Advertisement

No-Cloning Theorem, Quantum Teleportation and Spooky Correlations

  • Bernard Zygelman
Chapter

Abstract

The no-cloning theorem states that an arbitrary quantum state cannot be copied from one qubit and duplicated on another qubit. We offer a proof of this theorem and illustrate how quantum states can be teleported between two qubits. The Bell and Clauser-Horne-Shimony-Holt inequalities are introduced and shown to be demonstrable features of entangled quantum systems. We discuss how the private key distribution problem is dealt with using quantum key distribution (QKD). The BB84 and Ekert protocols are examples of the latter, and we review and illustrate their implementation. We show how entangled states enable dense coding and offer a brief synopsis of Greenberger-Horne-Zeilinger GHZ states and their application.

References

  1. 1.
    A. Aspect, P. Grangier, G. Roger, Physical Review Letters 49, 91 1982Google Scholar
  2. 2.
    J. S. Bell, Speakable and Unspeakable in Quantum Mechanics, Cambridge University Press 1987Google Scholar
  3. 3.
    J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Physical Review Letters 23, 880 1969CrossRefGoogle Scholar
  4. 4.
  5. 5.
    D. M. Greenberger, M.A. Horne, A. Zeilinger, 2007arXiv0712.0921G, (2007)Google Scholar
  6. 6.
  7. 7.
    Michael E. Nielsen and Isaac L. Chuang, Quantum Computation and Quantum Information, Cambridge U. Press, 2011zbMATHGoogle Scholar
  8. 8.
    C. Pacher, A. Abidin, T. Lörunser, M. Peev, R. Ursin, A. Zeilinger, J. Larsson, Quantum Information Processing, 15, 327 2016MathSciNetCrossRefGoogle Scholar
  9. 9.
    Stephen Hawking and Roger Penrose, The Nature of Space and Time, (Princeton U. Press 1996) pg. 121Google Scholar
  10. 10.
  11. 11.
    A. Shimony, in The Stanford Encyclopedia of Philosophy ed. by Edward N. Zalta (Fall 2017 Edition), https://plato.stanford.edu/archives/fall2017/entries/bell-theorem/
  12. 12.
    C. S. Wu and I. Shaknov, Phys. Rev. 77, 136 1950CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Bernard Zygelman
    • 1
  1. 1.Department of Physics and AstronomyUniversity of NevadaLas VegasUSA

Personalised recommendations