Advertisement

Model for Value Generation in Companies and Cognitive Networks

  • Andrzej Wodecki
Chapter

Abstract

Artificial intelligence systems not only change the way the organization operates but also enable the creation of new business models and ecosystems. Below is a model proposal that can describe new value creation logics, which result in the spread of intelligent systems.

References

  1. Bughin, J., Hazan, E., Ramaswamy, S., Chui, M., Allas, T., Dahlstrom, P., et al. (2017). Artificial Intelligence. McKinsey Global Institute. Retrieved from https://www.mckinsey.com/~/media/McKinsey/Industries/Advanced%20Electronics/Our%20Insights/How%20artificial%20intelligence%20can%20deliver%20real%20value%20to%20companies/MGI-Artificial-Intelligence-Discussion-paper.ashx
  2. Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., & Wirth, R. (2004). CRISP-DM 1.0 (pp. 1–76). SPSS. Retrieved from https://www.the-modeling-agency.com/crisp-dm.pdf
  3. Digitalization of Energy Systems. (2017). Digitalization of Energy Systems (pp. 1–61). New York: Bloomberg Finance LP. Retrieved from https://www.siemens.com/global/en/home/company/topic-areas/sustainable-energy/digitalization-of-energy-systems.html
  4. Ermine, J.-L. (2013). A Knowledge Value Chain for Knowledge Management. Journal of Knowledge & Communication Management, 3(2), 85–101. https://doi.org/10.5958/j.2277-7946.3.2.008.CrossRefGoogle Scholar
  5. Friedrich, R., Iglezakis, I., Klein, W., & Pregizer, S. (2002). Experience-Based Decision Support for Project Management with Case-Based Reasoning. German Workshop on Experience Management.Google Scholar
  6. Gazzaniga, M., & Ivry, R. B. (2013). Cognitive Neuroscience: The Biology of the Mind. New York: W.W. Norton.Google Scholar
  7. Iafrate, F. (2015). From Big Data to Smart Data. Hoboken: Wiley https://doi.org/10.1002/9781119116189.CrossRefGoogle Scholar
  8. Kimball, R., & Caserta, J. (2004). The Data Warehouse ETL Toolkit. Indianapolis: Wiley.Google Scholar
  9. Kimball, R., Ross, M., Thornthwaite, W., Mundy, J., & Becker, B. (2008). The Data Warehouse Lifecycle Toolkit (2nd ed.). Indianapolis: Wiley.Google Scholar
  10. Kolodner, J. L. (1992). An Introduction to Case-Based Reasoning. Artificial Intelligence Review, 6(1), 3–34. https://doi.org/10.1007/BF00155578.CrossRefGoogle Scholar
  11. Lin, Y., & Xiao, W. (2017). Implementing a Smart Data Platform. Beijing: O’Reilly. Retrieved from https://www.oreilly.com/data/free/implementing-a-smart-data-platform.csp
  12. Lusch, R. F., Vargo, S. L., & Tanniru, M. (2009). Service, Value Networks and Learning. Journal of the Academy of Marketing Science, 38(1), 19–31. https://doi.org/10.1007/s11747-008-0131-z.CrossRefGoogle Scholar
  13. Montani, S. (2010). In S. Montani & L. C. Jain (Eds.), Successful Case-Based Reasoning Applications (Vol. 305). Berlin/Heidelberg: Springer Science & Business Media. https://doi.org/10.1007/978-3-642-14078-5.CrossRefGoogle Scholar
  14. Ng, A. Y., & Russell, S. (2017, August 17). Algorithms for Inverse Reinforcement Learning. Retrieved December 27, 2017, from http://bair.berkeley.edu/blog/2017/08/17/cooperatively-learning-human-values/
  15. Normann, R., & Ramirez, R. (1993). From Value Chain to Value Constellation: Designing Interactive Strategy. Harvard Business Review, 71(4), 65–77.Google Scholar
  16. Osuszek, L., & Stanek, S. (2015). Case Based Reasoning as an Improvement of Decision Making and Case Processing in Adaptive Case Management Systems. FedCSIS Position Papers, 6, 217–223.Google Scholar
  17. Porter, M. E., & Heppelmann, J. E. (2015). How Smart, Connected Products Are Transforming Companies. Harvard Business Review, 93(10), 96–114.Google Scholar
  18. Ransbotham, S. (2017). AI and the Need for Speed. MIT Sloan Management Review, 1–4. Retrieved from https://sloanreview.mit.edu/article/ai-and-the-need-for-speed/
  19. Stabell, C. B., & Fjeldstad, Ø. D. (1998). Configuring Value for Competitive Advantage: On Chains, Shops, and Networks. Strategic Management Journal, 19(5), 413–437. http://doi.org/10.1002/(SICI)1097-0266(199805)19:5<413::AID-SMJ946>3.3.CO;2-3.CrossRefGoogle Scholar
  20. The HFT Algo-Computers Crash FX Markets - Bert Dohmen. (2016, December 30). The HFT Algo-Computers Crash FX Markets – Bert Dohmen. Retrieved January 23, 2018, from http://bertdohmen.com/hft-algo-computers-crash-fx-markets/
  21. Trossen, D., & Fine, C. (2005). Value Chain Dynamics in the Communication Industry. MIT Communications Future Programme, MIT.Google Scholar
  22. Vargo, S. L., & Lusch, R. F. (2004). Evolving to a New Dominant Logic for Marketing. Journal of Marketing, 68(1), 1–17. https://doi.org/10.1509/jmkg.68.1.1.24036.CrossRefGoogle Scholar
  23. Vargo, S. L., & Lusch, R. F. (2008). Service-Dominant Logic: Continuing the Evolution. Journal of the Academy of Marketing Science, 36(1), 1–10. https://doi.org/10.1007/s11747-007-0069-6.CrossRefGoogle Scholar
  24. Wang, C. L., & Ahmed, P. K. (2013). The Knowledge Value Chain: A Pragmatic Knowledge Implementation Network. Handbook of Business Strategy, 6(1), 321–326. https://doi.org/10.1108/08944310510558115.CrossRefGoogle Scholar
  25. What Main Methodology Are You Using for Your Analytics, Data Mining, or Data Science Projects? Poll. (n.d.). Retrieved January 10, 2018, from https://www.kdnuggets.com/polls/2014/analytics-data-mining-data-science-methodology.html
  26. Zilis, S., & Cham, J. (2016, November). The Competitive Landscape for Machine Intelligence. Harvard Business Review. Retrieved from https://hbr.org/2016/11/the-competitive-landscape-for-machine-intelligence

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Andrzej Wodecki
    • 1
  1. 1.Warsaw University of TechnologyWarsawPoland

Personalised recommendations