A Hyperbolic Model of Nonequilibrium Phase Change at a Sharp Liquid–Vapor Interface

  • Matthieu AncellinEmail author
  • Laurent Brosset
  • Jean-Michel Ghidaglia
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 236)


Our aim is to simulate numerically the impact of a breaking wave on a wall when phase change between liquid and gas happens (Ancellin et al. Proceedings of the 26th International Offshore and Polar Engineering Conference 886–893, 2016 [2]). We thus need to model two compressible phases separated by a sharp interface allowing mass exchange. It leads us to extend the Euler conservation equations to a hyperbolic system of balance laws including nonequilibrium phase change. For real fluids, when the value of the latent heat is high, there might be no solution to the Riemann problem. However we are able to discretize it in the finite volume framework using the Roe-type scheme of Ghidaglia et al. (Eur J Mech B/Fluids 20:841–867, 2001 [4]), the numerical diffusion playing the stabilizing role of the thermal diffusion.


Two-phase flow Phase change Hyperbolic System of Conservation Laws Non conservative product Sloshing 


  1. 1.
    M. Ancellin, Sur la modélisation physique et numérique du changement de phase interfacial lors d’impacts de vagues, PhD thesis, École Normale Supérieure Paris-Saclay, 2017Google Scholar
  2. 2.
    M. Ancellin, L. Brosset, J.-M. Ghidaglia, Preliminary numerical results on the influence of phase change on wave impacts loads, in Proceedings of the 26th International Offshore and Polar Engineering Conference, vol. 3 (ISOPE, 2016) pp. 886–893Google Scholar
  3. 3.
    J.-P. Braeunig, L. Brosset, F. Dias, J.-M. Ghidaglia, Phenomenological study of liquid impacts through 2D compressible two-fluid numerical simulations, in Proceedings of the 19th International Offshore and Polar Engineering Conference, vol. 3 (ISOPE, 2009), pp. 21–29Google Scholar
  4. 4.
    J.-M. Ghidaglia, A. Kumbaro, G. Le Coq, On the numerical solution to two fluid models via a cell centered finite volume method. Eur. J. Mech. B/Fluids 20(6), 841–867 (2001)MathSciNetCrossRefGoogle Scholar
  5. 5.
    P.-M. Guilcher, Y. Jus, N. Couty, L. Brosset, Y.-M. Scolan, D. Le Touzé. 2D simulations of breaking wave impacts on a flat rigid wall – part 1: influence of the wave shape, in Proceedings of the 24th International Offshore and Polar Engineering Conference, vol. 3 (ISOPE, 2014), pp. 232–245Google Scholar
  6. 6.
    M. Hantke, W. Dreyer, G. Warnecke, Exact solutions to the Riemann problem for compressible isothermal Euler equations for two-phase flows with and without phase transition. Q. Appl. Math. 71(3), 509–540 (2013)MathSciNetCrossRefGoogle Scholar
  7. 7.
    S. Hardt, F. Wondra, Evaporation model for interfacial flows based on a continuum-field representation of the source terms. J. Comput. Phys. 227(11), 5871–5895 (2008)MathSciNetCrossRefGoogle Scholar
  8. 8.
    S. Le Martelot, R. Saurel, B. Nkonga, Towards the direct numerical simulation of nucleate boiling flows. Int. J. Multiph. Flow 66, 62–78 (2014)MathSciNetCrossRefGoogle Scholar
  9. 9.
    C. Rohde, C. Zeiler, A relaxation riemann solver for compressible two-phase flow with phase transition and surface tension. Appl. Numer. Math. 95, 267–279 (2014)MathSciNetCrossRefGoogle Scholar
  10. 10.
    R. Saurel, F. Petitpas, R. Abgrall, Modelling phase transition in metastable liquids: application to cavitating and flashing flows. J. Fluid Mech. 607, 313–350 (2008)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Matthieu Ancellin
    • 1
    • 2
    Email author
  • Laurent Brosset
    • 1
  • Jean-Michel Ghidaglia
    • 1
    • 2
  1. 1.GTT (Gaztransport & Technigaz)Saint-Rémy-lès-ChevreuseFrance
  2. 2.CMLA ENS Cachan CNRS Université Paris-SaclayCachanFrance

Personalised recommendations