Drug Effects on ECGs

  • Paolo Bonelli
  • Irene Giannini
  • Maria Vittoria Matassini
  • Alessio Menditto


Several drugs used in clinical practice can influence the ECG behaviour. It is very important for the clinician to know the most common ECG alterations due to drug administration.

Starting from three clinical cases, this chapter discusses about drugs inducing ECG modifications. In each case there is an accurate ECG analysis, the way to get to the correct diagnosis and a theoretical description of the possible mechanisms.

The first case deals with QT prolongation due to psychotropic drugs, the second case is about IC antiarrhythmic drugs effect, and the last case shows the ECG modifications due to digoxin.

In the last part of the chapter there is an overview about the common used drugs and their mechanisms and correlate ECG modifications.


  1. 1.
    van Noord C, Eijgelsheim M, Stricker BHC. Drug- and non-drug-associated QT interval prolongation. Br J Clin. 2010;70(1):16–23.CrossRefGoogle Scholar
  2. 2.
    Newton-Cheh C, Eijgelsheim M, Rice KM, et al. Common variants at ten loci influence QT interval duration in the QTGEN Study. Nat Genet. 2009;41(4):399–406.CrossRefGoogle Scholar
  3. 3.
    Arking DE, Pfeufer A, Post W, et al. A common genetic variant in the NOS1 regulator NOS1AP modulates cardiac repolarization. Nat Genet. 2006;38(6):644–51.CrossRefGoogle Scholar
  4. 4.
    Surawicz B, Knilans T. Chou’s electrocardiography in clinical practice. 6th ed. Philadelphia: Saunders Elsevier; 2008.Google Scholar
  5. 5.
    Oreto G. Elettrocardiogramma: un mosaico a 12 tessere. 1st ed. Torino: Centro scientifico editore Edi-Ermes; 2009.Google Scholar
  6. 6.
    Funck-Brentano C, Jaillon P. Rate-corrected QT interval: techniques and limitations. Am J Cardiol. 1993;72(6):17B–22B.CrossRefGoogle Scholar
  7. 7.
    Locati ET, Bagliani G, Padeletti L. Normal ventricular repolarization and QT interval. Card Electrophysiol Clin. 2017;9(3):487–513.CrossRefGoogle Scholar
  8. 8.
    Glassman AH, Bigger JT. Antipsychotic drugs: prolonged QTc interval, torsade de pointes, and sudden death. Am J Psychiatry. 2001;158(11):1774–82.CrossRefGoogle Scholar
  9. 9.
    AIFA. Cardiotossicità dell’aloperidolo. Le basi scientifiche delle disposizioni regolatorie. Farmacovigilanza. 2007.Google Scholar
  10. 10.
    Drolet B, Rousseau G, Daleau P, et al. Pimozide (Orap®) prolongs cardiac repolarization by blocking the rapid component of the delayed rectifier potassium current in native cardiac myocytes. J Cardiovasc Pharmacol Ther. 2001;6(3):255–60.CrossRefGoogle Scholar
  11. 11.
    Woosley RL, Heise CW, Romero K. what does it offer? Trends Cardiovasc Med. 2017;17:30114–7.Google Scholar
  12. 12.
    Crijns HJ, Van Gelder IC, Lie KI. Supraventricular tachycardia mimicking ventricular tachycardia during flecainide treatment. Am J Cardiol. 1988;62:1303–6.CrossRefGoogle Scholar
  13. 13.
    Nabar A, Rodriguez LM, Timmermans C, Smeets JL, Wellens HJ. Radiofrequency ablation of “class IC atrial flutter” in patients with resistant atrial fibrillation. Am J Cardiol. 1999;83:785–7.CrossRefGoogle Scholar
  14. 14.
    Falk RH. Proarrhythmia in patients treated for atrial fibrillation or flutter. Ann Intern Med. 1992;117:141–50.CrossRefGoogle Scholar
  15. 15.
    McNamara RL, Tamariz LJ, Segal JB, Bass EB. Management of atrial fibrillation: review of the evidence for the role of pharmacologic therapy, electrical cardioversion, and echocardiography. Ann Intern Med. 2003;139:1018–33.CrossRefGoogle Scholar
  16. 16.
    Crijns HJGM. Clinical manifestations of use- and reverse-use dependence. In: Crijns HJGM, editor. Changes of intracardiac conduction induced by antiarrhythmic drugs: importance of use- and reverse use-dependence. Groningen: Knoop; 1993. p. 38–105.Google Scholar
  17. 17.
    Wiesfelda ACP, Ansinkb JM, van Veldhuisena DJ, van Gelde IC. Broad complex tachycardia during treatment of atrial fibrillation with a 1c antiarrhythmic drug: ventricular or supraventricular proarrhythmia? Int J Cardiol. 2006;107:140–1.CrossRefGoogle Scholar
  18. 18.
    Echt DS, Liebson PR, Mitchell LB, et al. Mortality and morbidity in patients receiving encainide, flecainide, or placebo. The cardiac arrhythmia suppression trial. N Engl J Med. 1991;324:781–8.CrossRefGoogle Scholar
  19. 19.
    De Paola AA, Horowitz LN, Morganroth J, et al. Influence of left ventricular dysfunction on flecainide therapy. J Am Coll Cardiol. 1987;9:163–8.CrossRefGoogle Scholar
  20. 20.
    Anno T, Hondeghem LM. Interactions of flecainide with guinea pig cardiac sodium channels. Importance of activation unblocking to the voltage dependence of recovery. Circ Res. 1990;66:789–803.CrossRefGoogle Scholar
  21. 21.
    Hilliard FA, Steele DS, Laver D, et al. Flecainide inhibits arrhythmogenic Ca2+ waves by open state block of ryanodine receptor Ca2+ release channels and reduction of Ca2+ spark mass. J Mol Cell Cardiol. 2010;48:293–301.CrossRefGoogle Scholar
  22. 22.
    Zipes DP, Libby P, Bonow RO, Braunwald E. Braunwald’s heart disease: a textbook of cardiovascular medicine. 10th ed. Oxford: Elsevier; 2014.Google Scholar
  23. 23.
    Holstege CP, Eldridge DL, Rowden AK. ECG manifestations: the poisoned patient. Emerg Med Clin North Am. 2006;24(1):159–77.CrossRefGoogle Scholar
  24. 24.
    Hohnloser SH, Halperin JL, Camm AJ, et al. Behalf of the PALLAS Investigators interaction between digoxin and dronedarone in the PALLAS trial. Circ Arrhythm Electrophysiol. 2014;7:1019–25.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Paolo Bonelli
    • 1
  • Irene Giannini
    • 1
  • Maria Vittoria Matassini
    • 1
  • Alessio Menditto
    • 1
  1. 1.Clinica di Cardiologia e AritmologiaUniversità Politecnica delle MarcheAnconaItaly

Personalised recommendations