Primary production of a seagrass bed on Kavaratti Atoll (Laccadives). Hydrobiologia 38:29–38CrossRefGoogle Scholar
  75. Reyes E, Merino M (1991) Diel dissolved oxygen dynamics and eutrophication in a shallow well-mixed tropical lagoon (Cancun, Mexico). Estuaries 14:372–381CrossRefGoogle Scholar
  76. Rheuban JE, Berg P, McGlathery KJ (2014) Multiple timescale processes drive ecosystem metabolism in eelgrass (Zostera marina) meadows. Mar Ecol Prog Ser 507:1–13CrossRefGoogle Scholar
  77. Risgaard-Petersen N, Ottosen LDM (2000) Nitrogen cycling in two temperate Zostera marina beds: seasonal variation. Mar Ecol Prog Ser 198:93–107CrossRefGoogle Scholar
  78. Romero J, Pérez M, Mateo MA, Sala A (1994) The belowground organs of the Mediterranean seagrass Posidonia oceanica as a biogeochemical sink. Aq Bot 47:13–19CrossRefGoogle Scholar
  79. Rozaimi M, Lavery PS, Serrano O, Kyrwood D (2016) Long-term carbon storage and its recent loss in an estuarine Posidonia australis meadow (Albany, Western Australia). Estuar Coast Shelf Sci 171:58–65CrossRefGoogle Scholar
  80. Russell BD, Connell SD, Uthicke S, Muehllehner N, Fabricius KE, Hall-Spencer JM (2013) Future seagrass beds: can increased productivity lead to increased carbon storage? Mar Pollut Bull 73:463–469CrossRefGoogle Scholar
  81. Samper-Villarreal J, Lovelock CE, Saunders MI, Roelfsema C, Mumby PJ (2016) Organic carbon on seagrass sediments is influenced by seagrass canopy complexity, turbidity, wave height, and water depth. Limnol Oceanogr 61:938–952CrossRefGoogle Scholar
  82. Serrano O, Lavery PS, López-Merino L, Ballesteros E, Mateo MA (2016) Location and associated carbon storage of erosional escarpments of seagrass Posidonia mats. Front Mar Sci 3:42CrossRefGoogle Scholar
  83. Short FT, Polidoro B, livingstone SR, Carpenter KE, Bandeira S, Bujang JS, Calumpong HP, Carruthers TJB, Coles RG, Dennison WC, Erftemeijer PLA, Fortes MD, Freeman AS, Jagtap TG, Kamal AHM, Kendrick GA, Judson Kenworthy W, La Nafie TA, Nasution IM, Orth RJ, Prathep TG, Sanciangco JC, Tussenbroeck BV, Vergara SG, Waycott M, Zieman JC (2011) Extinction risk assessment of the world’s seagrass species. Biol Conserv 144:1961–1971CrossRefGoogle Scholar
  84. Stutes J, Cebrian J, Stutes AL, Hunter A, Corcoran AA (2007) Benthic metabolism across a gradient of anthropogenic impact in three shallow coastal lagoons in NW Florida. Mar Ecol Prog Ser 348:55–70CrossRefGoogle Scholar
  85. Unsworth RKF, DeLeon PS, Garrard SL, Jompa J, Smith DJ, Bell JJ (2008) High connectivity of Indo-Pacific seagrass fish assemblages with mangrove and coral reef habitats. Mar Ecol Prog Ser 353:213–224CrossRefGoogle Scholar
  86. Unsworth RKF, Collier CJ, Henderson GM, McKenzie LJ (2012) Tropical seagrass meadows modify seawater carbon chemistry: implications for coral reefs impacts by ocean acidification. Environ Res Lett 7.  https://doi.org/10.1088/1748-9326/7/2/024026 CrossRefGoogle Scholar
  87. Unsworth RKF, van Keulen M, Coles RG (2014) Seagrass meadows in a globally changing environment. Mar Pollut Bull 83:383–386CrossRefGoogle Scholar
  88. van Katwijk MM, Bos AR, Hermus DCR, Suykerbuyk W (2010) Sediment modification by seagrass beds: muddification and sandification induced by plant cover and environmental conditions. Estuar Coast Shelf Sci 89:175–181CrossRefGoogle Scholar
  89. Vaquer-Sunyer R, Duarte CM, Jordá G, Ruiz-Halpern S (2012) Temperature dependence of oxygen dynamics and community metabolism in a shallow Mediterranean macroalgal meadow (Caulerpa prolifera). Estuar Coast 35:1182–1192CrossRefGoogle Scholar
  90. Viaroli P, Bartoli M, Bondavalli C, Christian RR, Giordani G, Naldo M (1996) Macrophyte communities and their impact on benthic fluxes of oxygen, sulphide and nutrients in shallow eutrophic environments. Hydrobiologia 329:105–119CrossRefGoogle Scholar
  91. Waycott M, Duarte CM, Carruthers TJB, Orth RJ, Dennison WC, Olyarnik S, Calladine A, Fourqurean JW, Heck KL Jr, Hughes AR, Kendrick GA, Kenworthy WJ, Short FT, Williams SL (2009) Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc Nat Acad Sci USA 106:12377–12381CrossRefGoogle Scholar
  92. Welsh DT, Bartoli M, Nizzoli D, Castaldelli G, Riou SA, Viaroli P (2000) Denitrification, nitrogen fixation, community primary productivity and inorganic-N and oxygen fluxes in an intertidal Zostera noltii meadow. Mar Ecol Prog Ser 208:65–77CrossRefGoogle Scholar
  93. Yarbro LA, Carlson PRJ (2008) Community oxygen and nutrient fluxes in seagrass beds of Florida Bay, USA. Estuar Coast 31:877–897CrossRefGoogle Scholar
  94. Ziegler S, Benner R (1999) Nutrient cycling in the water column of a subtropical seagrass meadow. Mar Ecol Prog Ser 188:51–62CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Daniel M. Alongi
    • 1
  1. 1.Tropical Coastal & Mangrove ConsultantsAnnandaleAustralia

Personalised recommendations