Chemotaxis and Haptotaxis on Cellular Level

  • A. Brunk
  • N. Kolbe
  • N. SfakianakisEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 236)


Chemotaxis and haptotaxis have been a main theme in the macroscopic study of bacterial and cellular motility. In this work, we use a successful model that describes cellular motility and investigate the influence these processes have on the shape and motility of fast migrating cells. We note that, despite the biological and modelling differences of chemotaxis and haptotaxis, the cells exhibit many similarities in their migration. In particular, after an initial adjustment phase, the cells obtain a stable shape, similar in both cases, and move with constant velocity.


Cell motility Lamellipodium Chemotaxis Haptotaxis 


  1. 1.
    F. Gittes, B. Mickey, J. Nettleton, J. Howard, Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J. Cell Biol. 120(4), 923–34 (1993)CrossRefGoogle Scholar
  2. 2.
    H.P. Grimm, A.B. Verkhovsky, A. Mogilner, J.-J. Meister, Analysis of actin dynamics at the leading edge of crawling cells: implications for the shape of keratocytes. Eur. Biophys. J. 32, 563–577 (2003)CrossRefGoogle Scholar
  3. 3.
    M. Iijima, Y.E. Huang, P. Devreotes, Temporal and spatial regulation of chemotaxis. Dev. Cell 3(4), 469–478 (2002)CrossRefGoogle Scholar
  4. 4.
    N. Kolbe, J. Katuchová, N. Sfakianakis, N. Hellmann, M. Lukáčová-Medvid’ová, A study on time discretization and adaptive mesh refinement methods for the simulation of cancer invasion : the urokinase model. Appl. Math. Comput. 273, 353–376 (2016)MathSciNetGoogle Scholar
  5. 5.
    F. Li, S.D. Redick, H.P. Erickson, V.T. Moy, Force measurements of the \(\alpha 5\beta 1\) integrin-fibronectin interaction. Biophys. J. 84(2), 1252–1262 (2003)Google Scholar
  6. 6.
    A. Manhart, D. Oelz, C. Schmeiser, N. Sfakianakis, An extended filament based lamellipodium: model produces various moving cell shapes in the presence of chemotactic signals. J. Theor. Biol. 382, 244–258 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    A. Manhart, D. Oelz, C. Schmeiser, N. Sfakianakis, Numerical treatment of the filament based lamellipodium model (fblm), Book Chapter in Modelling Cellular Systems (2016)Google Scholar
  8. 8.
    A.F. Oberhauser, C. Badilla-Fernandez, M. Carrion-Vazquez, J.M. Fernandez, The mechanical hierarchies of fibronectin observed with single-molecule AFM. J. Mol. Biol. 319(2), 433–47 (2002)CrossRefGoogle Scholar
  9. 9.
    D. Oelz, C. Schmeiser, J.V. Small, Modeling of the actin-cytoskeleton in symmetric lamellipodial fragments. Cell Adhes. Migr. 2, 117–126 (2008)CrossRefGoogle Scholar
  10. 10.
    I.G. Peace, M.A.J. Chaplain, P. Schofield, A. Anderson, S.F. Hubbard, Chemotaxis-induced spatio-temporal heterogeneity in multi-species host-parasitoid systems. J. Math. Biol. 55(3), 365–388 (2007)MathSciNetCrossRefGoogle Scholar
  11. 11.
    E.T. Roussos, J.S. Condeelis, A. Patsialou, Chemotaxis in cancer. Nat. Rev. Cancer 11(8), 573–587 (2011)CrossRefGoogle Scholar
  12. 12.
    N. Sfakianakis, N. Kolbe, N. Hellmann, M. Lukáčová-Medvid’ová, A multiscale approach to the migration of cancer stem cells: mathematical modelling and simulations. Bull. Math. Biol. 79, 209–235 (2017)MathSciNetCrossRefGoogle Scholar
  13. 13.
    J.V. Small, G. Isenberg, J.E. Celis, Polarity of actin at the leading edge of cultured cells. Nature 272, 638–639 (1978)CrossRefGoogle Scholar
  14. 14.
    J.V. Small, T. Stradal, E. Vignal, K. Rottner, The lamellipodium: where motility begins. Trends Cell Biol. 12(3), 112–20 (2002)CrossRefGoogle Scholar
  15. 15.
    T.M. Svitkina, A.B. Verkhovsky, K.M. McQuade, G.G. Borisy, Analysis of the actin-myosin II system in fish epidermal keratocytes: mechanism of cell body translocation. J. Cell Biol. 139(2), 397–415 (1997)CrossRefGoogle Scholar
  16. 16.
    A.B. Verkhovsky, T.M. Svitkina, G.G. Borisy, Self-polarisation and directional motility of cytoplasm. Curr. Biol. 9(1), 11–20 (1999)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Mathematics, Johannes Gutenberg-UniversityMainzGermany
  2. 2.Institute of Applied Mathematics, University of HeidelbergHeidelbergGermany

Personalised recommendations