Advertisement

Fog Computing and Data as a Service: A Goal-Based Modeling Approach to Enable Effective Data Movements

  • Pierluigi Plebani
  • Mattia SalnitriEmail author
  • Monica Vitali
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10816)

Abstract

Data as a Service (DaaS) organizes the data management life-cycle around the Service Oriented Computing principles. Data providers are supposed to take care not only of performing the life-cycle phases, but also of the data movements from where data are generated, to where they are stored, and, finally, consumed. Data movements become more frequent especially in Fog environments, i.e., where data are generated by devices at the edge of the network (e.g., sensors), processed on the cloud, and consumed at the customer premises.

This paper proposes a goal-based modeling approach for enabling effective data movements in Fog environments. The model considers the requirements of several customers to move data at the right time and in the right place, taking into account the heterogeneity of the resources involved in the data management.

Keywords

Data movement Fog Computing Decision system Goal-based model 

Notes

Acknowledgments

DITAS project is funded by the European Union’s Horizon 2020 research and innovation programme under grant agreement RIA 731945.

References

  1. 1.
    Agrawal, D., Abbadi, A.E., Emekci, F., Metwally, A.: Database management as a service: challenges and opportunities. In: Proceedings of IEEE International Conference on Data Engineering, pp. 1709–1716 (2009)Google Scholar
  2. 2.
    Amarasinghe, S.P., Lam, M.S.: Communication optimization and code generation for distributed memory machines. SIGPLAN Not. 28(6), 126–138 (1993)CrossRefGoogle Scholar
  3. 3.
    Amyot, D., Mussbacher, G.: User requirements notation: the first ten years, the next ten years. JSW 6(5), 747–768 (2011)CrossRefGoogle Scholar
  4. 4.
    Aydemir, F.B., Giorgini, P., Mylopoulos, J.: Multi-objective risk analysis with goal models. In: Proceedings of the Research Challenges in Information Science, pp. 1–10. IEEE (2016)Google Scholar
  5. 5.
    Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the Internet of Things. In: Proceedings of the MCC Workshop on Mobile Cloud Computing, pp. 13–16 (2012)Google Scholar
  6. 6.
    Bouguettaya, A., et al.: A service computing manifesto: the next 10 years. Commun. ACM 60(4), 64–72 (2017). http://doi.acm.org/10.1145/2983528CrossRefGoogle Scholar
  7. 7.
    Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-functional Requirements in Software Engineering. International Series in Software Engineering, vol. 5. Springer, New York (2012).  https://doi.org/10.1007/978-1-4615-5269-7CrossRefzbMATHGoogle Scholar
  8. 8.
    D’Andria, F., Field, D., Kopaneli, A., Kousiouris, G., Garcia-Perez, D., Pernici, B., Plebani, P.: Data movement in the Internet of Things domain. In: Dustdar, S., Leymann, F., Villari, M. (eds.) ESOCC 2015. LNCS, vol. 9306, pp. 243–252. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24072-5_17CrossRefGoogle Scholar
  9. 9.
    Francesconi, F., Dalpiaz, F., Mylopoulos, J.: Models for strategic planning: applying TBIM to the Montreux Jazz Festival case study. In: 2015 IEEE 9th International Conference on Research Challenges in Information Science (RCIS), pp. 229–238. IEEE (2015)Google Scholar
  10. 10.
    Gembicki, F., Haimes, Y.: Approach to performance and sensitivity multiobjective optimization: the goal attainment method. IEEE Trans. Autom. control 20, 769–771 (1975)CrossRefGoogle Scholar
  11. 11.
    Giorgini, P., Mylopoulos, J., Nicchiarelli, E., Sebastiani, R.: Formal reasoning techniques for goal models. J. Data Seman. 1(1), 1–20 (2003)zbMATHGoogle Scholar
  12. 12.
    Horkoff, J., Barone, D., Jiang, L., Yu, E., Amyot, D., Borgida, A., Mylopoulos, J.: Strategic business modeling: representation and reasoning. Softw. Syst. Model. 13(3), 1015–1041 (2014)CrossRefGoogle Scholar
  13. 13.
    Horkoff, J., Borgida, A., Mylopoulos, J., Barone, D., Jiang, L., Yu, E., Amyot, D.: Making data meaningful: the business intelligence model and its formal semantics in description logics. In: Meersman, R., et al. (eds.) OTM 2012. LNCS, vol. 7566, pp. 700–717. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33615-7_17CrossRefGoogle Scholar
  14. 14.
    Horkoff, J., Yu, E.: Interactive goal model analysis for early requirements engineering. Requir. Eng. 21(1), 29–61 (2016)CrossRefGoogle Scholar
  15. 15.
    Leighton, F.T., Lewin, D.M.: Content delivery network using edge-of-network servers for providing content delivery to a set of participating content providers, 22 April 2003Google Scholar
  16. 16.
    Letier, E., Van Lamsweerde, A.: Reasoning about partial goal satisfaction for requirements and design engineering. ACM SIGSOFT Soft. Eng. Notes. 29, 53–62 (2004)CrossRefGoogle Scholar
  17. 17.
    Lu, P., Zhang, L., Liu, X., Yao, J., Zhu, Z.: Highly efficient data migration and backup for big data applications in elastic optical inter-data-center networks. IEEE Netw. 29(5), 36–42 (2015)CrossRefGoogle Scholar
  18. 18.
    MacKenzie, C.M., Laskey, K., McCabe, F., Brown, P.F., Metz, R.: Reference model for service oriented architecture 1.0. Technical report, OASIS (2006)Google Scholar
  19. 19.
    OpenFog Consortium Architecture Working Group: OpenFog Architecture Overview, February 2016. http://www.openfogconsortium.org/ra
  20. 20.
    Plebani, P., Garcia-Perez, D., Anderson, M., Bermbach, D., Cappiello, C., Kat, R.I., Pallas, F., Pernici, B., Tai, S., Vitali, M.: Information logistics and Fog computing: the DITAS approach. In: Proceedings of the Forum and Doctoral Consortium at CAISE 2017, pp. 129–136 (2017)Google Scholar
  21. 21.
    Sebastiani, R., Giorgini, P., Mylopoulos, J.: Simple and minimum-cost satisfiability for goal models. In: Persson, A., Stirna, J. (eds.) CAiSE 2004. LNCS, vol. 3084, pp. 20–35. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-25975-6_4CrossRefGoogle Scholar
  22. 22.
    Vitali, M., Pernici, B., O’Reilly, U.M.: Learning a goal-oriented model for energy efficient adaptive applications in data centers. Inf. Sci. 319, 152–170 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Pierluigi Plebani
    • 1
  • Mattia Salnitri
    • 1
  • Monica Vitali
    • 1
  1. 1.Dipartimento di Elettronica Informazione e BioingegneriaPolitecnico di MilanoMilanoItaly

Personalised recommendations