Moral Disengagement in Social Media Generated Big Data

  • Markus Beckmann
  • Christian W. ScheinerEmail author
  • Anica Zeyen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10913)


Big data raises manifold ethical questions. While there is a certain consensus on general principles for addressing these issues, little is known about when and why decision-makers display such ethical conduct or opt for unethical behavior with regard to collecting, storing, analyzing, or using big data. To address this research gap, we draw on the concept of moral disengagement. Moral disengagement describes psychological mechanisms by which individuals rationalize and thus disengage themselves from unethical conduct. We develop a theoretical model in which the motivation for monetary benefits as well as the motivation for hedonic benefits is set into relation to moral disengagement and the tendency to make unethical decisions in the context of social media generated big data. Our model spells out four sets of testable propositions that invite further research.


Moral disengagement Big data Intrinsic motives Extrinsic motives Unethical behavior 


  1. 1.
    Kitchin, R.: The real-time city? Big data and smart urbanism. GeoJournal 79(1), 1–14 (2014)CrossRefGoogle Scholar
  2. 2.
    IBE: Business Ethics Brief: Business Ethics and Big Data. Issue 52 (2016). Accessed 8 Feb 2018
  3. 3.
    Richards, N.M., King, J.H.: Big data ethics. Wake For. Law Rev. 49(2013), 393–432 (2014)Google Scholar
  4. 4.
    Zwitter, A.: Big data ethics. Big Data Soc. 1(2), 1–6 (2014)CrossRefGoogle Scholar
  5. 5.
    Accenture: Universal Principles of Data Ethics: 12 Guidelines for Developing Ethics Codes (2014). Accessed 8 Feb 2018
  6. 6.
    ICO: Big Data, Artificial Intelligence, Machine Learning and Data Protection (2017). 20170904. Accessed 8 Feb 2018
  7. 7.
    Boyd, D., Crawford, K.: Critical questions for big data: provocations for a cultural, technological, and scholarly phenomenon. Inf. Commun. Soc. 15(5), 662–679 (2012)CrossRefGoogle Scholar
  8. 8.
    Dereli, T., Coşkun, Y., Kolker, E., Güner, O., Aǧirbaşli, M., Özdemir, V.: Big data and ethics review for health systems research in LMICs: understanding risk, uncertainty and ignorance-and catching the black swans? Am. J. Bioeth. 14(2), 48–50 (2014)CrossRefGoogle Scholar
  9. 9.
    Office of the Australian Information Commissioner: Privacy Management Framework: Enabling Compliance and Encouraging Good Practice. Office of the Australian Information Commissioner Privacy (2018). Accessed 8 Feb 2018
  10. 10.
    Google Dictionary: Privacy (2018). Accessed 8 Feb 2018
  11. 11.
    Bellman, S., Johnson, E.J., Kobrin, S.J., Lohse, G.L.: International differences in information privacy concerns: a global survey of consumers. Inf. Soc. 20(5), 313–324 (2004)CrossRefGoogle Scholar
  12. 12.
    Zook, M., Barocas, S., Boyd, D., Crawford, K., Keller, E., Gangadharan, S.P., Goodman, A., Hollander, R., Koenig, B., Metcalf, J., Narayanan, A., Nelson, A., Pasquale, F.: Ten simple rules for responsible big data research. PLoS Comput. Biol. 13(3), 1–10 (2017)CrossRefGoogle Scholar
  13. 13.
    Davis, K., Patterson, D.: Ethics in Big Data. O’Reilly Media Inc., Sebastopol (2012)Google Scholar
  14. 14.
    Mittelstadt, B.D., Floridi, L.: The ethics of big data: current and foreseeable issues in biomedical contexts. Sci. Eng. Ethics 22(2), 303–341 (2016)CrossRefGoogle Scholar
  15. 15.
    George, G., Haas, M.R., Pentland, A.: From the editors: big data and management. Acad. Manag. J. 57(2), 321–326 (2014)CrossRefGoogle Scholar
  16. 16.
    Rivers, C.M., Lewis, B.L.: Ethical research standards in a world of big data. F1000Research 3, 38 (2014). Online FirstGoogle Scholar
  17. 17.
    Crawford, K., Schultz, J.: Big data and due process - toward a framework to redress predictive privacy harms. BCL Rev. 55(1), 93–128 (2014)Google Scholar
  18. 18.
    Lyon, D.: Surveillance, snowden, and big data: capacities, consequences, critique. Big Data Soc. 1(2), 1–13 (2014)CrossRefGoogle Scholar
  19. 19.
    Chessell, M.: Ethics for Big Data and Analytics. IBM Corporation (2014). Accessed 8 Feb 2018
  20. 20.
    Metcalf, J.: Ethics Codes: History, Context, and Challenges (2014). Accessed 30 Oct 2017
  21. 21.
    Data Science Association: Data Science Code of Conduct (n.d.). Accessed 15 Oct 2017
  22. 22.
    Bandura, A.: Social Foundations of Thought and Action. Prentice-Hall, Englewood Cliffs (1986)Google Scholar
  23. 23.
    Bandura, A.: Moral disengagement in the perpetration of inhumanities. Pers. Soc. Psychol. Rev. 3(3), 193–209 (1999)CrossRefGoogle Scholar
  24. 24.
    Detert, J.R., Treviño, L.K., Sweitzer, V.L.: Moral disengagement in ethical decision making: a study of antecedents and outcomes. J. Appl. Psychol. 93(2), 374–391 (2008)CrossRefGoogle Scholar
  25. 25.
    Bandura, A., Barbaranelli, C., Caprara, G.V., Pastorelli, C.: Mechanisms of moral disengagement in the exercise of moral agency. J. Pers. Soc. Psychol. 71(2), 364–374 (1996)CrossRefGoogle Scholar
  26. 26.
    Baron, R., Zhao, H., Miao, Q.: Personal motives, moral disengagement, and unethical decisions by entrepreneurs: cognitive mechanisms on the “slippery slope”. J. Bus. Ethics 128(1), 1–12 (2014)Google Scholar
  27. 27.
    Scheiner, C.W., Baccarella, C., Bessant, K., Voigt, K.-I.: Participation motives, moral disengagement, and unethical behaviour in idea competitions. Int. J. Innov. Manag. 22(4), 1850043-1–1850043-24 (2018)Google Scholar
  28. 28.
    Amabile, T.M.: Motivational synergy: toward new conceptualizations of intrinsic and extrinsic motivation in the workplace. Hum. Resour. Manag. Rev. 3(3), 185–201 (1993)CrossRefGoogle Scholar
  29. 29.
    Litzky, B.E., Eddleston, K.A., Kidder, D.L.: How managers inadvertently encourage deviant behaviors. Acad. Manag. Perspect. 20(1), 91–1036 (2006)CrossRefGoogle Scholar
  30. 30.
    Moore, C.: Moral disengagement in processes of organizational corruption. J. Bus. Ethics 80(1), 129–139 (2008)CrossRefGoogle Scholar
  31. 31.
    Shepherd, D.A., Baron, R.A.: “I Care About Nature, But…”: disengaging values in assessing opportunities that cause harm. Acad. Manag. J. 56(5), 1251–1273 (2013)CrossRefGoogle Scholar
  32. 32.
    Utmann, C.: Performance effects of motivational state: a meta-analysis. Pers. Soc. Psychol. Rev. 1(2), 170–182 (1997)CrossRefGoogle Scholar
  33. 33.
    Zhang, X., Barthol, K.: Linking empowering leadership and employee creativity: the influence of psychological empowerment, intrinsic motivation, and creative process engagement. Acad. Manag. J. 53(1), 107–128 (2010)CrossRefGoogle Scholar
  34. 34.
    Dewett, T.: Linking intrinsic motivation, risk taking, and employee creativity in an R&D environment. R&D Manag. 37(3), 197–208 (2007)CrossRefGoogle Scholar
  35. 35.
    Carsrud, A., Brännback, M.: Entrepreneurial motivations: what do we still need to know. J. Small Bus. Manag. 49(1), 9–26 (2011)CrossRefGoogle Scholar
  36. 36.
    Council of Europe: Guidelines on the Protection of Individuals with Regard to the Processing of Personal Data in a World of Big Data (2017). Accessed 13 Feb 2018
  37. 37.
    Information and Privacy Commissioner of Ontario: Big Data - Guidelines. Hg. v. Information and Privacy Commissioner of Ontario (2017). Accessed 8 Feb 2018
  38. 38.
    van Rijmenam, M.: Big Data Ethics: 4 Guidelines to Follow by Organisations. Datafloq B.V. o.O. (2017). Accessed 17 May 2017
  39. 39.
    U.S. Department of Health, Education and Welfare, Secretary’s Advisory Committee on Automated Personal Data Systems, Records, computers, and the Rights of Citizens viii: The Code of Fair Information Practices, cited from Electronic Privacy Information Center (EPIC): The Code of Fair Information Practices. Hg. v. (1973). Accessed 8 Feb 2018
  40. 40.
    King, S.: Big Data: Potential und Barrieren der Nutzung im Unternehmenskontext. Springer, Wiesbaden (2014). Scholar
  41. 41.
    Trautman, L.J., Ormerod, P.: corporate directors’ and officers’ cybersecurity standard of care: the Yahoo data breach. 66 Am. Univ. Law Rev. 1231 (2017). or Accessed 13 Feb 2018
  42. 42.
    IAF: Big Data Assessment Framework and Worksheet. IAF Big Data Ethics Initiative (2015)Google Scholar
  43. 43.
    Toole, J.L., Eagle, N., Plotkin, J.B.: Spatiotemporal correlations in criminal offense records. ACM Trans. Intell. Syst. Technol. 2(4), 38:1–38:18 (2011)CrossRefGoogle Scholar
  44. 44.
    Hilbert, M.: Big data for development: a review of promises and challenges. Dev. Policy Rev. 34(1), 135–174 (2016)MathSciNetCrossRefGoogle Scholar
  45. 45.
    IBM News: IBM Ushers In Era Of Stream Computing. Press release, 13 May. IBM, Armonk (2009). Accessed 18 Jan 2018
  46. 46.
    GFDRR (Global Facility for Disaster Reduction and Recovery): Open Data for Resilience Initiative (OpenDRI). Global Facility for Disaster Reduction and Recovery. World Bank, Washington, DC (2012). Accessed 8 Feb 2018
  47. 47.
    Metcalf, J., Crawford, K.: Where are human subjects in big data research? The emerging ethics divide. Big Data Soc. 3(1), 1–14 (2016)CrossRefGoogle Scholar
  48. 48.
    Danna, A., Gandy, O.H.: All that glitters is not gold: digging beneath the surface of data mining. J. Bus. Ethics 40(4), 373–386 (2012)CrossRefGoogle Scholar
  49. 49.
    Johnson, J.A.: The ethics of big data in higher education. IRIE Int. Rev. Inf. Ethics 4, 3–10 (2014)Google Scholar
  50. 50.
    Parry, M.: College Degrees, Designed by the Numbers, The Chronicles of Higher Education. Accessed 8 Feb 2018

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Markus Beckmann
    • 1
  • Christian W. Scheiner
    • 2
    Email author
  • Anica Zeyen
    • 3
  1. 1.Chair of Corporate Sustainability ManagementFriedrich-Alexander-Universität Erlangen-NürnbergNurembergGermany
  2. 2.Institute of Entrepreneurship and Business DevelopmentUniversität zu LübeckLübeckGermany
  3. 3.Centre for Research into SustainabilityRoyal Holloway University of LondonEghamUK

Personalised recommendations