Advertisement

36 Growth Patterns of Mediterranean Calcifying Cold-Water Corals

  • Franck LartaudEmail author
  • Vincent Mouchi
  • Leïla Chapron
  • Anne-Leïla Meistertzheim
  • Nadine Le Bris
Chapter
  • 297 Downloads
Part of the Coral Reefs of the World book series (CORW, volume 9)

Abstract

Skeletal growth is a key physiological function, which in the case of calcifying organisms, provides support for the general colony structure together, whilst simultaneously providing protection for internal soft tissues. Given this fundamental importance, growth patterns can therefore reflect the health status of organisms. Additionally, engineer species forming 3D structures, such as scleractinian cold-water corals, enhance local biodiversity through the provision of new structural and hydrodynamic habitats. Furthermore, cold-water corals may be used as paleoclimate indicators, and act as sources for novel pharmaceutical compounds as well as represent significant sinks for CO2 sequestration. At time of writing, cold-water coral reefs are facing several serious threats, particularly in the Mediterranean Sea, where the combined effects of climate change and other anthropogenic environmental disturbances are interacting in regions of coral colonisation. The characterisation of the Mediterranean cold-water coral growth patterns is thus a crucial step for accurate forecasting of reef resilience under environmental change and for the establishment of adequate conservation strategies. From the organisation of soft tissues to the resulting mineralogical structures formed from the polyp to the reef scale, this chapter gives an overview of the state of the art of the current understanding of scleractinian cold-water coral growth patterns. The main environmental parameters that control calcification and their influence on cold-water corals in the context of ongoing global environmental change are illustrated with examples from studies conducted with different calcifying species from the Mediterranean Sea, utilising both aquaria and in situ experimental studies.

Keywords

Scleractinia Skeleton Calcification Environmental factors Forecast of reef growth Cold-water corals Mediterranean 

Notes

Acknowledgements

FL, LC and NLB works on CWC have been supported under the chair ‘Biodiversity, extreme marine environments and global change’ of UPMC supported by Fondation Total. LC doctoral contract is supported by UPMC (ED129 Doctoral school of environmental sciences). VM work presented in this paper was made possible by the ENS Ph.D. programme. The Earth and Natural Sciences Doctoral Studies Programme is funded under the Programme for Research in Third-Level Institutions Cycle-5 and co-funded under the European Regional Development Fund. Autun Purser is acknowledged for his support in editing the English language of the manuscript. We also thank the guest editor for his advices and inviting us to contribute to this chapter, and two anonymous reviewers for their helpful comments.

References

  1. Addadi L, Raz S, Weiner S (2003) Taking advantage of disorder: amorphous calcium carbonate and its roles in biomineralization. Adv Mater 15:959–970CrossRefGoogle Scholar
  2. Addamo AA, Vertino A, Stolarski J, et al (2016) Merging scleractinian genera: the overhelming genetic similarity between solitary Desmophyllum and colonial Lophelia. BMC Evol Biol 16:108.  https://doi.org/10.1186/s12862-016-0654-8
  3. Adkins JF, Boyle EA, Curry WB, et al (2003) Stable isotopes in deep-sea corals and a new mechanisms for “vital effects”. Geochim Cosmochim Acta 67:1129–1143CrossRefGoogle Scholar
  4. Adkins JF, Henderson GM, Wang SL, et al (2004) Growth rates of the deep-sea scleractinia Desmophyllum cristagalli and Enallopsammia rostrata. Earth Planet Sci Lett 227:481–490CrossRefGoogle Scholar
  5. Allemand D, Ferrier-Pagès C, Furla P, et al (2004) Biomineralisation in reef-building corals: from molecular mechanisms to environmental control. CR Palevol 3:453–467CrossRefGoogle Scholar
  6. Allemand D, Tambutté É, Zoccola D, et al (2011) Coral calcification, cells to reefs. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, Dordrecht, pp 119–150Google Scholar
  7. Barnes DJ (1970) Coral skeletons: an explanation of their growth and structure. Science 170:1305–1308PubMedCrossRefGoogle Scholar
  8. Barnett TP, Pierce DW, AchutaRao KM, et al (2005) Penetration of human-induced warming into the world’s oceans. Science 309:284–287PubMedCrossRefGoogle Scholar
  9. Bell N, Smith J (1999) Coral growing on North Sea oil rigs. Nature 402:601CrossRefGoogle Scholar
  10. Bertucci A, Moya A, Tambutté S, et al (2013) Carbonic anhydrases in anthozoan corals—a review. Bioorg Med Chem 21:1437–1450PubMedCrossRefGoogle Scholar
  11. Brooke S, Young CM (2009) In situ measurement of survival and growth of Lophelia pertusa in the northern Gulf of Mexico. Mar Ecol Progr Ser 397:153–161CrossRefGoogle Scholar
  12. Brooke S, Ross SW, Bane JM, et al (2013) Temperature tolerance of the deep-sea coral Lophelia pertusa from the southeastern United States. Deep-Sea Res Part 2 Top Stud Oceanogr 92:240–248CrossRefGoogle Scholar
  13. Bryan WB, Hill D (1941) Spherulitic crystallization as a mechanism of skeletal growth in the hexacorals. Proc R Soc Qld 52:78–91Google Scholar
  14. Buhl-Mortensen L, Vanreusel A, Gooday A, et al (2010) Biological structures as a source of habitat heterogeneity and biodiversity on the deep ocean margins. Mar Ecol 31:21–50CrossRefGoogle Scholar
  15. Canals M, Puig P, de Durrieu de Madron X, et al (2006) Flushing submarine canyons. Nature 444:354–357CrossRefGoogle Scholar
  16. Carter JG (1980) Guide to bivalve shell microstructures. In: Rhoads DC, Lutz RA (eds) Skeletal growth of aquatic organisms. Plenum Press, New York, pp 645–673Google Scholar
  17. Cartwright JH, Checa AG, Gale JD, et al (2012) Calcium carbonate polyamorphism and its role in biomineralization: how many amorphous calcium carbonates are there? Angew Chem Int Ed 51:11960–11970CrossRefGoogle Scholar
  18. Cheng H, Adkins JF, Edwards RL, et al (2000) U-Th dating of deep-sea corals. Geochim Cosmochim Acta 64:2401–2416Google Scholar
  19. Chisholm JRM, Gattuso JP (1991) Validation of the alkalinity anomaly technique for investigating calcification of photosynthesis in coral reef communities. Limnol Oceanogr 36:1232–1239CrossRefGoogle Scholar
  20. Cohen AL, McConnaughey TA (2003) Geochemical perspectives on coral mineralization. In: Dove PM, De Yoreo JJ, Weiner S (eds) Biomineralization, reviews in mineralogy and geochemistry. Mineralogical Society of America and the Geochemical Society, Washington, DC, 54:151–187Google Scholar
  21. Cölfen H, Antonietti M (2005) Mesocrystals: inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew Chem Int Ed 44:5576–5591CrossRefGoogle Scholar
  22. Constantz BR (1989) Skeletal organisation in Acropora. In: Crick RE (ed) Origin, evolution and modern aspects of biomineralization in plants and animals. Plenum Press, New York, pp 175–200Google Scholar
  23. Cordes E, Arnaud-Haond S, Bergstad OA, et al (2016) Cold-water corals. In: Inniss L, Simcock A (eds) The first global integrated marine assessment: World Ocean Assessment I. United Nations regular process for global reporting and assessment of the state of the marine environment, including socioeconomic aspects. United Nations, New York, 28 pGoogle Scholar
  24. Cuif JP, Dauphin Y (1998) Microstructural and physicochemical characterization of centers of calcification in septa of some recent Scleractinian corals. Paläontol Z 72:257–270CrossRefGoogle Scholar
  25. Cuif JP, Dauphin Y, Sorauf J (2011) Biominerals and fossils through time. Cambridge University Press, Cambridge, p 490Google Scholar
  26. D’Onghia G, Indennidate A, Giove A, et al (2011) Distribution and behaviour of deep-sea benthopelagic fauna observed using towed cameras in the Santa Maria di Leuca cold-water coral province. Mar Ecol Progr Ser 443:95–110CrossRefGoogle Scholar
  27. Davies AJ, Guinotte JM (2011) Global habitat suitability for framework-forming cold-water corals. PLoS One 6:e18483PubMedPubMedCentralCrossRefGoogle Scholar
  28. Davies AJ, Duineveld GCA, Lavaleye MSS, et al (2009) Downwelling and deep-water bottom currents as food supply mechanisms to the cold-water coral Lophelia pertusa (Scleractinia) at the Mingulay Reef complex. Limnol Oceanogr 54:620–629CrossRefGoogle Scholar
  29. Douarin M, Sinclair DJ, Elliot M, et al (2014) Changes in fossil assemblage in sediment cores from Mingulay Reef Complex (NE Atlantic): implications for coral reef buid-up. Deep-Sea Res Part 2 Top Stud Oceanogr 99:286–296CrossRefGoogle Scholar
  30. Duncan PM (1877) On the rapidity of growth and variability of some Madreporaria on an Atlantic Cable, with remarks upon the rate of accumulation of foraminiferal deposits. Proc R Soc Lond 26:133–137Google Scholar
  31. Falini G, Reggi M, Fermani S, et al (2013) Control of aragonite deposition in colonial corals by intra-skeletal macromolecules. J Struct Biol 183:226–238PubMedCrossRefGoogle Scholar
  32. Fallon SJ, Thresher RE, Adkins J (2014) Age and growth of the cold-water scleractinian Solenosmilia variabilis and its reef on SW Pacific seamounts. Coral Reefs 33:31–38CrossRefGoogle Scholar
  33. Fiala-Medioni A, Madurell T, Romans P, et al (2012) Rov and submersible surveys on faunal assemblages in a deep-sea canyon (rech Lacaze-Duthiers, western Mediterranean Sea). Vie Milieu 62:173–190Google Scholar
  34. Fink HG, Wienberg C, Hebbeln D, et al (2012) Oxygen control on Holocene cold-water coral development in the eastern Mediterranean Sea. Deep-Sea Res Part 1 Oceanogr Res Pap 62:89–96CrossRefGoogle Scholar
  35. Form AU, Riebesell U (2012) Acclimatation to ocean acidification during long-term CO2 exposure in the cold-water coral Lophelia pertusa. Glob Chang Biol 18:843–853CrossRefGoogle Scholar
  36. Försterra G, Häussermann V (2003) First report on large scleractinian (Cnidaria: Anthozoa) accumulations in cold-temperate shallow water of south Chilean fjords. Zool Verh Leiden 345:117–128Google Scholar
  37. Freiwald A, Henrich R, Pätzold J (1997) Anatomy of a deep-water coral reef mound from Stjernsund, West Finnmark. North Nor SEPM Spec Publ 56:141–162Google Scholar
  38. Freiwald A, Fossa JH, Grehan A, et al (2004) Cold-water coral reefs: out of sight – no longer out of mind. UNEP-WCMC, Cambridge, 86 pGoogle Scholar
  39. Galli G, Bramanti L, Priori C, et al (2016) Modelling red coral (Corallium rubrum) growth in response to temperature and nutrition. Ecol Model 337:137–148CrossRefGoogle Scholar
  40. Gass SE, Roberts JM (2006) The occurrence of the cold-water coral Lophelia pertusa (Scleractinia) on oil and gas platforms in the North Sea: colony growth, recruitment and environmental controls on distribution. Mar Pollut Bull 52:549–559PubMedCrossRefPubMedCentralGoogle Scholar
  41. Gass SE, Roberts JM (2011) Growth and branching patterns of Lophelia pertusa (Scleractinia) from the North Sea. J Mar Biol Assoc UK 91:831–835CrossRefGoogle Scholar
  42. Glazier DS (2005) Beyond the: variation in the intra- and interspecific scaling of metabolic rate in animals. Biol Rev 80:611PubMedCrossRefGoogle Scholar
  43. Gori A, Orejas C, Madurell T, et al (2013) Bathymetrical distribution and size structure of cold-water coral populations in the Cap de Creus and Lacaze-Duthiers canyons (northwestern Mediterranean). Biogeosciences 10:2049–2060CrossRefGoogle Scholar
  44. Gori A, Reynaud S, Orejas C, et al (2014) Physiological performance of the cold-water coral Dendrophyllia cornigera reveals its preference for temperate environments. Coral Reefs 33:665–674CrossRefGoogle Scholar
  45. Gori A, Ferrier-Pagès C, Hennige S, et al (2016) Physiological response of the cold-water coral Desmophyllum dianthus to thermal stress and ocean acidification. PeerJ 4:e1606PubMedPubMedCentralCrossRefGoogle Scholar
  46. Hassenrück C, Jantzen C, Försterra G, et al (2013) Rates of apical septal extension of Desmophyllum dianthus: effect of association with endolithic photo-autotrophs. Mar Biol 160:2919–2927CrossRefGoogle Scholar
  47. Hennige SJ, Morrison CL, Form AU, et al (2014a) Self-recognition in corals facilites deep-sea habitat engineering. Sci Rep 4:6782PubMedPubMedCentralCrossRefGoogle Scholar
  48. Hennige SJ, Wicks LC, Kamenos NA, et al (2014b) Short-term metabolic and growth responses of the cold-water coral Lophelia pertusa to ocean acidification. Deep-Sea Res Part 2 Top Stud Oceanogr 99:27–35CrossRefGoogle Scholar
  49. Hennige SJ, Wicks LC, Kamenos NA, et al (2015) Hidden impacts of ocean acidification to live and dead coral framework. Proc R Soc B 282:20150990PubMedCrossRefGoogle Scholar
  50. Hermann M, Estournel C, Déqué M, et al (2008) Dense water formation in the Gulf of Lions shelf: impact of atmospheric interannual variability and climate change. Cont Shelf Res 28:2092–2112CrossRefGoogle Scholar
  51. Heussner S, Durrieu de Madron X, Calafat A, et al (2006) Spatial and temporal variability of download particle fluxes on a continental slope: lessons from an 8-yr experiment in the Gulf of Lions (NW Mediterranean). Mar Geol 234:63–92CrossRefGoogle Scholar
  52. Hovland M, Mortensen PB (1999) Norske korallrev og prosesser i havbunnen (Norwegian coral reefs and seebed processes). J Grieg, Bergen, p 167Google Scholar
  53. IPCC (2014) In: Pachauri RK, Meyer LA (eds) Climate change 2014: synthesis report. Contribution of working groups I, II and III tot the fifth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, 151 pGoogle Scholar
  54. Johnston IS (1980) The ultrastructure of skeletogenesis in hermatypic corals. Int Rev Cytol 67:171–214CrossRefGoogle Scholar
  55. Keller NB, Os’kina NS (2008) Habitat temperature ranges of azooxantellate scleractinian corals in the world ocean. Oceanology 48:77–84CrossRefGoogle Scholar
  56. Kiriakoulakis K, Fisher E, Wolff GA, et al (2005) Lipids and nitrogen isotopes of two deep-water corals from the North-East Atlantic: initial results and implications. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin, Heidelberg, pp 715–729CrossRefGoogle Scholar
  57. Knutson DW, Buddemeier RW, Smith SV (1972) Coral chronometers – seasonal growth bands in corals. Science 177:270–272PubMedCrossRefGoogle Scholar
  58. Larcom AA, McKean DL, Brooks JM, et al (2014) Growth rates, densities, and distribution of Lophelia pertusa on artificial structures in the Gulf of Mexico. Deep-Sea Res Part 1 Oceanogr Res Pap 85:101–109CrossRefGoogle Scholar
  59. Larsson AI, van Oevelen D, Purser A, et al (2013) Tolerance to long-term exposure of suspended benthic sediments ad drill cuttings in the cold-water coral Lophelia pertusa. Mar Pollut Bull 70:176–188PubMedCrossRefGoogle Scholar
  60. Lartaud F, Pareige S, de Rafelis M, et al (2013) A new approach for assessing cold-water coral growth in situ using fluorescent calcein staining. Aquat Living Resour 26:187–196CrossRefGoogle Scholar
  61. Lartaud F, Pareige S, de Rafelis M, et al (2014) Temporal changes in the growth of two Mediterranean cold-water coral species, in situ and in aquaria. Deep-Sea Res Part 2 Top Stud Oceanogr 99:64–70CrossRefGoogle Scholar
  62. Lartaud F, Galli G, Raza A, et al (2017a) Growth patterns in long-lived coral species. In: Rossi S, Bramanti L, Gori A, et al (eds) Marine animal forests: the ecology of benthic biodiversity hotspots. Springer, Cham, pp 595–626CrossRefGoogle Scholar
  63. Lartaud F, Meistertzheim AL, Peru E, et al (2017b) In situ growth experiments of reef-building cold-water corals: the good, the bad and the ugly. Deep-Sea Res Part 1 Oceanogr Res Pap 121:70–78CrossRefGoogle Scholar
  64. Lastras G, Canals M, Ballesteros E, et al (2016) Cold-water corals and anthropogenic impacts in La Fonera submarine canyon head, Northwestern Mediterranean Sea. PLoS One 11:e0155729PubMedPubMedCentralCrossRefGoogle Scholar
  65. Lazier AV, Smith JE, Risk MJ, et al (1999) The skeletal structure of Desmophyllum cristagalli: the use of deep-water corals in sclerochronology. Lethaia 32:119–130CrossRefGoogle Scholar
  66. Le Tissier MDA, Clayton B, Brown BE, et al (1994) Skeletal correlates of coral density banding and an evaluation of radiography as used in sclerochronology. Mar Ecol Progr Ser 110:29–44CrossRefGoogle Scholar
  67. Levin LA, Le Bris N (2015) The deep ocean under climate change. Science 350:766–768PubMedCrossRefGoogle Scholar
  68. Lopez-Correa M, Montagna P, Vendrell-Simon B, et al (2010) Stable isotopes (δ18O and δ13C), trace and minor element compositions of Recent scleractinians and Last Glacial bivalves at the Santa Maria di Leuca deep-water coral province, Ionian sea. Deep-Sea Res Part 2 Top Stud Oceanogr 57:471–486CrossRefGoogle Scholar
  69. Maier C, Hegeman J, Weinbauer MG, et al (2009) Calcification of the cold-water coral Lophelia pertusa under ambient and reduced pH. Biogeosciences 6:1671–1680CrossRefGoogle Scholar
  70. Maier C, Schubert A, Berzunza Sànchez MM, et al (2013) End of the century pCO2 levels do not impact calcification in Mediterranean cold-water corals. PLoS One 8:e62655PubMedPubMedCentralCrossRefGoogle Scholar
  71. Maier C, Popp P, Sollfrank N, et al (2016) Effects of elevated pCO2 and feeding on net calcification and energy budget of the Mediterranean cold-water coral Madrepora oculata. J Exp Biol 219:3208–3217PubMedCrossRefGoogle Scholar
  72. Marali S, Wisshak M, Lopez-Correa M, et al (2013) Skeletal microstructure and stable isotope signature of three bathyal solitary cold-water corals from the Azores. Palaeogeogr Palaeoclimatol Palaeoecol 373:25–38CrossRefGoogle Scholar
  73. Marin F, Luquet G, Marie B, et al (2008) Molluscan shell proteins: primary structure, origin, and evolution. Curr Top Dev Biol 80:209–276PubMedCrossRefGoogle Scholar
  74. McCulloch M, Trotter J, Montagna P, et al (2012) Resilience of cold- water scleractinian corals to ocean acidification: boron isotopic systematics of pH and saturation state up-regulation. Geochim Cosmochim Acta 87:21–34CrossRefGoogle Scholar
  75. Meistertzheim AL, Lartaud F, Arnaud-Haond S, et al (2016) Patterns of bacteria- host associations suggest different ecological strategies between two reef building cold-water coral species. Deep-Sea Res Part 1 Oceanogr Res Pap 114:12–22CrossRefGoogle Scholar
  76. Mikkelsen N, Erlenkeuser H, Killingley JS, et al (1982) Norwegian corals: radiocarbon and stable isotopes in Lophelia pertusa. Boreas 11:163–171CrossRefGoogle Scholar
  77. Miller MW (1995) Growth of a temperate coral: effects of temperature, light, depth, and heterotrophy. Mar Ecol Progr Ser 122:217–225CrossRefGoogle Scholar
  78. Montero-Serrano JC, Frank N, Tisnérat-Laborde N, et al (2013) Decadal changes in the mid-depth water mass dynamic of the Northeastern Atlantic margin (Bay of Biscay). Earth Planet Sci Lett 364:134–144CrossRefGoogle Scholar
  79. Mortensen PB (2001) Aquarium observations on the deep-water coral Lophelia pertusa (L., 1958) (scleractinia) and selected associated invertebrates. Ophelia 54:83–104CrossRefGoogle Scholar
  80. Mortensen PB, Rapp HT (1998) Oxygen and carbon isotope ratios related to growth line patterns in skeletons of Lophelia pertusa (L.) (Anthozoa, Scleractinia): implications for determining of linear extension rates. Sarsia 83:433–446CrossRefGoogle Scholar
  81. Mouchi V, Crowley QG, Jackson AL, et al (2014) Potential seasonal calibration for palaeoenvironmental reconstruction using skeletal microstructures and strontium measurements from the cold-water coral Lophelia pertusa. J Quat Sci 29:803–814CrossRefGoogle Scholar
  82. Mouchi V, Vonlanthen P, Verrecchia EP, et al (2017) Multi-scale crystallographic ordering in the cold-water coral Lophelia pertusa. Sci Rep 7:8987Google Scholar
  83. Movilla J, Gori A, Calvo E, et al (2014a) Resistance of two Mediterranean cold-water coral species to low-pH conditions. Water 5:59–67Google Scholar
  84. Movilla J, Orejas C, Calvo E, et al (2014b) Differential response of two Mediterranean cold-water coral species to ocean acidification. Coral Reefs 33:675–686CrossRefGoogle Scholar
  85. Mueller CE, Lundälv T, Middelburg JJ, et al (2013) The symbiosis between Lophelia pertusa and Eunice norvegica stimulates coral calcification and worm assimilation. PLoS One 8:e58660PubMedPubMedCentralCrossRefGoogle Scholar
  86. Naumann MS, Orejas C, Ferrier-Pagès C (2013) High thermal tolerance of two Mediterranean cold-water coral species maintained in aquaria. Coral Reefs 32:749–754CrossRefGoogle Scholar
  87. Naumann MK, Orejas C, Ferrier-Pagès C (2014) Species-specific physiological response by the cold-water corals Lophelia pertusa and Madrepora oculata to variations within their natural temperature range. Deep-Sea Res Part 2 Top Stud Oceanogr 99:36–41CrossRefGoogle Scholar
  88. Orejas C, Gori A, Gili JM (2008) Growth rates of live Lophelia pertusa and Madrepora oculata from the Mediterranean Sea maintained in aquaria. Coral Reefs 27:255CrossRefGoogle Scholar
  89. Orejas C, Gori A, Lo Iacono C, et al (2009) Cold-water corals in the Cap de Creus canyon, northwestern Mediterranean: spatial distribution, density and anthropogenic impact. Mar Ecol Progr Ser 397:37–51CrossRefGoogle Scholar
  90. Orejas C, Ferrier-Pagès C, Reynaud S, et al (2011a) Long-term growth rates of four Mediterranean cold-water coral species maintained in aquaria. Mar Ecol Progr Ser 429:57–65CrossRefGoogle Scholar
  91. Orejas C, Ferrier-Pagès C, Reynaud S, et al (2011b) Experimental comparison of skeletal growth rates in the cold-water coral Madrepora oculata Linnaeus, 1758 and three tropical sceractinian corals. J Exp Mar Biol Ecol 405:1–5CrossRefGoogle Scholar
  92. Palanques A, Durrieu de Madron X, Puig P, et al (2006) Suspended sediment fluxes and transport processes in the Gulf of Lions submarine canyons. The role of storms and dense water cascading. Mar Geol 234:43–61CrossRefGoogle Scholar
  93. Palmiéri J, Orr JC, Dutay JC, et al (2015) Simulated anthropogenic CO2 storage and acidification of the Mediterranean Sea. Biogeosciences 12:781–802CrossRefGoogle Scholar
  94. Pätzold J (1984) Growth rythms recorded in stable isotopes and density bands in the reef coral Porites lobata (Cebu, Philippines). Coral Reefs 3:87–90CrossRefGoogle Scholar
  95. Pons-Branchu E, Hillaire-Marcel C, Deschamps P, et al (2005) Early diagenesis impact on precise U-series dating of deep-sea corals: example of a 100–200 year old Lophelia pertusa sample from the Northeast Atlantic. Geochim Cosmochim Acta 69:4865–4879CrossRefGoogle Scholar
  96. Raddatz J, Liebetrau V, Rüggeberg A, et al (2013) Stable Sr-isotope, Sr/Ca, Mg/Ca, Li/Ca and Mg/Li ratios in the scleractinian cold-water coral Lophelia pertusa. Chem Geol 352:143–152CrossRefGoogle Scholar
  97. Ramirez-Llodra E, Brandt A, Danovaro R, et al (2010) Deep, diverse and definitely different: unique attributes of the world’s largest ecosystem. Biogeosciences 7:2851–2899CrossRefGoogle Scholar
  98. Reed JK (2002) Deep-water Oculina coral reefs of Florida: biology, impacts, and management. Hydrobiologia 471:43–55CrossRefGoogle Scholar
  99. Reitner J (2005) Calcifying extracellular mucus substances (EMS) of Madrepora oculata – a first geobiological approach. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin, Heidelberg, pp 731–744Google Scholar
  100. Risk MJ, Heikoop JM, Snow MG, et al (2002) Lifespans and growth patterns of two deep-sea corals: Primnoa resedaeformis and Desmophyllum cristagalli. Hydrobiologia 471:125–131CrossRefGoogle Scholar
  101. Risk MJ, Hall-Spencer J, Williams B (2005) Climate records from the Faroe-Shetland Channel using Lophelia pertusa (Linnaeus, 1758). In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin, Heidelberg, pp 1097–1108CrossRefGoogle Scholar
  102. Roark EB, Guilderson TP, Dunbar RB, et al (2006) Radiocarbon-based ages and growth rates of Hawaiian deep-sea corals. Mar Ecol Progr Ser 327:1–14CrossRefGoogle Scholar
  103. Roberts JM (2002) The occurrence of the coral Lophelia pertusa and other conspicuous epifauna around an oil platform in the North Sea. J Soc Underw Technol 25:83–91CrossRefGoogle Scholar
  104. Roberts JM (2005) Reef-aggregating behaviour by symbiotic eunicid polychaetes from cold-water corals: do worms assemble reefs? J Mar Biol Assoc UK 85:813–819CrossRefGoogle Scholar
  105. Roberts JM, Wheeler AJ, Freiwald A (2006) Reefs of the deep: the biology and geology of cold-water coral ecosystems. Science 312:543–547CrossRefGoogle Scholar
  106. Roberts JM, Wheeler A, Freiwald A, et al (2009) Cold-water corals: the biology and geology of deep-sea coral habitats. Cambridge University Press, New York, p 334.  https://doi.org/10.1017/CBO9780511581588
  107. Roder C, Berumen ML, Bouwmeester J, et al (2013) First biological measurements of deep-sea corals from the Red Sea. Sci Rep 3:2802PubMedPubMedCentralCrossRefGoogle Scholar
  108. Rodolfo Metalpa R, Montagna P, Aliani S, et al (2015) Calcification is not the Achilles’ heel of cold-water corals in an acidifying ocean. Glob Chang Biol 21:2238–2248PubMedCrossRefGoogle Scholar
  109. Rollion-Bard C, Blamart D (2014) SIMS method and examples of applications in coral biomineralization. In: DiMasi E, Gower LB (eds) Biomineralization sourcebook: characterization of biominerals and biomimetic materials. Taylor & Francis Group, London, pp 249–258CrossRefGoogle Scholar
  110. Rollion-Bard C, Blamart D, Cuif JP, et al (2010) In situ measurements of oxygen isotopic composition in deep-sea coral, Lophelia pertusa: re-examination of the current geochemical models of biomineralization. Geochim Cosmochim Acta 74:1338–1349CrossRefGoogle Scholar
  111. Sabatier P, Reyss JL, Hall-Spencer J, et al (2012) 210Pb-226Ra chronology reveals rapid growth rate of Madrepora oculata and Lophelia pertusa on world’s largest cold-water coral reef. Biogeosciences 9:1253–1265CrossRefGoogle Scholar
  112. Sherwood O, Scott D, Risk M, et al (2005) Radiocarbon evidence for annual growth rings in the deep-sea octocoral Primnoa resedaeformis. Mar Ecol Progr Ser 301:129–134CrossRefGoogle Scholar
  113. Somot S, Sevault F, Deque M (2006) Transient climate change scenario simulation of the Mediterranean Sea for the 21st century using a high-resolution ocean circulation model. Clim Dyn 27:851–879CrossRefGoogle Scholar
  114. Stolarski J (2003) Three-dimensional micro- and nanostructural characteristics of the scleractinian coral skeleton: a biocalcification proxy. Acta Palaeontol Pol 48:497–530Google Scholar
  115. Tambutté E, Allemand D, Mueller E, et al (1996) A compartmental approach to mechanisms of calcification in hermatypic corals. J Exp Biol 199:1029–1041Google Scholar
  116. Tambutté S, Holcomb M, Ferrier-Pagès C, et al (2011) Coral biomineralization: from the gene to the environment. J Exp Mar Biol Ecol 408:58–78CrossRefGoogle Scholar
  117. Taviani M, Freiwald A, Zibrowius H (2005) Deep coral growth in the Mediterranean Sea: an overview. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin, Heidelberg, pp 137–156CrossRefGoogle Scholar
  118. van Haren H, Mienis F, Duineveld GCA, et al (2014) High-resolution temperature observations of a trapped nonlinear diurnal tide influencing cold-water corals on the Logachev mounds. Progr Oceanogr 125:16–25CrossRefGoogle Scholar
  119. Vertino A, Savini A, Rosso A, et al (2010) Benthic habitat characterization and distribution from two representative sites of the deep-water SML Coral Province (Mediterranean). Deep-Sea Res Part 2 Top Stud Oceanogr 57:380–396CrossRefGoogle Scholar
  120. Wainwright SA (1964) Studies of the mineral phase of coral skeleton. Exp Cell Res 34:213–230CrossRefGoogle Scholar
  121. Waller RG, Tyler PA (2005) The reproductive biology of two deep-water, reef-building scleractinians from the NE Atlantic Ocean. Coral Reefs 24:514–522CrossRefGoogle Scholar
  122. Weiner S, Levi-Kalisman Y, Raz S, et al (2003) Biologically formed amorphous calcium carbonate. Connect Tissue Res 44:214–218PubMedCrossRefGoogle Scholar
  123. Wienberg C, Hebbeln D, Fink HG, et al (2009) Scleractinian cold-water corals in the Gulf of Cádiz – first clues about their spatial and temporal distribution. Deep-Sea Res Part 1 Oceanogr Res Pap 56:1873–1893CrossRefGoogle Scholar
  124. Wilson JB (1979) Patch’ development of the deep-water coral Lophelia pertusa (L.) on Rockall Bank. J Mar Biol Assoc UK 59:165–177CrossRefGoogle Scholar

Cross-References

  1. Aymà A, Aguzzi J, Canals M, et al (this volume) Occurrence of living cold-water corals at large depths within submarine canyons of the Northwestern Mediterranean SeaGoogle Scholar
  2. Chimienti G, Bo M, Taviani M, et al (this volume) Occurrence and biogeography of Mediterranean cold-water coralsGoogle Scholar
  3. D’Onghia G (this volume) Cold-water coral as shelter, feeding and life-history critical habitats for fish species: ecological interactions and fishing impactGoogle Scholar
  4. Fourt M, Goujard A, Chevaldonné P (this volume) Working with visual methods, comparison among the french deep-sea CanyonsGoogle Scholar
  5. Lastras G, Sanchez-Vidal A, Canals M (this volume) A cold-water coral habitat in La Fonera submarine Canyon, Northwestern Mediterranean SeaGoogle Scholar
  6. Maier C, Weinbauer MG, Gattuso JP (this volume) Fate of Mediterranean scleractinian cold-water corals as a result of global climate change. A synthesisGoogle Scholar
  7. Movilla J (this volume) A case study: variability in the calcification response of Mediterranean cold-water corals to ocean acidificationGoogle Scholar
  8. Orejas C, Taviani M, Ambroso S, et al (this volume) Cold-water coral in aquaria: advances and challenges. A focus on the MediterraneanGoogle Scholar
  9. Puig P, Gili JM (this volume) Submarine Canyons in the Mediterranean: a shelter for cold-water coralsGoogle Scholar
  10. Reynaud S, Ferrier-Pagès C (this volume) Biology and ecophysiology of Mediterranean cold-water coralsGoogle Scholar
  11. Rueda JL, Urra J, Aguilar R, et al (this volume) Cold-water coral associated fauna in the Mediterranean sea and adjacent areasGoogle Scholar
  12. Taviani M, Vertino A, Angeletti L, et al (this volume) Paleoecology of Mediterranean cold-water coralsGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Franck Lartaud
    • 1
    Email author
  • Vincent Mouchi
    • 2
  • Leïla Chapron
    • 1
  • Anne-Leïla Meistertzheim
    • 3
  • Nadine Le Bris
    • 1
  1. 1.Sorbonne Université, CNRSLaboratoire d’Ecogéochimie des Environnements Benthiques, LECOBBanyuls-sur-merFrance
  2. 2.Sorbonne Université, CNRS, Institut des Sciences de la Terre de Paris (ISTep)ParisFrance
  3. 3.Sorbonne Université, CNRSLaboratoire d’Océanographie Mirobienne, LOMIC, Observatoire OcéanologiqueBanyuls-sur-merFrance

Personalised recommendations