Heat and Moisture Simulations of Repair Mortars: Benchmark Experiments and Practical Cases in Conservation

  • Roel Hendrickx
  • Hilde De Clercq


Simulation tools are increasingly used for assessment and design of buildings, for new construction as well as for historical buildings. HAM (heat, air and moisture) simulations of porous materials can be very useful to assess the behaviour of repair mortars because hygrothermal conditions govern many decay mechanisms and are one of the keys to compatibility. This paper demonstrates some of the possibilities for mortars in a number of practical cases, using Delphin as a HAM simulation code. The first is a 2D assessment of the hygric interaction between mortar and brick. Next there are a series of 1D simulations of multi-layered porous systems. Pragmatic methods to obtain the necessary material parameters are proposed. Issues like local alterations of transport properties and interface resistances are briefly discussed. The possibilities of simulations of the behaviour of salt solutions are introduced. In a last case, a procedure to assess the risk on frost damage is demonstrated. Finally some possible or desirable future developments are pointed out: incorporating climate change, combining HAM with other simulation methods and stochastic treatment of material parameters.


Repair mortar Simulations HAM 



Andreas Nicolai is kindly acknowledged for his support concerning Delphin simulations. Hans Janssen, Rosa Espinosa and Liesje Van Gelder provided useful information about their work.


  1. Carmeliet, J., Adan, O., Brocken, H., Černý, R., Hall, C., Hens, H., K. Kumaran, M., Pavlik, Z., Pel, L., Plagge, R., & Roels, S. (2004). Determination of the liquid water diffusivity from transient moisture transfer experiments. Journal of Thermal Envelope and Building Science, 27. Scholar
  2. CEN. (2001). EN-ISO 12572: 2001 (en): Hygrothermal performance of building materials and products—Determination of water vapour transmission properties.Google Scholar
  3. CEN. (2009). EN 15801: 2009 Conservation of cultural property—Test methods—Determination of water absorption by capillarity. Brussels: CEN.Google Scholar
  4. Cóstola, D., Blocken, B., & Hensen, J. (2009). External coupling between BES and HAM programs for whole-building simulation. Eleventh International IBPSA Conference, Glasgow, (pp. 316–323). July 27–30, 2009.Google Scholar
  5. Derluyn, H. (2012). Salt transport and crystallization in porous limestone: Neutron—X-ray imaging and poromechanical modelling (Ph.D. thesis). ETH Zürich.Google Scholar
  6. Derluyn, H., Janssen, H., & Carmeliet, J. (2011). Influence of the nature of interfaces on the capillary transport in layered materials. Construction and Building Materials, 25(9), 3685–3693.CrossRefGoogle Scholar
  7. Espinosa, R., Franke, L., Deckelmann, G., & Gunstmann, C. (2007). Gekoppelter Wärme- und Stofftransport einschließlich der Korrosionsprozesse in porösen Baustoffen mit dem Simulationsprogramm AStra. Bauphysik, 29(3), 187–193.CrossRefGoogle Scholar
  8. Groot, C., & Gunneweg, J. (2005). Totaalonderzoeksproject Aanpak vochtproblematiek massief metselwerk. Deelonderzoek kwaliteitseisen restauratiebaksteen, Delft Publication OR1 of this link (version March 16).
  9. Hagentoft, C.-E. (2001). Introduction to building physics, Lund, ISBN 9144018967 (422p).Google Scholar
  10. Hall, C., & Hoff, W. D. (2002). Water transport in brick, stone and concrete, London: Taylor & Francis, ISBN 0–419-22890-X (318p).Google Scholar
  11. Hendrickx, R. (2012). Using the Karsten tube to estimate water transport parameters of porous building materials—the possibilities of analytical and numerical solutions. Materials and Structures, 46, 1309–1320.CrossRefGoogle Scholar
  12. Hendrickx, R., Roels, S., & Van Balen, K. (2010). Water transport between mortar and brick : the influence of material parameters. In J. Valek, C. J. W. P. Groot & J. J. Hughes (Eds.), Historic mortars. Characterisation, assessment and repair RILEM, ISBN 978-94-007-4634-3, pp. 329–342.CrossRefGoogle Scholar
  13. Hens, H. (2012). Building physics. Heat, air and moisture. Fundamentals and engineering methods with examples and exercises. Berlin: Ernst and Sohn, ISBN 978-3433030271 (330p).Google Scholar
  14. IPCC. (2007). Climate change 2007 : An assessment of the intergovernmental panel on climate change.Google Scholar
  15. Janssen, H. (2013). Monte-Carlo based uncertainty analysis: Sampling efficiency and sampling convergence. Reliability Engineering and System Safety, 109, 123–132.CrossRefGoogle Scholar
  16. Janssen, H., Blocken, B., & Carmeliet, J. (2007). Conservative modelling of the moisture and heat transfer in building components under atmospheric excitation. International Journal of Heat and Mass Transfer, 50(5–6), 1128–1140.CrossRefGoogle Scholar
  17. Krus, M. (1996). Moisture transport and storage coefficients of porous mineral building materials: Theoretical principles and new test methods, Fraunhofer IRB, Stuttgart, ISBN 3-81674535-0 (106p).Google Scholar
  18. Nicolai, A. (2007). Modeling and numerical simulation of salt transport and phase transition in unsaturated porous building materials (Ph.D. thesis). Syracuse University.Google Scholar
  19. Poupeleer, A.-S. (2007). Transport and crystallization of dissolved salts in cracked porous building materials (Ph.D. thesis). KULeuven.Google Scholar
  20. RILEM TC25-PEM. (1980). Recommended tests to measure the deterioration of stone and to assess the effectiveness of treatment methods (in french). Materials and Structures, 13(75), 175–253.Google Scholar
  21. Roels, S. (2000). Modelling unsaturated moisture transport in heterogeneous limestone (Ph.D. thesis). KULeuven.Google Scholar
  22. Scheffler, G., & Plagge, R. (2010). A whole range hygric material model: Modelling liquid and vapour transport properties in porous media. International Journal of Heat and Mass Transfer, 53(1–3), 286–296.CrossRefGoogle Scholar
  23. Šimůnek, J., Van Genuchten, M. T., & Šejna, M. (2008). Development and Applications of the HYDRUS and STANMOD Software Packages and Related Codes. Vadose Zone Journal, 7(2), 587–600.CrossRefGoogle Scholar
  24. Van Gelder, L., Janssen, H., & Roels, S. (2012). Retrofitting cavity walls—an example of a Monte Carlo simulation to evaluate risks and energy savings. In 5th International Building Physics Conference. May 28–31, 2012, Kyoto cd-rom (abstract p. 112).Google Scholar
  25. Van Genuchten, M. T. (1980). A closed-form equation for the prediction of the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44(5), 892–895.CrossRefGoogle Scholar
  26. Van Hees, R. J. P. et al. (Eds.) (1998). Evaluation of the performance of surface treatments for the conservation of historic brick masonry (Research Report No 7). European Commission, ISBN 92-828-2366-0.Google Scholar
  27. Van Hees, R. P. J., Pel, L., & Lubelli, B. (2002). Towards compatible repair mortars for masonry in monuments. In E. Galan & F. Zezza (Eds.), 5th International Symposium on the Conservation of Monuments in the Mediterranean Basin—Protection and Conservation of the Cultural Heritage of the Mediterranean Cities, Seville, Spain (pp. 371–375) Lisse: Swets and Zeitlinger (2000).Google Scholar
  28. Van Hunen, M., (2012). Het geveloppervlak van dichtbij bekeken. Eigenschappen en waarde van de huid. In M. Van Hunen, (Ed.), Historisch metselwerk. Instandhouding, herstel en conservering (pp. 275–287). Zwolle: W Books.Google Scholar
  29. Voronina, V., & Pel, L. (2013). The influence of osmotic pressure on poulticing treatments for cultural heritage objects. Materials and Structures, 46, 221–231.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Royal Institute for Cultural Heritage KIK-IRPABrusselsBelgium
  2. 2.TurnhoutBelgium

Personalised recommendations