Skip to main content

The Sharp-Interface Limit for the Navier–Stokes–Korteweg Equations

  • Conference paper
  • First Online:
  • 1255 Accesses

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 236))

Abstract

We investigate the sharp-interface limit for the Navier–Stokes–Korteweg model, which is an extension of the compressible Navier–Stokes equations. By means of compactness arguments, we show that solutions of the Navier–Stokes–Korteweg equations converge to solutions of a physically meaningful free-boundary problem. Assuming that an associated energy functional converges in a suitable sense, we obtain the sharp-interface limit at the level of weak solutions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. H. Abels, Existence of weak solutions for a diffuse interface model for viscous, incompressible fluids with general densities. Commun. Math. Phys. 289(1), 45–73 (2009)

    Article  MathSciNet  Google Scholar 

  2. L. Ambrosio, N. Fusco, D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems (Clarendon Press, Oxford, 2000)

    MATH  Google Scholar 

  3. S. Benzoni-Gavage, R. Danchin, S. Descombes, Well-posedness of one-dimensional Korteweg models. Electron. J. Differ. Equ. 59, 1–35 (2006)

    MathSciNet  MATH  Google Scholar 

  4. S. Benzoni-Gavage, R. Danchin, S. Descombes, On the well-posedness for the Euler–Korteweg model in several space dimensions. Indiana Univ. Math. J. 56(4), 1499–1579 (2007)

    Article  MathSciNet  Google Scholar 

  5. D. Bresch, B. Desjardins, C.K. Lin, On some compressible fluid models: Korteweg, lubrication, and shallow water systems. Commun. Partial Differ. Equ. 28(3–4), 843–868 (2003)

    Article  MathSciNet  Google Scholar 

  6. X. Chen, Global asymptotic limit of solutions of the Cahn–Hilliard equation. J. Differ. Geom. 44(2), 262–311 (1996)

    Article  MathSciNet  Google Scholar 

  7. R. Danchin, B. Desjardins, Existence of solutions for compressible fluid models of Korteweg type. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 18(1), 97–133 (2001)

    Article  MathSciNet  Google Scholar 

  8. J. Daube, Sharp-Interface Limit for the Navier–Stokes–Korteweg Equations. Ph.D. thesis, University of Freiburg (2016). https://freidok.uni-freiburg.de/data/11679

  9. R.J. DiPerna, P.L. Lions, Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98(3), 511–547 (1989)

    Article  MathSciNet  Google Scholar 

  10. E. Feireisl, A. Novotný, Singular Limits in Thermodynamics of Viscous Fluids (Springer Science & Business Media, Berlin, 2009)

    Book  Google Scholar 

  11. B. Haspot, Existence of global weak solution for compressible fluid models of Korteweg type. J. Math. Fluid Mech. 13(2), 223–249 (2011)

    Article  MathSciNet  Google Scholar 

  12. H. Hattori, D. Li, The existence of global solutions to a fluid dynamic model for materials for Korteweg type. J. Partial Differ. Equ. 9(4), 323–342 (1996)

    MathSciNet  MATH  Google Scholar 

  13. K. Hermsdörfer, C. Kraus, D. Kröner, Interface conditions for limits of the Navier–Stokes–Korteweg model. Interfaces Free Bound. 13(2), 239–254 (2011)

    Article  MathSciNet  Google Scholar 

  14. M. Köhne, J. Prüss, M. Wilke, Qualitative behaviour of solutions for the two-phase Navier–Stokes equations with surface tension. Math. Ann. 356(2), 737–792 (2013)

    Article  MathSciNet  Google Scholar 

  15. D.J. Korteweg, Sur la forme que prennent les équations du mouvement des fluides si l’on tient compte des forces capillaires causées par des variations de densité considérables mais continues et sur la théorie de la capillarité dans l’hypothèse d’une variation continue de la densité. Arch. Néerl. 2(6), 1–24 (1901)

    MATH  Google Scholar 

  16. M. Kotschote, Strong solutions for a compressible fluid model of Korteweg type. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 25(4), 679–696 (2008)

    Article  MathSciNet  Google Scholar 

  17. M. Kotschote, Strong well-posedness for a Korteweg-type model for the dynamics of a compressible non-isothermal fluid. J. Math. Fluid Mech. 12(4), 473–484 (2010)

    Article  MathSciNet  Google Scholar 

  18. S. Luckhaus, L. Modica, The Gibbs-Thompson relation within the gradient theory of phase transitions. Arch. Ration. Mech. Anal. 107(1), 71–83 (1989)

    Article  MathSciNet  Google Scholar 

  19. J. Simon, Compact sets in the space \(L^p(0, T;B)\). Ann. Math. Pura Appl. 146(4), 65–96 (1987)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Helmut Abels or Johannes Daube .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abels, H., Daube, J., Kraus, C., Kröner, D. (2018). The Sharp-Interface Limit for the Navier–Stokes–Korteweg Equations. In: Klingenberg, C., Westdickenberg, M. (eds) Theory, Numerics and Applications of Hyperbolic Problems I. HYP 2016. Springer Proceedings in Mathematics & Statistics, vol 236. Springer, Cham. https://doi.org/10.1007/978-3-319-91545-6_1

Download citation

Publish with us

Policies and ethics