Effective Boundary Conditions for Turbulent Compressible Flows over a Riblet Surface

  • G. DeolmiEmail author
  • W. Dahmen
  • S. Müller
  • M. Albers
  • P. S. Meysonnat
  • W. Schröder
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 236)


In Achdou et al. (J Comp Phys 147:187–218, 1998, [9]), Anderson (Hypersonic and High Temperature Gas Dynamics, 1989, [10]), a numerical scheme is developed to accurately capture the microscale effects of periodic spanwise roughness at essentially the cost of solving twice a laminar problem on a smooth domain at affordable resolution. In the present work, this methodology is extended to the turbulent regime modeled by the compressible Reynolds-averaged Navier–Stokes (RANS) equations using a one-equation model. As an application, a subsonic flow over a flat plate with partially embedded periodic roughness, i.e., riblets, is considered.


Multiscale modeling Effective boundary conditions Navier wall law Compressible flow 



This work has been supported in part by the German Research Council (DFG) within the DFG Research Unit FOR 1779, by grant DA 117/22-1 and the DFG Collaborative Research Center SFB-TR-40, TP A1, and by the Excellence Initiative of the German Federal and State Governments (RWTH Aachen Distinguished Professorship, Graduate School AICES). Furthermore, the computing resources made available by the High-Performance Computing Center in Stuttgart (HLRS) along with the continued support are gratefully acknowledged.


  1. 1.
    Y. Achdou, O. Pironneau, F. Valentin, Effective boundary conditions for laminar flows over periodic rough boundaries. J. Comp. Phys. 147, 187–218 (1998)MathSciNetCrossRefGoogle Scholar
  2. 2.
    J.D. Anderson, Hypersonic and High Temperature Gas Dynamics. McGraw-Hill Series in Aeronautical and Aerospace Engineering (1989)Google Scholar
  3. 3.
    W. Bangerth, R. Hartmann, G. Kanschat, deal.II—a general-purpose object-oriented finite element library. ACM Trans. Math. Softw. 33(4), 24/1–24/27 (2007)Google Scholar
  4. 4.
    D.W. Bechert, M. Bruse, W. Hage, R. Meyer, Biological surfaces and their technological application—laboratory and flight experiments on drag reduction and separation control. AIAA Paper 97-1960 (1997)Google Scholar
  5. 5.
    A. Bensoussan, J.L. Lions, G. Papanicolaou, Asymptotic Analysis for Periodic Structures (North-Holland, Amsterdam, 1978)zbMATHGoogle Scholar
  6. 6.
    J. Boris, F. Grinstein, E. Oran, R. Kolbe, New insights into large Eddy simulation. Fluid Dyn. Res. 10(4–6), 199 (1992)CrossRefGoogle Scholar
  7. 7.
    F. Bramkamp, Ph Lamby, S. Müller, An adaptive multiscale finite volume solver for unsteady and steady state flow computations. J. Comp. Phys. 197(2), 460–490 (2004)MathSciNetCrossRefGoogle Scholar
  8. 8.
    M. Bruse, D.W. Bechert, J.G.T.V. der Hoeven, W. Hage, G. Hoppe, in Near-Wall Turbulent Flows, Experiments with Conventional and with Novel Adjustable Drag-reducing Surfaces, ed. by R.M. So, C.G. Speziale, B.E. Launder (Elsevier, Amsterdam, The Netherlands, 1993), pp. 719–738Google Scholar
  9. 9.
    G. Deolmi, W. Dahmen, S. Müller, Effective boundary conditions for compressible flows over rough surface. Math. Models Methods Appl. Sci. 25, 1257–1297 (2015)MathSciNetCrossRefGoogle Scholar
  10. 10.
    G. Deolmi, W. Dahmen, S. Müller, Effective boundary conditions: a general strategy and application to compressible flows over rough boundaries. Commun. Comput. Phys. 21(2), 358–400 (2017)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Y. Efendiev, T.Y. Hou, Multiscale Finite Element Methods: Theory and Applications (Springer, 2009)Google Scholar
  12. 12.
    W.E.B. Engquist, The heterogeneous multiscale methods. Commun. Math. Sci. 1(1), 87–132 (2003)Google Scholar
  13. 13.
    W.E.B. Engquist, The heterogeneous multi-scale method for homogenization problems, in Multiscale Methods in Science and Engineering. Lecture Notes Computer Sciences Engineering, vol. 44. (Springer, Berlin, 2005), pp. 89–110Google Scholar
  14. 14.
    E. Fares, W. Schröder, A general one-equation turbulence model for free shear andwall-bounded flows. Flow Turbul. Combust. 73(3–4), 187–215 (2005)CrossRefGoogle Scholar
  15. 15.
    E. Friedmann, The optimal shape of riblets in the viscous sublayer. J. Math. Fluid Mech. 12, 243–265 (2010)MathSciNetCrossRefGoogle Scholar
  16. 16.
    E. Friedmann, T. Richter, Optimal microstructures drag reducing mechanism of riblets. J. Math. Fluid Mech. 13, 429–447 (2011)MathSciNetCrossRefGoogle Scholar
  17. 17.
    M. Itoh, S. Tamano, R. Igushi, K. Yokota, N. Akino, R. Hino, S. Kubo, Turbulent drag reduction by the seal fur surface. Phys. Fluids 18, 065102 (2006)CrossRefGoogle Scholar
  18. 18.
    W. Jaeger, A. Mikelic, On the roughness-induced effective boundary conditions for an incompressible viscous flow. J. Differ. Equ. 170, 96–122 (2001)MathSciNetCrossRefGoogle Scholar
  19. 19.
    W. Jaeger, A. Mikelic, Couette flows over a rough boundary and drag reduction. Commun. Math. Phys. 232, 429–455 (2003)MathSciNetCrossRefGoogle Scholar
  20. 20.
    V. Jikov, S. Kozlov, O. Oleinik, Homogenization of Differential Operators and Integral Functionals (Springer, Berlin, 1995)zbMATHGoogle Scholar
  21. 21.
    J. Kevorkian, J.D. Cole, Perturbation Methods in Applied Mathematics. Applied Mathematical Sciences, vol. 34 (Springer-Verlag, New York-Heidelberg-Berlin, 1981)Google Scholar
  22. 22.
    S. Klumpp, M. Meinke, W. Schröder, Numerical simulation of riblet controlled spatial transition in a zero-pressure-gradient boundary layer. Flow Turbul. Combust. 85(1), 57–71 (2010)CrossRefGoogle Scholar
  23. 23.
    S.-J. Lee, Y.-G. Jang, Control of flow around a NACA 0012 airfoil with a micro-riblet film. J. Fluids Struct. 20, 659–672 (2005)CrossRefGoogle Scholar
  24. 24.
    M.-S. Liou, C. Steffen, A new flux splitting scheme. J. Comput. Phys. 107, 23–39 (1993)MathSciNetCrossRefGoogle Scholar
  25. 25.
    M. Meinke, W. Schröder, E. Krause, T. Rister, A comparison of second-and sixth-order methods for large-eddy simulations. Comp. Fluids 31(4), 695–718 (2002)CrossRefGoogle Scholar
  26. 26.
    W.-E. Reif, A. Dinkelacker, Hydrodynamics of the squamation in fast swimming sharks. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 164, 184–187 (1982)Google Scholar
  27. 27.
    B. Roidl, M. Meinke, W. Schröder, A zonal RANS/LES method for compressible flows. Comp. Fluids 67, 1–15 (2012)MathSciNetCrossRefGoogle Scholar
  28. 28.
    P.R. Spalart, S.R. Allmaras, A one-equation turbulence model for aerodynamic flows. AIAA paper 92-0439 (1992)Google Scholar
  29. 29.
    L. Tartar, The General Theory of Homogenization. A Personalized Introduction. Lecture Notes of the Unione Matematica Italiana, vol. 7. (Springer, Berlin; UMI, Bologna, 2009)Google Scholar
  30. 30.
    P.R. Viswanath, Aircraft viscous drag reduction using riblets. Prog. Aerosp. Sci. 38, 571–600 (2002)CrossRefGoogle Scholar
  31. 31.
    D.C. Wilcox, Turbulence Modeling for CFD, 1st edn. (DCW Industries Inc, La Canada CA, 1993)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • G. Deolmi
    • 1
    Email author
  • W. Dahmen
    • 1
  • S. Müller
    • 1
  • M. Albers
    • 2
  • P. S. Meysonnat
    • 2
  • W. Schröder
    • 2
  1. 1.Institut für Geometrie und Praktische Mathematik, RWTH AachenAachenGermany
  2. 2.Aerodynamisches Institut Aachen, RWTH AachenAachenGermany

Personalised recommendations