Application and Theory of Plant–Soil Feedbacks on Aboveground Herbivores

  • Ian KaplanEmail author
  • Ana Pineda
  • Martijn Bezemer
Part of the Ecological Studies book series (ECOLSTUD, volume 234)


Plant–soil feedbacks are legacy effects created by an initial plant on the growth of subsequent plants using the same soil. These indirect soil-mediated interactions are primarily studied in the context of changes in the belowground biotic community. Here, we review current evidence surrounding plant–soil feedbacks, focusing on how these interactions are studied from an experimental standpoint and expand this discussion into new directions surrounding the influence of feedbacks on interactions with aboveground herbivorous insects. The taxon-specific impact of individual soil groups on foliar-feeding insects is well-described, but expanding this framework to plant–soil feedbacks is challenging because different plant species cause simultaneous and dramatic shifts in the composition of all soil life, sometimes in contradictory directions (i.e., certain fungi may increase, while nematodes decrease). Thus, expanding simple pair-wise root herbivore–plant–insect relationships to more holistic approaches that account for the full spectrum of changes in soil biota represents both a mechanistic and analytical challenge. These community-wide shifts, however, are representative of true legacy effects encountered by plants and insects in nature. We end our chapter on a discussion of how plant–soil feedbacks can be functionally used to steer the microbiome for enhanced crop protection in applied agricultural systems.


Plant Soil Feedbacks Aboveground Herbivores Cover Crops Conditioning Phase Foliar Insects 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Takayuki Ohgushi, Susanne Wurst, and Scott Johnson for inviting us to write this chapter. This chapter would not be possible without sabbatical grants provided to I. Kaplan by the Netherlands Organisation for Scientific Research (NWO), the Royal Netherlands Academy of Arts and Sciences (KNAW), and the Graduate School for Production Ecology and Resource Conservation (PEandRC) at Wageningen University. M. Bezemer was funded by a NWO-VICI grant and A. Pineda by NWO (project no. 870.15.080).


  1. Ali JG, Agrawal AA (2012) Specialist versus generalist insect herbivores and plant defense. Trends Plant Sci 17:293–302PubMedCrossRefGoogle Scholar
  2. Altieri MA, Nicholls CI (2003) Soil fertility management and insect pests: harmonizing soil and plant health in agroecosystems. Soil Tillage Res 72:203–211CrossRefGoogle Scholar
  3. Anacker BL, Klironomos JN, Maherali H et al (2014) Phylogenetic conservatism in plant-soil feedback and its implications for plant abundance. Ecol Lett 17:1613–1621CrossRefGoogle Scholar
  4. Awmack CS, Leather SR (2002) Host plant quality and fecundity in herbivorous insects. Annu Rev Entomol 47:817–844PubMedCrossRefGoogle Scholar
  5. Badri DV, Zolla G, Bakker MG et al (2013) Potential impact of soil microbiomes on the leaf metabolome and on herbivore feeding behavior. New Phytol 198:264–273PubMedCrossRefGoogle Scholar
  6. Bais HP, Park SW, Weir TL et al (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32PubMedCrossRefGoogle Scholar
  7. Bakker MG, Manter DK, Sheflin AM et al (2012) Harnessing the rhizosphere microbiome through plant breeding and agricultural management. Plant Soil 360:1–13CrossRefGoogle Scholar
  8. Bardgett RD, Wardle DA (2010) Aboveground-belowground linkages: biotic interactions, ecosystem processes and global change. Oxford University Press, OxfordGoogle Scholar
  9. Barea JM (2015) Future challenges and perspectives for applying microbial biotechnology in sustainable agriculture based on a better understanding of plant-microbiome interactions. J Soil Sci Plant Nutr 15:261–282Google Scholar
  10. Bender SF, van der Heijden MGA (2015) Soil biota enhance agricultural sustainability by improving crop yield, nutrient uptake and reducing nitrogen leaching losses. J Appl Ecol 52:228–239CrossRefGoogle Scholar
  11. Bender SF, Wagg C, van der Heijden MGA (2016) An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol Evol 31:440–452PubMedCrossRefGoogle Scholar
  12. Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486PubMedCrossRefPubMedCentralGoogle Scholar
  13. Bever JD, Westover KM, Antonovics J (1997) Incorporating the soil community into plant population dynamics: the utility of the feedback approach. J Ecol 85:561–573CrossRefGoogle Scholar
  14. Bezemer TM, Jones TH (1998) Plant-insect herbivore interactions in elevated atmospheric CO2: quantitative analyses and guild effects. Oikos 82:212–222CrossRefGoogle Scholar
  15. Bezemer TM, De Deyn GB, Bossinga TM et al (2005) Soil community composition drives aboveground plant-herbivore-parasitoid interactions. Ecol Lett 8:652–661CrossRefGoogle Scholar
  16. Bezemer TM, Van der Putten WH, Martens H et al (2013) Above- and below-ground herbivory effects on below-ground plant-fungus interactions and plant-soil feedback responses. J Ecol 101:325–333CrossRefGoogle Scholar
  17. Birkhofer K, Wise DH, Scheu S (2008) Subsidy from the detrital food web, but not microhabitat complexity, affects the role of generalist predators in an aboveground herbivore food web. Oikos 117:494–500CrossRefGoogle Scholar
  18. Blubaugh CK, Hagler JR, Machtley SA et al (2016) Cover crops increase foraging activity of omnivorous predators in seed patches and facilitate weed biological control. Agric Ecosyst Environ 231:264–270CrossRefGoogle Scholar
  19. Borneman J, Becker JO (2007) Identifying microorganisms involved in specific pathogen suppression in soil. Annu Rev Phytopathol 45:153–172PubMedCrossRefGoogle Scholar
  20. Borody TJ, Khoruts A (2012) Fecal microbiota transplantation and emerging applications. Nat Rev Gastroenterol Hepatol 9:88–96CrossRefGoogle Scholar
  21. Bouwmeester HJ, Roux C, Lopez-Raez JA et al (2007) Rhizosphere communication of plants, parasitic plants and AM fungi. Trends Plant Sci 12:224–230PubMedCrossRefGoogle Scholar
  22. Brinkman PE, Van der Putten WH, Bakker EJ et al (2010) Plant–soil feedback: experimental approaches, statistical analyses and ecological interpretations. J Ecol 98:1063–1073CrossRefGoogle Scholar
  23. Brooker RW, Bennett AE, Cong WF et al (2015) Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology. New Phytol 206:107–117PubMedCrossRefGoogle Scholar
  24. Bukowski AR, Petermann JS (2014) Intraspecific plant–soil feedback and intraspecific overyielding in Arabidopsis thaliana. Ecol Evol 4:2533–2545PubMedPubMedCentralCrossRefGoogle Scholar
  25. Bulgarelli D, Schlaeppi K, Spaepen S et al (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838PubMedCrossRefGoogle Scholar
  26. Busby PE, Soman C, Wagner MR et al (2017) Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biol 15:e2001793PubMedPubMedCentralCrossRefGoogle Scholar
  27. Chaparro JM, Badri DV, Vivanco JM (2014) Rhizosphere microbiome assemblage is affected by plant development. ISME J 8:790–803PubMedCrossRefGoogle Scholar
  28. Chilcutt CF, Matocha JE (2007) Effects of crop rotation, tillage, and fertilizer applications on sorghum head insects. J Econ Entomol 100:88–94PubMedCrossRefGoogle Scholar
  29. Cipollini D, Rigsby C, Barto E (2012) Microbes as targets and mediators of allelopathy in plants. J Chem Ecol 38:714–727PubMedCrossRefGoogle Scholar
  30. Cortois R, Schröder-Georgi T, Weigelt A et al (2016) Plant–soil feedbacks: role of plant functional group and plant traits. J Ecol 104:1608–1617CrossRefGoogle Scholar
  31. Dessaux Y, Grandclément C, Faure D (2016) Engineering the rhizosphere. Trends Plant Sci 21:266–278PubMedCrossRefGoogle Scholar
  32. Dias T, Dukes A, Antunes PM (2015) Accounting for soil biotic effects on soil health and crop productivity in the design of crop rotations. J Sci Food Agric 95:447–454PubMedCrossRefGoogle Scholar
  33. Dostal P, Paleckova M (2011) Does relatedness of natives used for soil conditioning influence plant-soil feedback of exotics? Biol Invasions 13:331–340CrossRefGoogle Scholar
  34. Drinkwater LE, Letourneau DK, Workneh F et al (1995) Fundamental differences between conventional and organic tomato agroecosystems in California. Ecol Appl 5:1098–1112CrossRefGoogle Scholar
  35. Dunn M, Ulrich-Schad JD, Prokopy LS et al (2016) Perceptions and use of cover crops among early adopters: findings from a national survey. J Soil Water Conserv 71:29–40CrossRefGoogle Scholar
  36. Ebelhar SA, Frye WW, Blevins RL (1984) Nitrogen from legume cover crops for no-tillage corn. Agron J 76:51–55CrossRefGoogle Scholar
  37. Ehrenfeld JG, Ravit B, Elgersma K (2005) Feedback in the plant-soil system. Annu Rev Environ Res 30:75–115CrossRefGoogle Scholar
  38. Eigenbrode SD, Pimentel D (1988) Effects of manure and chemical fertilizers on insect pest populations on collards. Agric Ecosyst Environ 20:109–125CrossRefGoogle Scholar
  39. Engelkes T, Morriën E, Verhoeven KJF et al (2008) Successful range-expanding plants experience less above-ground and below-ground enemy impact. Nature 456:946–948PubMedCrossRefPubMedCentralGoogle Scholar
  40. Farooq M, Jabran K, Cheema ZA et al (2011) The role of allelopathy in agricultural pest management. Pest Manag Sci 67:493–506PubMedCrossRefPubMedCentralGoogle Scholar
  41. Fierer N, Lauber CL, Ramirez KS et al (2012) Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J 6:1007–1017PubMedPubMedCentralCrossRefGoogle Scholar
  42. Fitzpatrick CR, Gehant L, Kotanen PM et al (2017) Phylogenetic relatedness, phenotypic similarity and plant-soil feedbacks. J Ecol 105:786–800CrossRefGoogle Scholar
  43. Gadhave KR, Hourston JE, Gange AC (2016) Developing soil microbial inoculants for pest management: can one have too much of a good thing? J Chem Ecol 42:348–356PubMedCrossRefPubMedCentralGoogle Scholar
  44. Gallo J, Pekár S (2001) Effect of ploughing and previous crop on winter wheat pests and their natural enemies under integrated farming system in Slovakia. J Pestic Sci 74:60–65Google Scholar
  45. Gange AC, Brown VK, Aplin DM (2003) Multitrophic links between arbuscular mycorrhizal fungi and insect parasitoids. Ecol Lett 6:1051–1055CrossRefGoogle Scholar
  46. Gange AC, Brown VK, Aplin DM (2005) Ecological specificity of arbuscular mycorrhizae: evidence from foliar- and seed-feeding insects. Ecology 86:603–611CrossRefGoogle Scholar
  47. Garbeva P, van Elsas JD, van Veen JA (2008) Rhizosphere microbial community and its response to plant species and soil history. Plant Soil 302:19–32CrossRefGoogle Scholar
  48. Gehring C, Bennett A (2009) Mycorrhizal fungal-plant-insect interactions: the importance of a community approach. Environ Entomol 38:93–102PubMedCrossRefGoogle Scholar
  49. Glinwood R, Pettersson J, Ahmed E et al (2003) Change in acceptability of barley plants to aphids after exposure to allelochemicals from couch-grass (Elytrigia repens). J Chem Ecol 29:261–274PubMedCrossRefGoogle Scholar
  50. Glinwood R, Ninkovic V, Pettersson J (2011) Chemical interaction between undamaged plants: effects on herbivores and natural enemies. Phytochemistry 72:1683–1689PubMedCrossRefPubMedCentralGoogle Scholar
  51. Gopal M, Gupta A (2016) Microbiome selection could spur next-generation plant breeding strategies. Front Microbiol 7:1971PubMedPubMedCentralCrossRefGoogle Scholar
  52. Gruvera LS, Weil RR, Zasada IA et al (2010) Brassicaceous and rye cover crops altered free-living soil nematode community composition. Appl Soil Ecol 45:1–12CrossRefGoogle Scholar
  53. Hierro JL, Callaway RM (2003) Allelopathy and exotic plant invasion. Plant Soil 256:29–39CrossRefGoogle Scholar
  54. Hol WHG, De Boer W, Termorshuizen AJ et al (2010) Reduction of rare soil microbes modifies plant–herbivore interactions. Ecol Lett 13:292–301PubMedCrossRefPubMedCentralGoogle Scholar
  55. Hol WHG, de Boer W, ten Hooven F et al (2013) Competition increases sensitivity of wheat (Triticum aestivum) to biotic plant-soil feedback. PLoS One 8:e66085PubMedPubMedCentralCrossRefGoogle Scholar
  56. Hooks CRR, Wang KH, Ploeg A et al (2010) Using marigold (Tagetes spp.) as a cover crop to protect crops from plant-parasitic nematodes. Appl Soil Ecol 46:307–320CrossRefGoogle Scholar
  57. Huang LF, Song LX, Xia XJ et al (2013) Plant-soil feedbacks and soil sickness: from mechanisms to application in agriculture. J Chem Ecol 39:232–242PubMedCrossRefPubMedCentralGoogle Scholar
  58. Inderjit, Wardle DA, Karban R et al (2011) The ecosystem and evolutionary contexts of allelopathy. Trends Ecol Evol 26:655–662PubMedCrossRefPubMedCentralGoogle Scholar
  59. Ingerslew KS, Kaplan I (2018) Distantly related crops are not better rotation partners for tomato. J Appl Ecol (in press)Google Scholar
  60. Jaber LR, Enkerli J (2016) Effect of seed treatment duration on growth and colonization of Vicia faba by endophytic Beauveria bassiana and Metarhizium brunneum. Biol Control 103:187–195CrossRefGoogle Scholar
  61. Jiang Y, Liang Y, Li C et al (2016) Crop rotations alter bacterial and fungal diversity in paddy soils across East Asia. Soil Biol Biochem 95:250–261CrossRefGoogle Scholar
  62. Johnson SN, Bezemer TM, Jones TH (2008) Linking aboveground and belowground herbivory. In: Johnson SN, Murray PJ (eds) Root feeders: An ecosystem perspective. CABI, Wallingford, pp 153–170CrossRefGoogle Scholar
  63. Johnson SN, Clark KE, Hartley SE et al (2012) Aboveground–belowground herbivore interactions: a meta-analysis. Ecology 93:2208–2215CrossRefGoogle Scholar
  64. Klironomos JN (2002) Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417:67–70PubMedPubMedCentralCrossRefGoogle Scholar
  65. Koch RL, Porter PM, Harbur MM et al (2012) Response of soybean insects to an autumn-seeded rye cover crop. Environ Entomol 41:750–760CrossRefGoogle Scholar
  66. Koch RL, Sezen Z, Porter PM et al (2015) On-farm evaluation of a fall-seeded rye cover crop for suppression of soybean aphid (Hemiptera: Aphididae) on soybean. Agric For Entomol 17:239–246CrossRefGoogle Scholar
  67. Koricheva J, Gange AC, Jones T (2009) Effects of mycorrhizal fungi on insect herbivores: a meta-analysis. Ecology 90:2088–2097PubMedCrossRefGoogle Scholar
  68. Kos M, Tuijl MAB, de Roo J et al (2015a) Species-specific plant–soil feedback effects on above-ground plant-insect interactions. J Ecol 103:904–914CrossRefGoogle Scholar
  69. Kos M, Tuijl MAB, de Roo J et al (2015b) Plant–soil feedback effects on plant quality and performance of an aboveground herbivore interact with fertilisation. Oikos 124:658–667CrossRefGoogle Scholar
  70. Kos M, Bukovinszky T, Mulder PPJ et al (2015c) Disentangling above- and belowground neighbor effects on the growth, chemistry, and arthropod community on a focal plant. Ecology 96:164–175PubMedCrossRefPubMedCentralGoogle Scholar
  71. Kostenko O, Van de Voorde TFJ, Mulder PPJ et al (2012) Legacy effects of aboveground-belowground interactions. Ecol Lett 15:813–821PubMedCrossRefPubMedCentralGoogle Scholar
  72. Kulmatiski A, Beard KH, Stevens JR et al (2008) Plant–soil feedbacks: a meta-analytical review. Ecol Lett 11:980–992PubMedPubMedCentralCrossRefGoogle Scholar
  73. Lakshmanan V, Selvaraj G, Bais HP (2014) Functional soil microbiome: belowground solutions to an aboveground problem. Plant Physiol 166:689–700PubMedPubMedCentralCrossRefGoogle Scholar
  74. Lauber CL, Ramirez KS, Aanderud Z et al (2013) Temporal variability in soil microbial communities across land-use types. ISME J 7:1641–1650PubMedPubMedCentralCrossRefGoogle Scholar
  75. Leach JE, Triplett LR, Argueso CT et al (2017) Communication in the phytobiome. Cell 169:587–596PubMedCrossRefGoogle Scholar
  76. Li L, Li SM, Sun JH et al (2007) Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proc Natl Acad Sci USA 104:11192–11196PubMedCrossRefGoogle Scholar
  77. Li B, Li YY, Wu HM et al (2016a) Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation. Proc Natl Acad Sci USA 113:6496–6501PubMedCrossRefGoogle Scholar
  78. Li Q, Yang Y, Bao X et al (2016b) Cultivar specific plant-soil feedback overrules soil legacy effects of elevated ozone in a rice-wheat rotation system. Agric Ecosyst Environ 232:85–92CrossRefGoogle Scholar
  79. Lundgren JG, Hesler LS, Anderson RL (2017) Preceding crop affects soybean aphid abundance and predator–prey dynamics in soybean. J Appl Entomol 141:669–676. Scholar
  80. Martinez-Medina A, Flors V, Heil M et al (2016) Recognizing plant defense priming. Trends Plant Sci 21:818–822PubMedCrossRefGoogle Scholar
  81. Mayer A (2014) Can microbes help feed the world? Bioscience 64:963–969CrossRefGoogle Scholar
  82. Medina-Roldan E, Paz-Ferreiro J, Bardgett RD (2012) Grazing-induced effects on soil properties modify plant competitive interactions in semi-natural mountain grasslands. Oecologia 170:159–169PubMedCrossRefGoogle Scholar
  83. Mehrabi Z, Tuck SL (2015) Relatedness is a poor predictor of negative plant-soil feedbacks. New Phytol 205:1071–1075PubMedCrossRefGoogle Scholar
  84. Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663PubMedCrossRefGoogle Scholar
  85. Miller ZJ, Menalled FD (2015) Impact of species identity and phylogenetic relatedness on biologically-mediated plant-soil feedbacks in a low and a high intensity agroecosystem. Plant Soil 389:171–183CrossRefGoogle Scholar
  86. Miyashita T, Takada M, Shimazaki A (2003) Experimental evidence that aboveground predators are sustained by underground detritivores. Oikos 103:31–36CrossRefGoogle Scholar
  87. Muñoz-Cárdenas K, Ersin F, Pijnakker J et al (2017) Supplying high-quality alternative prey in the litter increases control of an above-ground plant pest by a generalist predator. Biol Control 105:19–26CrossRefGoogle Scholar
  88. Navarro-Noya YE, Gómez-Acata S, Montoya-Ciriaco N et al (2013) Relative impacts of tillage, residue management and crop-rotation on soil bacterial communities in a semi-arid agroecosystem. Soil Biol Biochem 65:86–95CrossRefGoogle Scholar
  89. Neal AL, Ahmad S, Gordon-Weeks R et al (2012) Benzoxazinoids in root exudates of maize attract Pseudomonas putida to the rhizosphere. PLoS One 7:e35498PubMedPubMedCentralCrossRefGoogle Scholar
  90. Njeru EM, Avio L, Sbrana C et al (2014) First evidence for a major cover crop effect on arbuscular mycorrhizal fungi and organic maize growth. Agron Sustain Dev 34:841–848CrossRefGoogle Scholar
  91. Ownley BH, Gwinn KD, Vega FE (2010) Endophytic fungal entomopathogens with activity against plant pathogens: ecology and evolution. BioControl 55:113–128CrossRefGoogle Scholar
  92. Pangesti N, Pineda A, Pieterse CMJ et al (2013) Two-way plant-mediated interactions between root-associated microbes and insects: from ecology to mechanisms. Front Plant Sci 4:414PubMedPubMedCentralCrossRefGoogle Scholar
  93. Pangesti N, Pineda A, Dicke M et al (2014) Variation in plant-mediated interactions between rhizobacteria and caterpillars: potential role of soil composition. Plant Biol 17:474–483PubMedCrossRefGoogle Scholar
  94. Peiffer JA, Spor A, Koren O et al (2013) Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc Natl Acad Sci USA 110:6548–6553PubMedCrossRefGoogle Scholar
  95. Pendergast TH, Burke DJ, Carson WP (2013) Belowground biotic complexity drives aboveground dynamics: a test of the soil community feedback model. New Phytol 197:1300–1310PubMedCrossRefPubMedCentralGoogle Scholar
  96. Pérez-Jaramillo JE, Mendes R, Raaijmakers JM (2016) Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant Mol Biol 90:635–644PubMedCrossRefGoogle Scholar
  97. Philippot L, Raaijmakers JM, Lemanceau P et al (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11:789–799PubMedCrossRefGoogle Scholar
  98. Pieterse CMJ, Zamioudis C, Berendsen RL et al (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375PubMedCrossRefGoogle Scholar
  99. Pineda A, Zheng SJ, van Loon JJA et al (2010) Helping plants to deal with insects: the role of beneficial soil-borne microbes. Trends Plant Sci 15:507–514PubMedCrossRefGoogle Scholar
  100. Pineda A, Zheng SJ, van Loon JJA et al (2012) Rhizobacteria modify plant–aphid interactions: a case of induced systemic susceptibility. Plant Biol 14(Suppl 1):83–90PubMedCrossRefPubMedCentralGoogle Scholar
  101. Pineda A, Kaplan I, Bezemer TM (2017) Steering soil microbiomes to suppress aboveground insect pests. Trends Plant Sci 22:770–778PubMedCrossRefGoogle Scholar
  102. Raaijmakers JM, Mazzola M (2016) Soil immune responses. Science 352:1392–1393PubMedCrossRefGoogle Scholar
  103. Ramirez RA, Henderson DR, Riga E et al (2009) Harmful effects of mustard bio-fumigants on entomopathogenic nematodes. Biol Control 48:147–154CrossRefGoogle Scholar
  104. Ramirez KS, Craine JM, Fierer N (2012) Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Glob Chang Biol 18:1918–1927CrossRefGoogle Scholar
  105. Rasmann S, Turlings TCJ (2007) Simultaneous feeding by aboveground and belowground herbivores attenuates plant-mediated attraction of their respective natural enemies. Ecol Lett 10:926–936PubMedCrossRefGoogle Scholar
  106. Ratnadass A, Fernandes P, Avelino J et al (2012) Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: a review. Agron Sustain Dev 32:273–303CrossRefGoogle Scholar
  107. Rudrappa T, Czymmek KJ, Pare PW et al (2008) Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol 148:1547–1556PubMedPubMedCentralCrossRefGoogle Scholar
  108. Sanchez-Bel P, Troncho P, Gamir J et al (2016) The nitrogen availability interferes with mycorrhiza-induced resistance against Botrytis cinerea in tomato. Front Microbiol 7:1598PubMedPubMedCentralCrossRefGoogle Scholar
  109. Santhanam R, Luu VT, Weinhold A et al (2015) Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping. Proc Natl Acad Sci USA 112:E5013–E5020PubMedCrossRefGoogle Scholar
  110. Saravanakumar D, Lavanya N, Muthumeena B et al (2008) Pseudomonas fluorescens enhances resistance and natural enemy population in rice plants against leaffolder pest. J Appl Entomol 132:469–479CrossRefGoogle Scholar
  111. Schipanski ME, Barbercheck M, Douglas MR et al (2014) A framework for evaluating ecosystem services provided by cover crops in agroecosystems. Agric Syst 125:12–22CrossRefGoogle Scholar
  112. Schittko C, Wurst S (2014) Above- and belowground effects of plant-soil feedback from exotic Solidago canadensis on native Tanacetum vulgare. Biol Invasions 16:1465–1479CrossRefGoogle Scholar
  113. Schlaeppi K, Bulgarelli D (2015) The plant microbiome at work. Mol Plant-Microbe Interact 28:212–217PubMedCrossRefGoogle Scholar
  114. Schrama M, Vandecasteele B, Carvalho S et al (2016) Effects of first- and second-generation bioenergy crops on soil processes and legacy effects on a subsequent crop. GCB Bioenergy 8:136–147CrossRefGoogle Scholar
  115. Schulz M, Marocco A, Tabaglio V et al (2013) Benzoxazinoids in rye allelopathy: from discovery to application in sustainable weed control and organic farming. J Chem Ecol 39:154–174PubMedCrossRefGoogle Scholar
  116. Singer JW, Nusser SM, Alf CJ (2007) Are cover crops being used in the US corn belt? J Soil Water Conserv 62:353–358Google Scholar
  117. Soler R, Bezemer TM, Van der Putten WH et al (2005) Root herbivore effects on above-ground herbivore, parasitoid and hyperparasitoid performance via changes in plant quality. J Anim Ecol 74:1121–1130CrossRefGoogle Scholar
  118. Soler R, Van der Putten W, Harvey J et al (2012) Root herbivore effects on aboveground multitrophic interactions: patterns, processes and mechanisms. J Chem Ecol 38:755–767PubMedPubMedCentralCrossRefGoogle Scholar
  119. Soler R, Erb M, Kaplan I (2013) Long distance root-shoot signaling in plant-insect community interactions. Trends Plant Sci 18:149–156PubMedCrossRefGoogle Scholar
  120. Staley JT, Stewart-Jones A, Pope TW et al (2010) Varying responses of insect herbivores to altered plant chemistry under organic and conventional treatments. Proc R Soc Lond B Biol Sci 277:779–786CrossRefGoogle Scholar
  121. Tiemann LK, Grandy AS, Atkinson EE et al (2015) Crop rotational diversity enhances belowground communities and functions in an agroecosystem. Ecol Lett 18:761–771PubMedCrossRefGoogle Scholar
  122. Troelstra SR, Wagenaar R, Smant W et al (2001) Interpretation of bioassays in the study of interactions between soil organisms and plants: involvement of nutrient factors. New Phytol 150:697–706CrossRefGoogle Scholar
  123. van Dam NM, Bouwmeester HJ (2016) Metabolomics in the rhizosphere: tapping into belowground chemical communication. Trends Plant Sci 21:256–265PubMedCrossRefGoogle Scholar
  124. van de Mortel JE, de Vos RCH, Dekkers E et al (2012) Metabolic and transcriptomic changes induced in Arabidopsis by the rhizobacterium Pseudomonas fluorescens SS101. Plant Physiol 160:2173–2188PubMedPubMedCentralCrossRefGoogle Scholar
  125. Van de Voorde TFJ, van der Putten WH, Bezemer TM (2011) Intra- and interspecific plant–soil interactions, soil legacies and priority effects during old-field succession. J Ecol 99:945–953CrossRefGoogle Scholar
  126. van der Heijden MGA, Hartmann M (2016) Networking in the plant microbiome. PLoS Biol 14:e1002378PubMedPubMedCentralCrossRefGoogle Scholar
  127. van der Putten WH, Bardgett RD, de Ruiter PC et al (2009) Empirical and theoretical challenges in aboveground–belowground ecology. Oecologia 161:1–14PubMedPubMedCentralCrossRefGoogle Scholar
  128. van der Putten WH, Bardgett RD, Bever JD et al (2013) Plant–soil feedbacks: the past, the present and future challenges. J Ecol 101:265–276CrossRefGoogle Scholar
  129. van der Voort M, Kempenaar M, van Driel M et al (2016) Impact of soil heat on reassembly of bacterial communities in the rhizosphere microbiome and plant disease suppression. Ecol Lett 19:375–382PubMedCrossRefGoogle Scholar
  130. van Oosten VR, Bodenhausen N, Reymond P et al (2008) Differential effectiveness of microbially induced resistance against herbivorous insects in Arabidopsis. Mol Plant Microbe Interact 21:919–930PubMedCrossRefGoogle Scholar
  131. Vandenkoornhuyse P, Quaiser A, Duhamel M et al (2015) The importance of the microbiome of the plant holobiont. New Phytol 206:1196–1206PubMedCrossRefGoogle Scholar
  132. Veen GF, De Vries S, Bakker ES et al (2014) Grazing-induced changes in plant-soil feedback alter plant biomass allocation. Oikos 123:800–806CrossRefGoogle Scholar
  133. Vidal S, Edwards R, Kuhlmann U (2005) Western corn rootworm: ecology and management. CABI, CambridgeCrossRefGoogle Scholar
  134. Wagg C, Bender SF, Widmer F et al (2014) Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc Natl Acad Sci USA 111:5266–5270PubMedCrossRefPubMedCentralGoogle Scholar
  135. Wall DH (ed) (2004) Sustaining biodiversity and ecosystem services in soils and sediments. SCOPE 64. Island Press, WashingtonGoogle Scholar
  136. Williams A, Birkhofer K, Hedlund K (2014) Above- and below-ground interactions with agricultural management: effects of soil microbial communities on barley and aphids. Pedobiologia 57:67–74CrossRefGoogle Scholar
  137. Wittwer RA, Dorn B, Jossi W et al (2017) Cover crops support ecological intensification of arable cropping systems. Sci Rep-UK 7:41911CrossRefGoogle Scholar
  138. Wondafrash M, Van Dam NM, Tytgat TOG (2013) Plant systemic induced responses mediate interactions between root parasitic nematodes and aboveground herbivorous insects. Front Plant Sci 4:87PubMedPubMedCentralCrossRefGoogle Scholar
  139. Wubs ERJ, Bezemer TM (2016) Effects of spatial plant–soil feedback heterogeneity on plant performance in monocultures. J Ecol 104:364–376CrossRefGoogle Scholar
  140. Wubs ERJ, van der Putten WH, Bosch M et al (2016) Soil inoculation steers restoration of terrestrial ecosystems. Nat Plants 2:16107PubMedPubMedCentralCrossRefGoogle Scholar
  141. Wurst S (2013) Plant-mediated links between detritivores and aboveground herbivores. Front Plant Sci 4:380PubMedPubMedCentralCrossRefGoogle Scholar
  142. Wurst S, Ohgushi T (2015) Do plant- and soil-mediated legacy effects impact future biotic interactions? Funct Ecol 29:1373–1382CrossRefGoogle Scholar
  143. Yang C, Hamel C, Gan Y et al (2013) Pyrosequencing reveals how pulses influence rhizobacterial communities with feedback on wheat growth in the semiarid Prairie. Plant Soil 367:493–505CrossRefGoogle Scholar
  144. Ye M, Song Y, Long J et al (2013) Priming of jasmonate-mediated antiherbivore defense responses in rice by silicon. Proc Natl Acad Sci USA 110:E3631–E3639PubMedCrossRefGoogle Scholar
  145. Zamioudis C, Pieterse CMJ (2012) Modulation of host immunity by beneficial microbes. Mol Plant Microbe Interact 25:139–150PubMedCrossRefGoogle Scholar
  146. Zehnder G, Kloepper J, Yao CB et al (1997) Induction of systemic resistance in cucumber against cucumber beetles (Coleoptera: Chrysomelidae) by plant growth-promoting rhizobacteria. J Econ Entomol 90:391–396CrossRefGoogle Scholar
  147. Zeng RS (2014) Allelopathy: the solution is indirect. J Chem Ecol 40:515–516PubMedCrossRefGoogle Scholar
  148. Zhang Z, Cui B, Li Y et al (2015) Effects of tobacco–rice rotation on rice planthoppers Sogatella furcifera (Horváth) and Nilaparvata lugens (Stål) (Homoptera: Delphacidae) in China. Plant Soil 392:333–344CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of EntomologyPurdue UniversityWest LafayetteUSA
  2. 2.Department of Terrestrial EcologyNetherlands Institute of EcologyWageningenThe Netherlands
  3. 3.Institute of Biology, Section Plant Ecology and PhytochemistryLeiden UniversityLeidenThe Netherlands

Personalised recommendations