Advertisement

Mountains, Atmosphere and Long-Term Habitability

  • David S. Stevenson
Chapter
Part of the Springer Praxis Books book series (PRAXIS)

Abstract

The terrestrial atmosphere is an evolving sea of gases, whose composition and density has varied over the lifetime of our world. There is a profound connection between what is happening on the surface of a planet and the stability of this gaseous sea. We can infer this gaseous ocean’s composition from its geological activity and vice versa, allowing us to make testable predictions about the atmospheres of planets far removed from the Earth.

References

Paleo-Terrestrial Climate

  1. No climate paradox under the faint early Sun. (2010) Minik T. Rosing, Dennis K. Bird, Norman H. Sleep & Christian J. Bjerrum, Nature 464, 744–747; doi: https://doi.org/10.1038/nature08955CrossRefGoogle Scholar
  2. Air density 2.7 billion years ago limited to less than twice modern levels by fossil raindrop imprints. (2012) Sanjoy M. Som, David C. Catling, Jelte P. Harnmeijer, Peter M. Polivka & Roger Buick, Nature 484, 359–362; doi: https://doi.org/10.1038/nature10890CrossRefGoogle Scholar
  3. Climate dynamics of a hard snowball Earth (2005) R. T. Pierrehumbert, Journal of Geophysical Research 110, Issue D1, 23–36; doi:  https://doi.org/10.1029/2004JD005162CrossRefGoogle Scholar
  4. Timing of Neoproterozoic glaciations linked to transport-limited global weathering. (2011) Benjamin Mills, Andrew J. Watson, Colin Goldblatt, Richard Boyle & Timothy M. Lenton, Nature Geoscience 4, 861–864 doi: https://doi.org/10.1038/ngeo1305CrossRefGoogle Scholar
  5. A ‘snowball Earth’ climate triggered by continental break-up through changes in runoff. (2004) Yannick Donnadieu, Yves Goddéris, Gilles Ramstein, Anne Nédélec and Joseph Meert, Nature, 428, 303–306CrossRefGoogle Scholar
  6. Snowball Earth termination by destabilization of equatorial permafrost methane clathrate. (2008) Martin Kennedy, David Mrofka & Chris von der Borch, Nature, 453, 642–645; doi: https://doi.org/10.1038/nature06961CrossRefGoogle Scholar
  7. Persistence of a freshwater surface ocean after a snowball Earth. (2017) Jun Yang, Malte F. Jansen, Francis A. Macdonald, Dorian S. Abbot, Geology (2017) 45 (7): 615–618; doi: https://doi.org/10.1130/G38920.1CrossRefGoogle Scholar
  8. Soft-sediment deformation at the base of the Neoproterozoic Puga cap carbonate (southwestern Amazon craton, Brazil): Confirmation of rapid icehouse to greenhouse transition in snowball Earth. (2003) Afonso Ce’sar Rodrigues Nogueira, Claudio Riccomini, Alcides Nóbrega Sial, Candido Augusto Veloso Moura, Thomas Rich Fairchild, Geology; July 2003; vol 31; no. 7; p. 613–6CrossRefGoogle Scholar
  9. Dynamics of a Snowball Earth ocean. (2013) Yosef Ashkenazy, Hezi Gildor, Martin Losch, Francis A. Macdonald, Daniel P. Schrag & Eli Tziperman. 90 | Nature 495, 90–93; doi: https://doi.org/10.1038/nature11894CrossRefGoogle Scholar
  10. Zircon U-Pb Geochronology Links the End-Triassic Extinction with the Central Atlantic Magmatic Province.(2013) Blackburn, Terrence J.; Olsen, Paul E.; Bowring, Samuel A.; McLean, Noah M.; Kent, Dennis V; Puffer, John; McHone, Greg; Rasbury, Troy; Et-Touhami, Mohammed. Science 340 (6135): 941–945. Bibcode:2013Sci...340..941B. doi: https://doi.org/10.1126/science.1234204.CrossRefGoogle Scholar
  11. Ocean anoxia and the end Permian Mass extinction (1996), Paul B. Wignall and Richard J. Twitchett, Science, 272, 1155–1158.CrossRefGoogle Scholar
  12. Methanogenic burst in the end-Permian carbon cycle. (2014) Daniel H. Rothman, Gregory P. Fournier, Katherine L. French, Eric J. Alm, Edward A. Boyle, Changqun Cao, and Roger E. Summons PNAS vol. 111 no. 15 5462–5467, doi:  https://doi.org/10.1073/pnas.1318106111CrossRefGoogle Scholar
  13. Rampino, Michael R.; Stothers, Richard B. (1988). “Flood Basalt Volcanism During the Past 250 Million years”. Science 241 (4866): 663–668. bibcode:1988sci...241..663r. doi: https://doi.org/10.1126/science.241.4866.663.CrossRefGoogle Scholar
  14. Synchrony between the Central Atlantic magmatic province and the Triassic–Jurassic mass-extinction event? (2006) Jessica H. Whiteside, Paul E. Olsen, Dennis V. Kent, Sarah J. Fowell, Mohammed Et-Touhami. Palaeogeography, Palaeoclimatology, Palaeoecology 244 (2007) 345–367 doi: https://doi.org/10.1016/j.palaeo.2006.06.035CrossRefGoogle Scholar
  15. Episodes of Flood-Basalt Volcanism Defined by 40Ar/39Ar Age Distributions: Correlation with Mass Extinctions? (1996) Bruce M. Haggerty J. Undergrad. Sci.3: 155–164. Available at: http://www.hcs.harvard.edu/~jus/0303/haggerty.pdfGoogle Scholar
  16. End-Cretaceous extinction in Antarctica linked to both Deccan volcanism and meteorite impact via climate change (2016) Sierra V. Petersen, Andrea Dutton & Kyger C. Lohmann Nature Communications 7, 12079 doi: https://doi.org/10.1038/ncomms12079CrossRefGoogle Scholar

Snowball Earth Climate Transition and Exoplanets

  1. Habitability of super-Earth planets around main-sequence stars including red giant branch evolution: models based on the integrated system approach, (2012) M. Cuntz, W. von Bloh, K.-P. Schröder, C. Bounama International Journal of Astrobiology, 11(1), 15–23; DOI: https://doi.org/10.1017/S1473550411000280CrossRefGoogle Scholar
  2. Habitability of super-Earth planets around other suns: models including Red Giant Branch evolution. (2009) von Bloh W, Cuntz M, Schröder KP, Bounama C, Franck S. Astrobiology. 9(6):593–602. doi:  https://doi.org/10.1089/ast.2008.0285.CrossRefGoogle Scholar
  3. Plate tectonics: A supercontinental boost. (2017) Adrian Lenardic, Nature Geoscience, Volume 10, Issue 1, pp. 4–5. DOI  https://doi.org/10.1038/ngeo2862.CrossRefGoogle Scholar
  4. The Carbonate-Silicate Cycle and CO2/Climate Feedbacks on Tidally Locked Terrestrial Planets. (2012) Adam R. Edson, James F. Kasting, David Pollard, Sukyoung Lee, and Peter R. Bannon. Astrobiology. July 2012, 12(6): 562–571.  https://doi.org/10.1089/ast.2011.0762CrossRefGoogle Scholar
  5. Constraints on Climate and Habitability for Earth-like Exoplanets Determined from a General Circulation Model. (2017), Eric T. Wolf, Aomawa L. Shields, Ravi K. Kopparapu, Jacob HaqqMisra, Owen B. Toon, available at: https://arxiv.org/ftp/arxiv/papers/1702/1702.03315.pdf
  6. Geodynamics and rate of volcanism on massive earth-like planets. (2009) E. S. Kite, M. Manga, and E. Gaidos, The Astrophysical Journal, 700:1732–1749; doi: https://doi.org/10.1088/0004-637X/700/2/1732CrossRefGoogle Scholar
  7. Water cycling between ocean and mantle: super-earths need not be waterworlds. (2014) Nicolas B. Cowan & Dorian S. Abbot, Astrophysical Journal, 781, 27–34; doi: https://doi.org/10.1088/0004-637X/781/1/27. Available at: http://iopscience.iop.org/article/10.1088/0004-637X/781/1/27/pdfCrossRefGoogle Scholar
  8. Climate diversity on cool planets around cool stars with a versatile 3-D Global Climate Model: the case of TRAPPIST-1 planets. Martin Turbet, Emeline Bolmont, Jeremy Leconte, Francois Forget, Franck Selsis, Gabriel Tobie, Anthony Caldas, Joseph Naar and Michaël Gillon. Available at: https://arxiv.org/pdf/1707.06927.pdf
  9. Asynchronous rotation of Earth-mass planets in the habitable zone of lower-mass stars. (2015), Jérémy Leconte, Hanbo Wu, Kristen Menou, Norman Murray Available at: https://arxiv.org/abs/1502.01952
  10. Abrupt climate transition of icy worlds from snowball to moist or runaway greenhouse. (2017) Jun Yang, Feng Ding, Ramses M. Ramirez, W. R. Peltier, Yongyun Hu & Yonggang Liu, Nature Geoscience 10, 556–560 (2017) doi: https://doi.org/10.1038/ngeo2994
  11. Constraints on Climate and Habitability for Earth-like Exoplanets Determined from a General Circulation Model. (2017) Eric T. Wolf, Aomawa L. Shields, Ravi K. Kopparapu, Jacob HaqqMisra, Owen B. Toon, Astrophysical Journal 837 (2), DOI:  https://doi.org/10.3847/1538-4357/aa5ffc. Available at: https://arxiv.org/ftp/arxiv/papers/1702/1702.03315.pdf
  12. Equatorial superrotation on tidally locked exoplanets. (2011) Adam Showman and Lorenzo M. Polvan. The Astrophysical Journal, 738:71–94, doi: https://doi.org/10.1088/0004-637X/738/1/71. Available at: https://arxiv.org/pdf/1103.3101.pdfCrossRefGoogle Scholar

Mars

  1. Local Dynamics of Baroclinic Waves in the Martian Atmosphere. (2013) Michael J. Kavulich Jr., Istvan Szunyogh, Gyorgyi Gyarmati and R. John Wilson, Journal of the Atmospheric Sciences, vol. 70, no. 11, pp. 3415–3447; DOI  https://doi.org/10.1175/JAS-D-12-0262.1CrossRefGoogle Scholar
  2. Cyclones, tides, and the origin of a cross-equatorial dust storm on Mars. Huiqun Wang, Mark I. Richardson, R. John Wilson, Andrew P. Ingersoll, Anthony D. Toigo, and Richard W. Zurek Geophysical Research Letters, 30, (9), 1488, doi: https://doi.org/10.1029/2002GL016828, 2003CrossRefGoogle Scholar
  3. Initiation and Spread of Martian Dust Storms. (n.d.) J. R. Barnes. Available at: https://mars.jpl.nasa.gov/mgs/sci/fifthconf99/6011.pdf

Mantle-Hydrosphere Interactions: Long-Term Habitability of Planets

  1. Evolutionary context for understanding and manipulating plant responses to past, present and future atmospheric [CO2]. (2012) Andrew D. B. Leakey and Jennifer A. Lau. Phil. Trans. R. Soc. B 2012 367, 613–629 doi:  https://doi.org/10.1098/rstb.2011.0248 https://msu.edu/~jenlau/pdf/publications/Leakey%20and%20Lau%202012.pdf
  2. The life span of the biosphere revisited. (1992) Caldeira K, Kasting JF. Nature, 360, 721–3 doi:  https://doi.org/10.1038/360721a0CrossRefGoogle Scholar
  3. Relative Likelihood for Life as a Function of Cosmic Time. (2016) Abraham Loeb, Rafael A. Batista, David Sloan. Available at: http://arxiv.org/pdf/1606.08448v2.pdf
  4. Continental insulation, mantle cooling, and the surface area of oceans and continents (2005) Lenardic, A., Moresi, L.-N., Jellinek, A. M., & Manga, M., Earth and Planetary Science Letters, 234, 317–333; doi: https://doi.org/10.1016/j.epsl.2005.01.038CrossRefGoogle Scholar
  5. Mantle Dynamics in Super-Earths: Post-Perovskite Rheology and Self-Regulation of Viscosity. (2012) P. J. Tackley, M. Ammann, J. P. Brodholt, D. P. Dobson, D. Valencia; Available at: https://arxiv.org/ftp/arxiv/papers/1204/1204.3539.pdf
  6. Constraints on the depths and temperatures of basaltic magma generation on Earth and other terrestrial planets using new thermobarometers for mafic magmas. (2009) Cin-Ty A. Lee, PeterLuffi, Terry Plank, Heather Dalton, William P. Leeman; Earth and Planetary Science Letters 279, (1–2), 20–33.CrossRefGoogle Scholar
  7. Most 1.6 Earth-radius planets are not rocky. (2015) Leslie A. Rogers, The Astrophysical Journal, 801 (41) 1–13; doi: https://doi.org/10.1088/0004-637X/801/1/41CrossRefGoogle Scholar
  8. Pressure-Dependent Viscosity on Sub-Earths and Super-Earths (2010) Lena Noack, Vlada Stamenkovic, and Doris Breuer Geophysical Research Abstracts, 12, EGU2010-9645-1Google Scholar
  9. The Influence of Pressure-dependent Viscosity on the Thermal Evolution of Super-Earths. (2012) The Astrophysical Journal 748(1):41 March 2012 Vlada Stamenkovic L. Noack Doris Breuer Tilman SpohnCrossRefGoogle Scholar
  10. The Carbonate-Silicate Cycle and CO2/Climate Feedbacks on Tidally Locked Terrestrial Planets. (2012) Adam R. Edson, James F. Kasting, David Pollard, Sukyoung Lee, and Peter R. Bannon. Astrobiology. July 2012, 12(6): 562–571.  https://doi.org/10.1089/ast.2011.0762
  11. Asynchronous rotation of Earth-mass planets in the habitable zone of lower-mass stars. (2015) Jérémy Leconte, Hanbo Wu, Kristen Menou, Norman Murray; Science, 6222, 632–634; DOI:  https://doi.org/10.1126/science.1258686
  12. The persistence of oceans on earth-like planets: insights from the deep-water cycle (2015) Laura Schaefer and Dimitar Sasselov, The Astrophysical Journal, 801, (1), doi: https://doi.org/10.1088/0004-637X/801/1/40. Available at: https://arxiv.org/pdf/1501.00735.pdf
  13. Long-term stability of global erosion rates and weathering during late-Cenozoic cooling. (2010) Jane K. Willenbring & Friedhelm von Blanckenburg, Nature, 211–214; 465; doi: https://doi.org/10.1038/nature09044CrossRefGoogle Scholar
  14. The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds (2013) James D. Atkinson, Benjamin J. Murray, Matthew T. Woodhouse, Thomas F. Whale, Kelly J. Baustian, Kenneth S. Carslaw, Steven Dobbie, Daniel O’Sullivan & Tamsin L. Malkin, Nature, 498, 355–358; doi: https://doi.org/10.1038/nature12278CrossRefGoogle Scholar
  15. Plant responses to low [CO2] of the past. (2010) Laci M. Gerhart and Joy K. Ward New Phytologist, 188 (3). Available online: https://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.2010.03441.x/pdf
  16. The oxygen and carbon dioxide compensation points of C3 plants: Possible role in regulating atmospheric oxygen (photosynthetic carbon/02 inhibition/photorespiration/Nicotiana tobacum/Spinacea oleracea). (1995) N. E. Tolbert, C. Benkert, and E. Beck; PNAS 92, 11230–11233, November 1995 Plant BiologyCrossRefGoogle Scholar

Tidal Locking and the Moon

  1. Why do we see the man in the Moon? (2012) Oded Aharonson, Peter Goldreich, Reem Sari, Icarus, 219 (1), 241–243, Available at: http://www.lpi.usra.edu/meetings/lpsc2012/pdf/2532.pdfCrossRefGoogle Scholar
  2. Earthshine on a young moon: explaining the lunar farside highlands. (2014) Arpita Roy, Jason T. Wright, and Steinn Sigurðsson, The Astrophysical Journal Letters, 788, 2; doi: https://doi.org/10.1088/2041-8205/788/2/L42CrossRefGoogle Scholar
  3. Did a large impact reorient the Moon? (2008) Mark A. Wieczorek, Mathieu Le Feuvre, Icarus 200 (2009) 358–366, doi: https://doi.org/10.1016/j.icarus.2008.12.017CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • David S. Stevenson
    • 1
  1. 1.NottinghamshireUK

Personalised recommendations