Advertisement

Exoplanets, Granitoids and Evolutionary Potential

  • David S. Stevenson
Chapter
Part of the Springer Praxis Books book series (PRAXIS)

Abstract

As we have seen, granite is ubiquitous on terrestrial bodies in the solar system. Its volume relates to two factors: the persistence of volcanism and the presence of water. The more water there is available in the mantle, the greater the occurrence of partial melting; the longer the lower crust remains hot, the more likely it will be that bodies of mafic magma will persist and fractionate.

References

Iceland, Plumes and Superplumes

  1. Keiding, J. K., Sigmarsson, O. (2012): Geothermobarometry of the 2010 Eyjafjallajokull eruption: New constraints on Icelandic magma plumbing systems. Journal of Geophysical Research, 117, B3; DOI:  https://doi.org/10.1029/2011JB008829CrossRefGoogle Scholar
  2. Radial viscous fingering of hot asthenosphere within the Icelandic plume beneath the North Atlantic Ocean. (2017) C.M. Schoonman, N.J. White, D. Pritchard, Earth and Planetary Science Letters, 468, 51–61;  https://doi.org/10.1016/j.epsl.2017.03.036CrossRefGoogle Scholar
  3. Is Iceland underlain by a plume in the lower mantle? Seismology and helium isotopes. (2001) G. R. Foulger and D. G. Pearso, Geophys. J. Int. 145, F1–F5. Downloaded from https://academic.oup.com/gji/article-abstract/145/3/F1/2015734CrossRefGoogle Scholar
  4. P and PP traveltime tomography: Rays versus waves (2004) Montelli, R., G. Nolet, G. Masters, F. A. Dahlen, and Hung, S.H., Global, Geophys. J. Int., 158, 637–654CrossRefGoogle Scholar
  5. A catalogue of deep mantle plumes: New results from finite-frequency tomography. (2006) Montelli, R., G. Nolet, F. A. Dahlen, G. Masters, Geochemistry, Geophysic, Geosystems. 7, Q11007, doi:  https://doi.org/10.1029/2006GC001248, 2006CrossRefGoogle Scholar
  6. Finite-frequency tomography reveals a variety of plumes in the mantle (2004) Montelli, R., G. Nolet, F. A. Dahlen, G. Masters, E. R. Engdahl, and Hung, S.H., Science, 303, 338–343Google Scholar

Habitability

  1. Plate tectonics and planetary habitability: current status and future challenges. (2012) Jun Korenaga Annals of the New York Academy of Sciences Issue: Blavatnik Awards for Young Scientists; Ann. N.Y. Acad. Sci. ISSN 0077-8923; doi: https://doi.org/10.1111/j.1749-6632.2011.06276.xGoogle Scholar
  2. Regulating continent growth and composition by chemical weathering. Cin-Ty Aeolus Lee, Douglas M. Morton, Mark G. Little, Ronald Kistler, Ulyana N. Horodysky, William P. Leeman, and Arnaud Agranier, PNAS 05 (13) 4981–4986, doi:  https://doi.org/10.1073/pnas.0711143105. Available at: http://www.pnas.org/content/105/13/4981.full
  3. The inner edge of the habitable zone for synchronously rotating planets around low-mass stars using general circulation models. (2016) Ravi Kumar Kopparapu, Eric T. Wolf, Jacob Haqq-Misra, Jun Yang, James F. Kasting, Victoria Meadows, Ryan Terrien, and Suvrath Mahadevan Available at: http://iopscience.iop.org/article/10.3847/0004-637X/819/1/84/pdf
  4. Constraints on Climate and Habitability for Earth-like Exoplanets Determined from a General Circulation Model. (2017) Eric T. Wolf, Aomawa L. Shields, Ravi K. Kopparapu, Jacob Haqq-Misra, Owen B. Toon. Available at: https://arxiv.org/ftp/arxiv/papers/1702/1702.03315.pdf
  5. Habitability of Super-Earth Planets around Main-Sequence Stars including Red Giant Branch Evolution: Models based on the Integrated System Approach. (2011), M. Cuntz, W. von Bloh, K.-P. Schroeder, C. Bounama, S. Franck: Available at: https://arxiv.org/pdf/1107.5714.pdf
  6. Rapid Water Loss can Extend the Lifetime of the Planetary Habitability. (2015) Takanori Kodama, Hidenori Genda, Yutaka Abe, and Kevin J. Zahnle The Astrophysical Journal, 812 (2); Available at: http://iopscience.iop.org/article/10.1088/0004-637X/812/2/165/meta
  7. Mantle Dynamics in Super-Earths: Post-Perovskite Rheology and Self-Regulation of Viscosity. (2012) P. J. Tackley, M. Ammann, J. P. Brodholt, D. P. Dobson, D. Valencia; available at: https://arxiv.org/ftp/arxiv/papers/1204/1204.3539.pdf
  8. Why does plate tectonics occur only on Earth? (2008) Paula Martin, Jeroen van Hunen, Stephen Parman and Jon Davidson, Physics Education, 43, (2). Available at: https://www.researchgate.net/profile/Jon_Davidson/publication/30053838_Why_does_plate_tectonics_only_occur_on_Earth/links/54083bef0cf2c48563b941f3/Why-does-plate-tectonics-only-occur-on-Earth.pdf
  9. Conditions for the onset of plate tectonics on terrestrial planets and moons. (2005) C. O’Neill, A.M. Jellinek & A. Lenardic, Available at: http://pages.uoregon.edu/drt/Classes/Geophysics607_F05/oneill_originplatetect_2005.pdf
  10. A window for plate tectonics in terrestrial planet evolution? (2015) Craig O’Neill, Adrian Lenardic, Matthew Weller, Louis Moresi, Steve Quenette, Siqi Zhang. Physics of the Earth and Planetary Interiors 255 (2016) 80–92;  https://doi.org/10.1016/j.pepi.2016.04.002CrossRefGoogle Scholar
  11. The Generation of Plate Tectonics from Mantle Dynamics. (2015) D Bercovici, PJ Tackley, Y Ricard, Treatise on Geophysics, Second Edition. Available at:  https://doi.org/10.1016/B978-0-444-53802-4.00135-4
  12. Geodynamics and rate of volcanism on massive earth-like planets. (2009) E. S. Kite, M. Manga, and E. Gaidos, The Astrophysical Journal, 700:1732–1749; doi:  https://doi.org/10.1088/0004-637X/700/2/1732. Available at: http://iopscience.iop.org/article/10.1088/0004-637X/700/2/1732/pdfCrossRefGoogle Scholar

Red Dwarfs

  1. The MEarth project: searching for transiting habitable super-Earths around nearby M-dwarfs. (2008) Jonathan Irwin, David Charbonneau, Philip Nutzman and Emilio Falco, Proceedings IAU Symposium No. 253, 2008, available at: https://arxiv.org/pdf/0807.1316.pdf
  2. Assessing the Habitability of the TRAPPIST-1 System Using a 3D Climate Model. (2017) Eric T. Wolf. Available at: https://arxiv.org/ftp/arxiv/papers/1703/1703.05815.pdf
  3. Possible internal structures and compositions of Proxima Centauri b. (2016) B. Brugger, O. Mousis, M. Deleuil, and J. I. Lunine. Astrophysical Journal, 831:L16. Available https://arxiv.org/pdf/1609.09757.pdf and http://iopscience.iop.org/article/10.3847/2041-8205/831/2/L16/pdf
  4. Climate diversity on cool planets around cool stars with a versatile 3-D Global Climate Model: the case of TRAPPIST-1 planets. (2017) Martin Turbet, Emeline Bolmont, Jeremy Leconte, Francois Forget, Franck Selsis, Gabriel Tobie, Anthony Caldas, Joseph Naar and Michaël Gillon. Available at: https://www.researchgate.net/publication/318652915_Climate_diversity_on_cool_planets_around_cool_stars_with_a_versatile_3-D_Global_Climate_Model_the_case_of_TRAPPIST-1_planets

The Moon

  1. Did a large impact reorient the Moon? (2008) Mark A. Wieczorek and Mathieu Le Feuvre, Icarus 200, 358–366; doi:  https://doi.org/10.1016/j.icarus.2008.12.017CrossRefGoogle Scholar

Biodiversity and Evolution

  1. Evolutionary exobiology: Towards the qualitative assessment of biological potential on exoplanets. (2017) Stevenson, D., & Large, S. International Journal of Astrobiology,16, 4, 1–5. doi:  https://doi.org/10.1017/S1473550417000349CrossRefGoogle Scholar
  2. Biodiversity is autocatalytic. (2017) Roberto Cazzolla Gattia, Wim Hordijkb, Stuart Kauffman, Ecological Modelling 346 (2017) 70–76; DOI  https://doi.org/10.1016/j.ecolmodel.2016.12.003. Available at: https://robertocazzollagatti.files.wordpress.com/2014/01/biodiversity_is_autocatalytic.pdf
  3. A new formal perspective on ‘Cambrian explosions’ (2014) Rodrick Wallace, C. R. Biologies 337 (2014) 1–5; DOI:  https://doi.org/10.1016/j.crvi.2013.11.002CrossRefGoogle Scholar
  4. Expanding the modern synthesis. (2010) Rodrick Wallace C. R. Biologies 333, 701–709; doi: https://doi.org/10.1016/j.crvi.2010.08.003CrossRefGoogle Scholar
  5. A conceptual model of new hypothesis on the evolution of biodiversity. (2016) Roberto Cazzolla Gatti Biologia 71/3: 343—351; DOI:  https://doi.org/10.1515/biolog-2016-0032CrossRefGoogle Scholar
  6. Evo-SETI: A Mathematical Tool for Cladistics, Evolution, and SETI. (2017) Claudio Maccone, Life (Basel). 2017 Jun; 7(2): 18. doi:  https://doi.org/10.3390/life7020018. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5492140/pdf/life-07-00018.pdf
  7. Evolution is a cooperative process: the biodiversity-related niches differentiation theory (BNDT) can explain why. (2011) Roberto Gatti, Theor Biol Forum, 104(1):35–43. Available at: https://www.researchgate.net/publication/51985015_Evolution_is_a_cooperative_process_The_biodiversity-related_niches_differentiation_theory_BNDT_can_explain_whyGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • David S. Stevenson
    • 1
  1. 1.NottinghamshireUK

Personalised recommendations