Advertisement

Artificial Viscosity for Correction Procedure via Reconstruction Using Summation-by-Parts Operators

  • Jan Glaubitz
  • Philipp ÖffnerEmail author
  • Hendrik Ranocha
  • Thomas Sonar
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 237)

Abstract

We focus on spectral viscosity in the framework of correction procedure via reconstruction (CPR, also known as flux reconstruction) using summation-by-parts (SBP) operators. In Ranocha et al. (J Comput Phys 342:13–28, 2017), [10], Ranocha et al. (J Comput Phys 311:299–328, 2016), [9], the authors used SBP operators in the CPR framework and were able to recover and extend some results of Gassner (SIAM J Sci Comput 35(3):A1233–A1253, 2013), [1] and Vincent et al. (Comput Methods Appl Mech Eng 296:248–272, 2015), [12]. In this contribution, we introduce a viscosity term for a scalar conservation law and analyse this new setting in the context of CPR methods using SBP operators. We derive conditions on the viscosity term and the basis, which allow us to prove conservation and stability in the semidiscrete setting. Next, we extend semidiscrete stability results to fully discrete stability by an explicit Euler method. Numerical tests are presented, which verify our results (Ranocha, Enhancing stability of correction procedure via reconstruction using summation-by-parts operators I: artificial dissipation, 2016, [8]). This is an extension of the contribution Correction Procedure via Reconstruction Using Summation-by-parts Operators by Hendrik Ranocha (J Comput Phys 342:13–28, 2017), [10], Ranocha et al. (J Comput Phys 311:299–328, 2016), [9].

Keywords

Artificial dissipation Summation-by-parts Correction procedure via reconstruction Spectral viscosity Flux reconstruction 

Mathematics Subject Classification (2010)

65M12 65M60 65M70 

References

  1. 1.
    G.J. Gassner, A skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP-SAT finite difference methods. SIAM J. Sci. Comput. 35(3), A1233–A1253 (2013)MathSciNetCrossRefGoogle Scholar
  2. 2.
    J. Glaubitz, H. Ranocha, P. Öffner, T. Sonar, Enhancing stability of correction procedure via reconstruction using summation-by-parts operators II: modal filtering (2016). SubmittedGoogle Scholar
  3. 3.
    H.T. Huynh, A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods. AIAA paper 2007-4079 (2007)Google Scholar
  4. 4.
    H. Ma, Chebyshev-Legendre spectral viscosity method for nonlinear conservation laws. SIAM J. Numer. Anal. 35(3), 869–892 (1998)MathSciNetCrossRefGoogle Scholar
  5. 5.
    H. Ma, Chebyshev-Legendre super spectral viscosity method for nonlinear conservation laws. SIAM J. Numer. Anal. 35(3), 893–908 (1998)MathSciNetCrossRefGoogle Scholar
  6. 6.
    K. Mattsson, M. Svärd, J. Nordström, Stable and accurate artificial dissipation. J. Sci. Comput. 21(1), 57–79 (2004)MathSciNetCrossRefGoogle Scholar
  7. 7.
    J. Nordström, Conservative finite difference formulations, variable coefficients, energy estimates and artificial dissipation. J. Sci. Comput. 29(3), 375–404 (2006)MathSciNetCrossRefGoogle Scholar
  8. 8.
    H. Ranocha, J. Glaubitz, P. Öffner, T. Sonar, Enhancing stability of correction procedure via reconstruction using summation-by-parts operators I: artificial dissipation (2016). SubmittedGoogle Scholar
  9. 9.
    H. Ranocha, P. Öffner, T. Sonar, Summation-by-parts operators for correction procedure via reconstruction. J. Comput. Phys. 311, 299–328 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    H. Ranocha, P. Öffner, T. Sonar, Extended skew-symmetric form for summation-by-parts operators and varying Jacobians. J. Comput. Phys. 342, 13–28 (2017). (Accepted)MathSciNetCrossRefGoogle Scholar
  11. 11.
    E. Tadmor, Convergence of spectral methods for nonlinear conservation laws. SIAM J. Numer. Anal. 26(1), 30–44 (1989)MathSciNetCrossRefGoogle Scholar
  12. 12.
    P.E. Vincent, A.M. Farrington, F.D. Witherden, A. Jameson, An extended range of stable-symmetric-conservative flux reconstruction correction functions. Comput. Methods Appl. Mech. Eng. 296, 248–272 (2015)MathSciNetCrossRefGoogle Scholar
  13. 13.
    J. von Neumann, R.D. Richtmyer, A method for the numerical calculation of hydrodynamic shocks. J. Appl. Phys. 21(3), 232–237 (1950)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jan Glaubitz
    • 1
  • Philipp Öffner
    • 1
    Email author
  • Hendrik Ranocha
    • 1
  • Thomas Sonar
    • 1
  1. 1.Institute Computational Mathematics, TU BraunschweigBraunschweigGermany

Personalised recommendations