Advertisement

KILT: A Modelling Approach Based on Participatory Agent-Based Simulation of Stylized Socio-Ecosystems to Stimulate Social Learning with Local Stakeholders

  • Christophe Le PageEmail author
  • Arthur PerrottonEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10798)

Abstract

A new approach is introduced under the slogan « Keep It a Learning Tool » (KILT) to emphasize the crucial need to make the purpose of the modelling process explicit when choosing the degree of complicatedness of an agent-based simulation model. We suggest that a co-design approach driven by early-stage and interactive simulation of empirical agent-based models representing stylized socio-ecosystems stimulates collective learning and, as a result, may promote the emergence of cooperative interactions among local stakeholders.

Keywords

Participatory agent-based simulation Social learning Stylized landscape Role-playing game Companion modelling 

References

  1. 1.
    Crookall, D., Martin, A., Saunders, D., Coote, A.: Human and computer involvement in simulation. Simul. Gaming 17, 345–375 (1986)Google Scholar
  2. 2.
    Bousquet, F., Barreteau, O., D’Aquino, P., Etienne, M., Boissau, S., Aubert, S., Le Page, C., Babin, D., Castella, J.-C.: Multi-agent systems and role games: collective learning processes for ecosystem management. In: Janssen, M.A. (ed.) Complexity and Ecosystem Management. The Theory and Practice of Multi-agent Systems, pp. 248–285. Edward Elgar Publishing, Cheltenham (2002)Google Scholar
  3. 3.
    Barreteau, O., Le Page, C., Perez, P.: Contribution of simulation and gaming to natural resource management issues: an introduction. Simul. Gaming 38, 185–194 (2007)CrossRefGoogle Scholar
  4. 4.
    Barreteau, O., Le Page, C., D’Aquino, P.: Role-playing games, models and negotiation processes. J. Artif. Soc. Soc. Simul. 6(2), 10 (2003)Google Scholar
  5. 5.
    Barreteau, O.: The joint use of role-playing games and models regarding negotiation processes: characterization of associations. J. Artif. Soc. Soc. Simul. 6(2), 3 (2003)Google Scholar
  6. 6.
    Le Page, C., Abrami, G., Barreteau, O., Becu, N., Bommel, P., Botta, A., Dray, A., Monteil, C., Souchère, V.: Models for sharing representations. In: Etienne, M. (ed.) Companion modelling. A participatory approach to support sustainable development, pp. 69–96. Quæ, Versailles (2011)Google Scholar
  7. 7.
    Berland, M., Rand, W.: Participatory simulation as a tool for agent-based simulation. In: Icaart 2009: Proceedings of the International Conference on Agents and Artificial Intelligence, pp. 553–557 (2009)Google Scholar
  8. 8.
    Guyot, P., Honiden, S.: Agent-based participatory simulations: merging multi-agent systems and role-playing games. J. Artif. Soc. Soc. Simul. 9(4), 8 (2006)Google Scholar
  9. 9.
    Guyot, P., Drogoul, A., Honiden, S.: Power and negotiation: lessons from agent-based participatory simulations. In: Fifth International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS-2006), pp. 27–33 (2006)Google Scholar
  10. 10.
    Wilensky, U., Stroup, W.: Learning through participatory simulations: network-based design for systems learning in classrooms. In: Proceedings of the Computer Supported Collaborative Learning Conference (CSCL 1999), pp. 667–676. Lawrence Erlbaum Associates, Mahwah (1999)Google Scholar
  11. 11.
    Wilensky, U., Stroup, W.: NetLogo HubNet Gridlock HubNet model. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL (1999)Google Scholar
  12. 12.
    Colella, V.: Participatory simulations: building collaborative understanding through immersive dynamic modeling. J. Learn. Sci. 9, 471–500 (2000)CrossRefGoogle Scholar
  13. 13.
    Boissau, S., Lan Anh, H., Castella, J.C.: The SAMBA role play game in Northern Vietnam. Mt. Res. Dev. 24, 101–105 (2004)CrossRefGoogle Scholar
  14. 14.
    Castella, J.C., Trung, T.H., Boissau, S.: Participatory simulation of land-use changes in the Northern Mountains of Vietnam: the combined use of an agent-based model, a role-playing game, and a geographic information system. Ecol. Soc. 10(1), 27 (2005)CrossRefGoogle Scholar
  15. 15.
    Le Page, C., Dray, A., Perez, P., Garcia, C.: Exploring how knowledge and communication influence natural resources management with REHAB. Simul. Gaming 47, 257–284 (2016)CrossRefGoogle Scholar
  16. 16.
    Mathevet, R., Le Page, C., Etienne, M., Lefebvre, G., Poulin, B., Gigot, G., Proréol, S., Mauchamp, A.: ButorStar: a role-playing game for collective awareness of reedbed wise use. Simul. Gaming 38, 233–262 (2007)CrossRefGoogle Scholar
  17. 17.
    Etienne, M.: SYLVOPAST a multiple target role-playing game to assess negotiation processes in silvopastoral management planning. J. Artif. Soc. Soc. Simul. 6(2), 5 (2003)Google Scholar
  18. 18.
    Rates, C.A., Mulvey, B.K., Feldon, D.F.: Promoting conceptual change for complex systems understanding: outcomes of an agent-based participatory simulation. J. Sci. Educ. Technol. 25(4), 610–627 (2016)CrossRefGoogle Scholar
  19. 19.
    Becu, N., Frascaria-Lacoste, N., Latune, J.: Distributed asymmetric simulation—enhancing participatory simulation using the concept of habitus. In: The Shift from Teaching to Learning: Individual, Collective and Organizational Learning Through Gaming Simulation, pp. 75–85 (2014)Google Scholar
  20. 20.
    Heppenstall, A., Crooks, A., See, L.M., Batty, M. (eds.): Agent-Based Models of Geographical Systems. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-90-481-8927-4CrossRefGoogle Scholar
  21. 21.
    Crooks, A.: Agent-based models and geographical information systems. In: Brunsdon, C., Singleton, A. (eds.) Geocomputation: A Practical Primer, pp. 63–77. SAGE, London (2015)Google Scholar
  22. 22.
    Ligtenberg, A., Bregt, A.K., Van Lammeren, R.: Multi-actor-based land use modelling: spatial planning using agents. Landscape Urban Plan. 56, 21–33 (2001)CrossRefGoogle Scholar
  23. 23.
    Gimblett, H.R.: Integrating Geographic Information Systems and Agent-based Modeling Techniques for Simulating Social and Ecological Processes. Oxford University Press, Oxford (2002)Google Scholar
  24. 24.
    Brown, D.G., Riolo, R., Robinson, D.T., North, M., Rand, W.: Spatial process and data models: toward integration of agent-based models and GIS. J. Geogr. Syst. 7, 25–47 (2005)CrossRefGoogle Scholar
  25. 25.
    Taillandier, P., Vo, D.-A., Amouroux, E., Drogoul, A.: GAMA: a simulation platform that integrates geographical information data, agent-based modeling and multi-scale control. In: Desai, N., Liu, A., Winikoff, M. (eds.) PRIMA 2010. LNCS (LNAI), vol. 7057, pp. 242–258. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-25920-3_17CrossRefGoogle Scholar
  26. 26.
    Langlois, P., Blanpain, B., Daudé, E.: MAGéo, une plateforme de modélisation et de simulation multi-agent pour les sciences humaines. Cybergeo Eur. J. Geogr. (2015). [In line] Systèmes, Modélisation, Géostatistiques, document 741, uploaded on 02 October 2015.  https://doi.org/10.4000/cybergeo.27236
  27. 27.
    Schlüter, M., McAllister, R.R.J., Arlinghaus, R., Bunnefeld, N., Eisenack, K., Hölker, F., Milner-Gulland, E.J., Müller, B., Nicholson, E., Quaas, M., Stöven, M.: New horizons for managing the environment: a review of coupled social-ecological systems modeling. Nat. Res. Model. 25, 219–272 (2012)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Mathevet, R., Le Page, C., Etienne, M., Poulin, B., Lefebvre, G., Cazin, F., Ruffray, X.: Des roselières et des hommes. ButorStar: un jeu de rôles pour l’aide à la gestion collective. Rev. Int. Géomatique 18, 375–395 (2008)CrossRefGoogle Scholar
  29. 29.
    Gourmelon, F., Chlous-Ducharme, F., Kerbiriou, C., Rouan, M., Bioret, F.: Role-playing game developed from a modelling processRole-playing game developed from a modelling process: A relevant participatory tool for sustainable development? A co-construction experiment in an insular biosphere reserve. Land Use Policy 32, 96–107 (2013)CrossRefGoogle Scholar
  30. 30.
    Gourmelon, F., Rouan, M., Lefevre, J.-F., Rognant, A.: Role-playing game and learning for young people about sustainable development stakes: an experiment in transferring and adapting interdisciplinary scientific knowledge. J. Artif. Soc. Soc. Simul. 14(4), 21 (2011)CrossRefGoogle Scholar
  31. 31.
    Ören, T.I.: Uses of simulation. In: Sokolowski, J.A., Banks, C.M. (eds.) Principles of Modeling and Simulation, pp. 153–179. Wiley, Hoboken (2008)Google Scholar
  32. 32.
    Sun, Z., Lorscheid, I., Millington, J.D., Lauf, S., Magliocca, N.R., Groeneveld, J., Balbi, S., Nolzen, H., Müller, B., Schulze, J., Buchmann, C.M.: Simple or complicated agent-based models? A complicated issue. Environ. Model Softw. 86, 56–67 (2016)CrossRefGoogle Scholar
  33. 33.
    Lusiana, B., van Noordwijk, M., Suyamto, D., Mulia, R., Joshi, L., Cadisch, G.: Users’ perspectives on validity of a simulation model for natural resource management. Int. J. Agric. Sustain. 9, 364–378 (2011)Google Scholar
  34. 34.
    Edmonds, B., Moss, S.: From KISS to KIDS – an ‘anti-simplistic’ modelling approach. In: Davidsson, P., Logan, B., Takadama, K. (eds.) MABS 2004. LNCS (LNAI), vol. 3415, pp. 130–144. Springer, Heidelberg (2005).  https://doi.org/10.1007/978-3-540-32243-6_11CrossRefGoogle Scholar
  35. 35.
    Grimm, V., Revilla, E., Berger, U., Jeltsch, F., Mooij, W.M., Railsback, S.F., Thulke, H.-H., Weiner, J., Wiegand, T., DeAngelis, D.L.: Pattern-oriented modeling of agent-based complex systems: lessons from ecology. Science 310, 987–991 (2005)CrossRefGoogle Scholar
  36. 36.
    Axelrod, R.: Advancing the art of simulation in the social sciences. In: Conte, R., Hegselmann, R., Terna, P. (eds.) Simulating Social Phenomena, pp. 21–40. Springer, Heidelberg (1997).  https://doi.org/10.1007/978-3-662-03366-1_2CrossRefGoogle Scholar
  37. 37.
    Kilvington, M.J.: Building capacity for social learning in environmental management, vol. Ph.D. Lincoln University, Canterbury, New Zealand (2010)Google Scholar
  38. 38.
    Reed, M., Evely, A., Cundill, G., Fazey, I., Glass, J., Laing, A., Newig, J., Parrish, B., Prell, C., Raymond, C.: What is social learning? Ecol. Soc. 15(4), r1 (2010)CrossRefGoogle Scholar
  39. 39.
    Habermas, J.: The Theory of Communicative Action, vol. I. Beacon, Boston (1984)Google Scholar
  40. 40.
    Daré, W., Van Paassen, A., Ducrot, R., Mathevet, R., Queste, J., Trébuil, G., Barnaud, C., Lagabrielle, E.: Learning about interdependencies and dynamics. In: Étienne, M. (ed.) Companion Modelling, pp. 233–262. Springer, Dordrecht (2014).  https://doi.org/10.1007/978-94-017-8557-0_10CrossRefGoogle Scholar
  41. 41.
    Bouwen, R., Taillieu, T.: Multi-party collaboration as social learning for interdependence: developing relational knowing for sustainable natural resource management. J. Community Appl. Soc. Psychol. 14, 137–153 (2004)CrossRefGoogle Scholar
  42. 42.
    Perrotton, A., de Garine Wichatitsky, M., Valls-Fox, H., Le Page, C.: My cattle and your park: co-designing a role-playing game with rural communities to promote multi-stakeholder dialogue at the edge of protected areas. Ecol. Soc. 22(1), 35 (2017)CrossRefGoogle Scholar
  43. 43.
    Hardy, P.-Y., Souchère, V., Dray, A., David, M., Sabatier, R., Kernéis, E.: Individual vs collective in public policy design, a cooperation example in the Marais Poitevin region. In: Sauvage, S., Sánchez-Pérez, J.M., Rizzoli, A.E. (eds.) 8th International Congress on Environmental Modelling and Software, Toulouse, France (2016)Google Scholar
  44. 44.
    Bommel, P., Bonnet, M.-P., Coudel, E., Haentjens, E., Kraus, C.N., Melo, G., Nasuti, S., Le Page, C.: Livelihoods of local communities in an Amazonian floodplain coping with global changes. From role-playing games to hybrid simulations to involve local stakeholders in participatory foresight study at territorial level. In: 8th International Congress on Environmental Modelling and Software, pp. 1140–1147 (2016)Google Scholar
  45. 45.
    Barnaud, C., Van Paassen, A.: Equity, power games, and legitimacy: dilemmas of participatory natural resource management. Ecol. Soc. 18(2), 21 (2013)CrossRefGoogle Scholar
  46. 46.
    Druckman, D., Ebner, N.: Onstage or behind the scenes? Relative learning benefits of simulation role-play and design. Simul. Gaming 39, 465–497 (2008)CrossRefGoogle Scholar
  47. 47.
    Muro, M., Jeffrey, P.: A critical review of the theory and application of social learning in participatory natural resource management processes. J. Environ. Plan. Manag. 51, 325–344 (2008)CrossRefGoogle Scholar
  48. 48.
    Scholz, G.: How participatory methods facilitate social learning in natural resource management. An exploration of group interaction using interdisciplinary syntheses and agent-based modeling. Osnabrück, Germany (2016)Google Scholar
  49. 49.
    Vennix, J.A.M.: Group Model Building: Facilitating Team Learning Using System Dynamics. Wiley, Chichester (1996)Google Scholar
  50. 50.
    Mathevet, R., Etienne, M., Lynam, T., Calvet, C.: Water management in the Camargue Biosphere Reserve: insights from comparative mental models analysis. Ecol. Soc. 16(1), 43 (2011)CrossRefGoogle Scholar
  51. 51.
    Scholz, G., Austermann, M., Kaldrack, K., Pahl-Wostl, C.: Evaluating group model building exercises: a method for comparing externalized mental models and group models. Syst. Dyn. Rev. 31, 28–45 (2015)CrossRefGoogle Scholar
  52. 52.
    Black, L.J.: When visuals are boundary objects in system dynamics work. Syst. Dyn. Rev. 29, 70–86 (2013)CrossRefGoogle Scholar
  53. 53.
    Black, L.J., Andersen, D.F.: Using visual representations as boundary objects to resolve conflict in collaborative model-building approaches. Syst. Res. Behav. Sci. 29, 194–208 (2012)CrossRefGoogle Scholar
  54. 54.
    Wilensky, U., Papert, S.: Restructurations: reformulations of knowledge disciplines through new representational forms. In: Constructionism 2010, Paris (2010)Google Scholar
  55. 55.
    Schlüter, M., Müller, B., Frank, K.: How to use models to improve analysis and governance of social-ecological systems-the reference frame MORE (2013)Google Scholar
  56. 56.
    Schusler, T.M., Decker, D.J., Pfeffer, M.J.: Social learning for collaborative natural resource management. Soc. Nat. Res. 16, 309–326 (2003)CrossRefGoogle Scholar
  57. 57.
    Brugnach, M.: From prediction to learning: the implications of changing the purpose of the modelling activity. In: Proceedings of the iEMSs Fourth Biennial Meeting: International Congress on Environmental Modelling and Software (iEMSs 2010). International Environmental Modelling and Software Society, pp. 547–553 (2010)Google Scholar
  58. 58.
    de Sartre, X.A., Petit, O.: L’interdisciplinarité comme méthode de compréhension des interactions entre natures et sociétés. In: Hubert, B., Mathieu, N. (eds.) Interdisciplinarités entre Natures et Sociétés, pp. 367–386. P.I.E. Peter Lang, Bruxelles (2016)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CIRAD, UPR GreenMontpellierFrance
  2. 2.CIRAD, UPR Green, University of BrasiliaBrasíliaBrazil
  3. 3.CIRAD, UMR AstreMontpellierFrance
  4. 4.Center for Applied Social SciencesUniversity of ZimbabweHarareZimbabwe

Personalised recommendations